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Abstract
Purpose of Review  Historically, therapies for migraine have generally involved pharmacological treatments using non-selective  
or selective analgesics and preventive treatments. However, for many patients these treatments  are not effective, while 
othersprefer to use non-pharmacological-based therapies. To fill this need, over the last 15 years, neuromodulatory devices  
have entered the market for migraine treatment. Here, we will review the most recent findings for the use of these devices in 
the treatment of migraine.
Recent Findings  Non-invasive vagus nerve stimulation and spring-pulse transcranial magnetic stimulation are both cleared 
for the treatment of migraine, supported by preclinical studies that validate efficacy and mechanism of action, and comple-
mented with clinical trial data. Other options also authorized for use include transcutaneous supraorbital nerve stimulation 
and remote electrical neuromodulation.
Summary  Various options are available to treat migraine using authorized neuromodulatory devices. These data support 
their efficacy in the treatment of episodic migraine, although further studies are necessary to elucidate their mechanism of 
action and to provide rigor to clinical trial data.

Introduction

Migraine treatment has evolved dramatically over the last 
50 years [1]. The acute treatment of migraine was based 
on traditional analgesics, namely acetaminophen (paraceta-
mol) and non-steroidal anti-inflammatory drugs, and ergot 
derivatives as the first migraine-specific acute medications 
[2]. Overcoming some of the safety concerns of the lat-
ter, triptans (5HT1B/1D receptor agonists) showed efficacy 
and reasonably good tolerability with the main downside 
being their contraindication in patients with cardiovascu-
lar diseases, due to their vasoactive properties [3]. It also 
had not been long since amitriptyline was first described 

as a potentially efficacious preventive treatment for head-
ache [4]. The therapeutic arsenal has grown exponen-
tially over the years and various medications including 
other antidepressants, antihypertensives, calcium antago-
nists, and anticonvulsive drugs have all shown useful as 
migraine preventives [5]. With a better understanding of 
the pathophysiology of migraine, including the discovery 
of calcitonin gene-related peptide (CGRP) and understand-
ing its role as a nociceptive neurotransmitter [6, 7], this 
has changed the traditional therapeutic approach towards 
more migraine-targeted drugs, such as preventive treat-
ments based on monoclonal antibodies targeting the CGRP 
pathway [8], acute treatments with ditans (5HT1F agonists), 
and acute and/or preventive treatments with small-molecule 
CGRP antagonists (gepants) [5, 9].

Yet, despite the therapeutic advances of the last 50 years, 
for many migraine patients, the currently available preven-
tive and acute medications are not efficacious. A good  
proportion do not tolerate these drugs, or cannot take them 
due to contraindications and drug-drug interactions, or they 
prefer to choose non-pharmaceutical options [10]. As our 
understanding of migraine pathophysiology and technology 
has evolved, so too has the opportunity to utilize new and 
novel neuromodulation approaches to treat migraine [11]. 
This review will cover the most promising devices showing 
evidence for the treatment of episodic migraine.
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Non‑invasive Vagal Nerve Stimulation

Historical Background

Stimulation of the vagus nerve was utilized initially for the 
treatment of epilepsy. In 1990, four patients were implanted 
with a device for intermittent vagal nerve stimulation [12]. 
Following positive multicenter randomized controlled trials, 
vagal nerve stimulation was FDA-cleared for this indication 
in 1997 [13]. Despite its benefits, side effects such as cough, 
dyspnea, and hoarseness were reported [14]. Non-invasive 
vagal nerve stimulation (nVNS) in the auricular area was 
trialed in 60 patients with pharmacoresistant epilepsy, lead-
ing not only to a reduction in seizure frequency but also 
improvement in quality of life and depression scales [15]. 
The use of VNS in depression was tested in a randomized 
sham-controlled trial and a subsequent open-label extension 
phase, with the latter showing improvement in depression 
scales [16, 17]. Consequently, VNS was also cleared by 
the FDA for the indication of depression in 2005. It was 
not until the beginning of the twenty-first century that the 
possibility of treating headache and pain with nVNS was 
addressed.

Rationale

The rationale behind its use in headache is based on the 
anatomy and physiology of the vagus nerve. Unlike other 
cranial nerves, the vagus nerve is both motor (efferent) 
and sensory (afferent), with afferent being the majority 
of the nerve fibers by ratio of 80:20. At the same time, 
these afferent fibers are divided in different types. Large 
A-fibers carry somatic information, small A-fibers carry 
visceral information, B-fibers carry autonomic informa-
tion, and unmyelinated C-fibers, which are the most 
common, are responsible for the transmission of pain 
as well as sensory visceral, stretching, temperature, and 
chemical information [18, 19]. At the level of the vagal 
ganglia, the most relevant neurotransmitters include sub-
stance P, glutamate, as well as CGRP [20]. Indeed, the 
vagus nerve acts as a pain mediator. Its afferent fibers 
synapse in the area postrema and the spinal nucleus of 
the trigeminal nerve as well as the nucleus tractus soli-
tarius (NTS) (Fig. 1). From the NTS, there are projec-
tions to the locus coeruleus (LC) and the periaqueductal 
gray (PAG). Some of the major projections of the vagus 
nerve connect to the thalamus, the parabrachial and ven-
tral posteromedial (VPM) nuclei [18, 21]. The thalamus 
and PAG have been described as paramount in migraine 
pathophysiology [11].

Preclinical and Clinical Studies

Preclinical experiments have shown the potential of VNS in 
pain modulation, but particularly, intracranial migraine-like 
nociception. Studies demonstrate invasive and non-invasive 
VNS inhibits responses in rodent models of migraine-like 
dural-trigeminovascular nociception [22], migraine aura [23], 
and migraine-like facial allodynia [24]. Studies in models of 
cortical spreading depression (CSD), the experimental corre-
late of migraine aura, confirm that central afferents that relay 
through the NTS are involved in this inhibitory mechanism of 
action [25]. Furthermore, both serotonin and norepinephrine 
(noradrenaline) are strongly implicated, supporting a likely role 
of both LC and raphe nuclei, which receive direct and indi-
rect projections from the NTS. Non-invasive VNS in healthy 
humans was studied with functional MRI showing deactiva-
tion of the spinal trigeminal nucleus [26], as well as a complex 
network of functional connectivity that also includes the hypo-
thalamus, pontine nucleus, and parahippocampal gyrus [27].

Clinical Trial Evidence

Of note, while studies observing the effects of implanted 
(invasive) VNS devices for treatment in epilepsy and 

Fig. 1   Schematic representation of afferent projections of the vagus 
nerve. AP, area postrema; PAG, periaqueductal gray; PB, parabra-
chial nucleus; DRN, dorsal raphe nucleus; LC, locus coeruleus; NTS, 
nucleus tractus solitaries; SuS, superior salivatory nucleus (pregan-
glionic parasympathetic neurons); TCC, trigeminocervical complex 
(trigeminal nucleus caudalis and its cervical extension to C1 and C2)
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depression have reported significant improvements in 
migraine [28–31], there are no controlled clinical trials of 
invasive VNS indicated for migraine prevention or acute 
treatment. Two modalities of nVNS have been tested for 
migraine treatment: transcutaneous cervical (gammaCore®) 
and auricular (VITOS®) devices [32].

The gammaCore device stimulates the vagus nerve in 
the cervical region, where it is flanked by the carotid artery 
and jugular vein. This device uses fixed stimulus param-
eters (1 ms pulses of 5 kHz sine waves repeated at 25 Hz 
for 2 min) with current applied determined by the patient 
to a comfortable level (24 V peak voltage and 60 mA peak 
output current). The efficacy of the gammaCore device as 
a headache abortive was studied in one randomized, sham-
controlled study, the PRESTO trial. This study involved 
243 migraine patients, where nVNS was applied bilaterally 
(1 × 2 min for each side) with the option to repeat stimula-
tion if no improvement occurred after 15 min. The primary 
endpoint, pain freedom at 2 h, was achieved by 30.4% of 
patients in the active group compared to 19.7% in the sham 
group. However, the difference was not statistically signifi-
cant (P = 0.067) [33]. Despite this, for secondary endpoints 
of pain freedom at both 30 and 60 min, nVNS was statisti-
cally superior to sham. Preventive use of this device was 
tested in the PREMIUM trial, a multicenter, randomized, 
double-blind sham-controlled study that involved 332 
patients with episodic migraine. Here, the preventive treat-
ment protocol included bilateral VNS (1 × 2 min each side) 
administered three times daily. The primary endpoint, the 
mean reduction in migraine days per month was not met; 
after a 12-week follow-up period, this was 2.26 reduction 
for active and 1.80 for sham (P = 0.15). However, a post 
hoc analysis involving patients whose therapeutic adherence 
was high, namely more than 67% per month, did show a 
statistically significant difference favoring the active group 
[34, 35]. Additionally, there is evidence from another clini-
cal investigation that the sham treatment may influence the 
trigemino-autonomic reflex [36]. It may be speculated that 
the sham device could have had a small effect reducing the 
difference between the active and sham groups and thereby 
influencing the study outcome. Therefore, further studies in 
migraine would be warranted to confirm the findings.

The auricular VNS, the VITOS® (or NEMOS®, indi-
cated for treatment of epilepsy) device has been tested 
for preventive treatment in chronic migraine in a double-
blind, monocentric, parallel group, controlled trial. The 
outcome of the treatment groups differed based on fre-
quency of stimulation, with the 1 Hz group showing a sig-
nificantly (P = 0.035) greater reduction of headache days 
per month (−7.0 ± 4.6 days) compared to the 25 Hz group 
(−3.3 ± 5.4 days). Patient compliance was high during this 
trial, which could also account for its positive results as 
compared to the cervical VNS studies. Again, despite the 

efficacy and overall good tolerability, only two patients dis-
continued the 1 Hz treatment due to local ulcer, no more 
studies have been published on this modality of stimula-
tion [37].

Single Pulse Transcranial Magnetic 
Stimulation

Historical Background

Transcranial magnetic stimulation (TMS) of the brain 
became available in 1985. Prior to this, direct electric brain 
stimulation was only possible during neurosurgical opera-
tions [38]. TMS has become a useful tool, utilizing a cop-
per electromagnetic coil, which generates a perpendicular 
electromagnetic pulse that is applied to the cortex rather than 
to the scalp and skull. Stimulation of the motor cortex on 
one side was able to produce movement on the contralateral 
side and has since been used as a tool to examine motor 
pathways. Stimulation of non-motor areas was tested for the 
first time in the early 90s [39]. Of note, the electrical field 
that is generated on the surface of the cortex can be of up 
to 150 V/m and evidence shows that it reaches depths of 
between 1.5 and 3 cm [40]. Following initial single pulse 
stimulations, stimulation in pairs and repeated pulse stimu-
lation were developed. In the latter, trains of up to 1000s  
of stimuli can be applied to the cortex. Studies of this tech-
nique have shown that low frequency stimulation of less than 
1 Hz produces an inhibitory effect, whereas high frequency, 
namely more than 1 Hz, activates the cortex [41].

Rationale

In approximately 30% of patients with migraine, attacks are 
preceded by a migraine aura [42]. The most frequent type of 
aura is visual aura. Following its description by Leao [43], it 
was accepted that the physiological mechanism behind the 
aura phenomenon is very likely cortical spreading depression 
(CSD) (now also termed cortical spreading depolarization). 
This is a wave of near complete neuronal and glial depolari-
zation that propagates slowly across the cortex and leads to a 
suppression/depression of neural activity, whereby for a short 
period of time it is not possible to mediate further depolari-
zations. Therefore, CSD of the occipital area is thought to 
account for the symptoms of visual aura [11]. Additionally, 
considerable evidence suggests that migraine is character-
ized by neuronal hyperexcitability. Indeed, levels of the main 
excitatory neurotransmitter, glutamate, have been found raised 
in migraine patients [44]. This hyperexcitability was shown 
in the occipital cortex of migraineurs using functional MRI. 
Visually triggered attacks were followed by cortical suppres-
sion of the occipital area regardless of the presence of aura, 
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pointing to this phenomenon in the activation of migraine 
with and without aura [45].

Preclinical Evidence

In a preclinical model using both rats and cats sTMS has 
shown the capacity to block mechanically and chemically 
triggered CSD. It also inhibited dural-responsive trigemino-
thalamic, but not trigeminovascular, neurons. This suggests 
that the action of sTMS is local, at the level of thalamocor-
tical responses, and it does not affect descending pathways 
that modulate migraine-like trigeminal neurons. The evi-
dence also suggests that sTMS acts on ubiquitous excitatory 
and inhibitory mechanisms, inhibiting glutamate activity and 
enhancing GABAergic neurons [46–48].

Clinical Evidence

Currently, the device spring (s)TMS by eNeura is cleared 
by the FDA for both the acute and preventive treatment 
of migraine since 2019. The efficacy of sTMS as an acute 
therapy was addressed in three randomized controlled trials 
[49–51]. The largest of these involved 164 migraine with 
aura patients that treated one migraine attack either with 
sTMS or sham. The primary endpoint, pain freedom at 2 h, 
was met by 39% of patients on active and 22% on sham stim-
ulation (P = 0.0179). Sustained response at 24 and 48 h was 
also statistically significant in the sTMS group compared 
to sham, with no difference in the rate of adverse events 
[49]. The efficacy of sTMS as a migraine preventive has 
not been studied in large randomized controlled trials and 
these are warranted. The largest open-label study to date, 
the ESPOUSE study, was a multicenter trial conducted in 
the USA that included 217 patients with episodic migraine 
who were followed up for 3 months. The study showed that 
compared to a baseline of 9 headache days per month, fre-
quency was reduced by 2.75 ± 0.40 headache days. Interest-
ingly, other efficacy variables were positive such as the 50% 
responder rate which was 46%. There was also a reduction 
in the scores of the headache impact test (HIT-6) and the use 
of analgesics [52].

Other Neurostimulation Devices

Other neurostimulation devices based on different mecha-
nisms of action are also available, supported by single, 
smaller trials. Transcutaneous supraorbital nerve stimula-
tion involves stimulation of branches of the ophthalmic 
division of the trigeminal nerve, and it is hypothesized that 
nociceptive firing would be inhibited following the gate 
control theory [53]. Here, the Cefaly® device was devel-
oped as a stimulator of the supraorbital and supratrochlear 

branches of V1. Some neuromodulation involving impor-
tant structures of the pain matrix, such as the anterior 
cingulate cortex has been shown using 18-F-FDG-PET 
after 3 months of preventive treatment with Cefaly® [54]. 
Indeed, a small, randomized, sham-controlled, clinical 
trial was conducted in 67 patients with episodic migraine 
who were followed up for 3 months. The primary end-
point of change in monthly migraine days was met for 
active (6.94 to 4.88; P = 0.023) and not for sham (6.54 to 
6.22: P = 0.608) [55]. This neuromodulation device has 
also been studied as a potential migraine acute therapy 
in a multi-center, randomized, sham-controlled, clinical 
trial. Fifty-four patients were assigned to verum and 52 to 
sham and the device was used for 1 h to treat 1 migraine 
attack. The primary endpoint, reduction in the visual ana-
logue scale compared to baseline was met (−3.46 ± 2.32 
vs. −1.78 ± 1.89; P < 0.0001) [56]. A transcutaneous 
mastoid stimulator showed efficacy in migraine preven-
tion when tested against sham in a randomized clinical 
trial. Each treatment arm included 40 participants. After 
a 3-month period, there was a reduction of 1.13 headache 
days in the sham group against 3.99 in the active. However, 
it should be noted that the baseline number of headache 
days was imbalanced, with 5.6 in the active group and 7.85 
in the sham [57]. A supraorbital stimulator was tested in 
a similar study showing analogous results. Both devices 
have been recently compared against each other with simi-
lar values in efficacy measured as reduction in migraine 
days (60.5% vs. 53.8%, P = 0.88) [55]. Of note, the reduc-
tion in the HIT-6 assessment was higher in the supraorbi-
tal stimulator group (36.5% vs. 25.6%, P = 0.041) and so 
was the presence of paresthesia (13.3% vs. 0%, P = 0.026) 
[58]. Another transcutaneous device is Relivion®. This 
device has been designed to electrically stimulate up to 
6 branches of the trigeminal and occipital nerves and is 
self-administered. Two studies, one in episodic and one in 
chronic migraine have shown efficacy when compared to 
sham [59]. Consistent long-term data is warranted. It was 
FDA-cleared in 2021 for the acute treatment of migraine.

Lastly, perhaps the most recent approach to be cleared 
for the treatment of migraine, is remote electrical neuro-
modulation (REN). This treatment works on the principle 
of conditioned pain modulation [60]. The upper arm nerves 
are stimulated to engage endogenous descending analgesic 
mechanisms using a subthreshold conditioning stimulus, 
inhibiting pain in remote body regions (such as the head). 
In a randomized, double-blind, sham-controlled, multi-
center study, the Nerivio™ device, cleared by the FDA in 
2020, was demonstrated to provide clinically meaningful 
relief from migraine pain (66.7% vs. 38.8%, p < 0.001) and 
complete pain freedom (37.4% vs. 18.4%, p < 0.05) at 2 h 
compared to sham [61, 62]. These outcomes were sustained 
through 48 h.
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Conclusion

Several neuromodulation techniques and devices were 
discussed in this review. Because of the overall good tol-
erability of this approach, the lack of interactions or con-
traindications and some patients’ preference to avoid phar-
macological-based therapies for their migraine treatment, 
more studies on the efficacy and long-term utility of these 
devices are necessary. Vagus nerve stimulation has proven 
to be an effective therapy in patients with unilateral migraine 
that do not respond to standard migraine preventives. Also, 
its utility in trigeminal autonomic cephalalgias [63, 64] and 
indomethacin-sensitive headaches [65, 66] make it a useful  
additional to the headache treatment armory. Nevertheless,  
additional randomized controlled trials of nVNS for migraine  
prevention, utilizing a different sham, is essential to clarify 
its broad utility [34, 35]. Similarly, based on the support-
ing preclinical and clinical data for sTMS, patients with 
migraine with aura could be good candidates for this treat-
ment if other treatments specific for migraine aura preven-
tion, such as flunarizine [67], are not tolerated or not effica-
cious. Therapeutic use of other neuromodulatory devices is 
also supported by clinical trials, although larger controlled 
clinical studies would further confirm and validate their effi-
cacy for the treatment of migraine, coupled with preclinical 
studies to help describe their mechanism of action.
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