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Abstract
Purpose of Review Dual enkephalinase inhibitors (DENKIs) are pain medications that indirectly activate opioid receptors and
can be used as an alternative to traditional opioids. Understanding the physiology of enkephalins and their inhibitors and the
pharmacology of these drugs will allow for proper clinical application for chronic pain patients in the future.
Recent Findings DENKIs can be used as an alternative mode of analgesia for patients suffering from chronic pain by preventing
the degradation of endogenous opioid ligands. By inhibiting the two major enkephalin-degrading enzymes (neprilysin and
aminopeptidase N), DENKIs can provide analgesia with less adverse effects than nonendogenous opioids.
Summary The purpose of this paper is to review the current literature investigating DENKIs and explore their contribution to
chronic pain management.
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Introduction

Opioid use for acute and cancer pain is accepted and un-
matched, but their role in chronic nonmalignant pain is un-
founded, showing insignificant reductions in pain scores and
limited improvement in quality of life [1•, 2, 3]. Though opi-
oid agonists can provide effective peripheral, neuraxial, and
systemic pain relief, adverse side effects, such as respiratory
depression, sedation, nausea, and constipation, complicate pa-
tient care [1•, 4]. In addition, addiction to opioid agonists is
common and plays a large role in the drugs’misuse, leading to
overdoses and death [2, 5–7]. Misuse of opioids and poor

management of chronic pain continues to be a major issue in
medicine and public health, especially during the current opi-
oid epidemic [2, 4–7]. In order to combat the opioid crisis, use
of a multidisciplinary approach is required to treat chronic
pain, utilizing multimodal analgesia with various medications
of differing mechanisms along with nonpharmacological
treatments (such as psychotherapy and physical therapy) [2,
4, 6, 8].

Dual enkephalinase inhibitors (DENKIs) are pain medica-
tions that indirectly activate opioid receptors and can be used
as an alternative to traditional opioids. This class of drug has
been shown to provide analgesia and, potentially, can help
patients suffering from chronic pain. By inhibiting the two
major enkephalin-degrading enzymes (neprilysin and amino-
peptidase N) and enhancing endogenous opioids, DENKIs
can provide analgesia with less adverse effects than
nonendogenous opioids [9••, 10••]. This review discusses re-
cent findings in this drug class and its future use as an alter-
native to opioids in chronic pain management.

Physiology of Enkephalinases

The primary pain control mechanism in mammals involve the
opioid receptors and their associated ligands [11]. The three
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types of opioid receptors are mu, delta, and kappa, which are
G-protein-coupled receptors expressed by central and periph-
eral neurons [1•, 12, 13]. These receptors influence the excit-
ability of neurons, reducing the release of pronociceptive and
proinflammatory neuropeptides [14–16]. Opioid medications,
such as morphine and oxycodone, provide analgesia by imi-
tating endogenous ligands at these receptors [17, 18].

Enkephalins are endogenous opioids, first discovered in
1975, and remain an active area of research and pharmaceuti-
cal development. The enkephalins are one of the three peptide
systems that also include beta-endorphins and dynorphins. Of
note, the three classes of endogenous opioid peptides share a
common N terminus sequence of Tyr-Gly-Gly-Phe and lack a
C terminus amide [19•]. The enkephalin class of molecules are
pentapeptides that are characterized into two subgroups by the
presence of methionine or leucine at their carboxy-terminal
amino acids. Thus, enkephalins are classified either as met-
enkephalins (Tyr-Gly-Gly-Phe-Met) or leu-enkephalins (Tyr-
Gly-Gly-Phe-Leu), respectively [20]. The enkephalin mole-
cule is generated through the cleavage of a precursor molecule
known as pro-enkephalin, creating either met-enkephalin or
leu-enkephalin.

Enkephalins contribute to endogenous pain regulation,
which is proven by elevated sensitivity to noxious stimulation
after inhibition of enkephalin synthesis [21, 22]. These pep-
tides act as neurotransmitters and neuromodulators throughout
the nervous system and various end-organ targets [11].
Enkephalins exert their physiological effect through specific
opioid receptors: mu (largely expressed in the central nervous
system), delta (in the substantia nigra pars compacta and spi-
nal cord), and kappa (expressed primarily in the spinal cord)
[20]. The physiological effects include, but are not limited to,
its role in analgesia, angiogenesis, blood pressure regulation,
hypoxia, memory processes, neuroprotection, pancreatic se-
cretion, wound repair, respiratory control, and hepatoprotec-
tive mechanisms [19•] (see Table 1).

Enkephalins undergo biodegradation via hydrolysis, which
cleaves the pentapeptide at the Tyr-Gly bond. Enkephalinases
and aminopeptidases further degrade the molecules into

shorter peptides that are from 2 to 4 amino acids in length
[19•]. It was initially noted to be difficult to differentiate dis-
t inc t enkepha l in -degrading enzymes (so ca l l ed
“enkephalinases”) from other enzymes in the central nervous
system (CNS) [23]. Eventually, researchers identified a spe-
cific enkephalin-degrading peptidase with a regional distribu-
tion pattern that suggested localization in the same vicinity as
opioid receptors in the brain [24]. Further research on these
enkephalinase molecules found that enkephalins are degraded
by several membrane-associated brain peptidases. Two
carboxy-directed dipeptidyl peptidases (named enkephalinase
A1 and A2) degrade synaptically released Met- and Leu-
enkephalin to the Tyr–Gly–Gly fragment [25]. An amino-
terminal-directed dipeptidylpeptidase (“enkephalinase B”) de-
grades the enkephalins to Tyr–Gly [25]. Subsequently, it was
found that the “enkephalinase” neprilysin is an endopeptidase
that cleaves at the Gly3–Phe4 bond and is specific for the
enkephalinergic system [26, 27].

Through continued experimentation, multiple approaches
to enkephalin degradation were explored. Baume et al. in
1983 demonstrated various methods of metabolism of en-
kephalins through inhibition of either the enkephalinase, the
aminopeptidase, or bothmolecules [28]. Their team found that
inhibiting the singular enkephalinase, or aminopeptidase,
would partly inhibit the metabolism of Met-enkephalin [28].
Furthermore, their combined inhibition would almost entirely
prevent the metabolism of this molecule [28]. In terms of
clinic effects, the researchers witnessed that inhibition of the
enzymes resulted in an analgesic effect which could be
blocked by administration of naloxone [29]. Studies have
found that inhibitors of only a single enzymatic pathway of
enkephalin degradation do not produce a significant analgesic
effect; rather, both pathways must be blocked in order to pro-
duce a marked antinociceptive effect [10••]. Hence, it is inhi-
bition of both degradative enzymes, as occurs by DENKIs,
that exerts an antinociceptive effect by prolonging the action
of endogenous enkephalins [9••].

Pharmacology of Enkephalinase Inhibitors

Early enkephalinase inhibitors were used to study the charac-
teristics of enkephalinases in the 1980s. These molecules in-
cluded puromycin, which inhibits aminopeptidase, and Gly-
Gly-Phe-Met, which inhibits neprilysin (enkephalinase) [24,
30]. It was found that the inhibitory activity of these molecules
involved an aromatic moiety (to interact with a hydrophobic
region of the enzyme) and a terminal carboxy group on a small
amino acid [31]. Since the discovery of enkephalinase inhib-
itors and their ability to provide antinociceptive effects in an-
imals (equivalent to analgesia in humans) by amplifying the
action of endogenous opioids, researchers began exploring
potent and selective molecules for enkephalinase inhibition

Table 1 Biophysiologic-
al mechanisms of
enkephalins (modified
from Duque-Díaz et al.
[19•]

Analgesia

Angiogenesis

Blood pressure regulation

Hypoxia

Memory processes

Neuroprotection

Pancreatic secretion

Wound repair

Respiratory control

Hepatoprotective mechanisms
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[31–37]. In addition, the additive analgesic effect of blocking
both enzymes responsible for enkephalin metabolism lead to
the development of dual enkephalinase inhibitors.

Research showed that kelatorphan, an early DENKI,
caused antinociceptive effects in mice that were greater than
the single enzyme inhibitors combined [38]. Examples of oth-
er inhibitors that showed antinociceptive effects in animal
studies include PC12, RB101, RB120, RB3007, PL37, and
PL265 [39–41]. In order to provide more systemic distribu-
tion, a prodrug version of DENKIs, RB101, was synthesized
by combining neutral endopeptidase inhibitors by a disulfide
or thioester bond [42]. One study has shown that this prodrug
provides antinociceptive effects in mice and rats, which can be
suppressed by naloxone [43]. Different DENKIs exhibit var-
ious distributions throughout the body, with differences in
their ability to cross the blood-brain barrier and enter the cen-
tral nervous system [9••]. For example, RB101, RB120, and
PL37 (at high doses) can enter the brain, while kelatorphan
and PL265 cannot [9••].

Since enkephalins are present at peripheral nerves sites and
more than half of the analgesic effects of exogenous opioids
occur in the periphery, these drugs do not have to pass the
blood-brain barrier to be effective [44–49]. Studies focusing
on the aforementioned kelatorphan and RB101 describe
antinociceptive effects in various animal models from their
peripheral action [50, 51]. Because of these findings, research
has focused on DENKIs that act peripherally to inhibit pain
signals and have limited effect in the brain in order to reduce
opioid-related side effects [10••].

Uses in Chronic Pain Management

Opioids have been improperly used to treat chronic nonma-
lignant pain, contributing to the current opioid epidemic [2,
4–7]. Though they are effective analgesics, their side effect
profile, which includes respiratory depression, sedation, nau-
sea, and constipation, creates obstacles for pain management
[1•, 4]. Addiction to opioids contributes to the drugs’ misuse,
leading to overdoses and death [2, 5–7]. Alternative modes of
analgesia have been the focus of current research, including
the enhancement of endogenous opioids.

When compared to endogenous opioids, such as enkepha-
lins, exogenous opioids (1) do not have same distribution and
relative concentration at active sites and (2) are not well con-
trolled at the synaptic level, leading to poor regulation of the
drug’s effects and frequent overdosing [10••]. Endogenous
opioids are released in areas of the body that require pain relief
while opioid agonists are distributed throughout the entire
body, regardless of their need. Due to this systemic distribu-
tion, high concentrations of opioid drugs are available at un-
essential sites, including the CNS, and disrupt the local ho-
meostasis at these sites. To avoid this direct activation of opi-
oid receptors by exogenous agonists, enhancement of endog-
enous opioids by indirect means, such as enkephalinase inhib-
itors, exerts their analgesic effects by protecting endogenous
enkephalins from enzymatic degradation [29]. This concept
prevents liberally distributed opioid agonists from causing
adverse side effects, desensitization, and tolerance [1].

Amajor proposed clinical advantage of DENKIs is reduced
opioid adverse effects such as respiratory depression, seda-
tion, and addiction [1•]. Endogenous opioids such as enkeph-
alins are released locally to in-demand areas and have a high
affinity to opioid receptors, leading to decreased systemic opi-
oid activity [10••]. This is particularly beneficial for those who
are more prone to these adverse effects, such as the elderly,
children, and individuals at higher risk for addiction. DENKIs
do not need to cross the blood-brain barrier to produce anal-
gesia, and recently focus has shifted to blocking noxious stim-
uli from entering the central nervous system [10••, 45–47].
Not only does this reduce the centrally acting adverse effects,
but pain processes with specific peripheral action can be
targeted, such as inflammatory and neuropathic pain [10••,
50, 52, 53]. Additionally, with DENKIs’ minimal activity in
the CNS, abuse of the drugs is less likely.

Current animal and human studies continue to show that
inhibition of both endopeptidase neprilysin (NEP) and the
aminopeptidase N (APN), not just a single enzymatic path-
way, is required for clinically significant analgesia [10••, 52,
54]. Pharmaceutical studies have shown significant promise
for these dual enkephalinase inhibitors [55]. The
antinociceptive effect of enkephalinase inhibitors has led to
the exploration of its clinical utility in pain management. Its
potent analgesic qualities have been investigated in humans

Table 2 Two dual enkephalinase
inhibitors (DENKIs) currently
under investigation (modified
from Raffa et al. [10••], Bonnard
et al. [40], and Roques et al. [41])

PL37 PL265

• First oral DENKI, developed as a prodrug with excellent
bioavailability

• Forms two active metabolites that peripherally inhibit NEP
and APN

• For treatment of postoperative pain

• Currently in phase I clinical trials (started in 2019)

• Focuses on peripheral action

• Forms one metabolite that blocks both NEP
and APN

• For treatment of diabetic neuropathy

• Started clinical trials in 2018
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previously, such as a 1988 study on cancer patients previously
unresponsive to morphine who received intrathecal adminis-
tration of an enkephalinase inhibitor, resulting in significant,
long-acting analgesia [56]. Currently, two DENKIs are in tri-
als for their use for postoperative pain and neuropathic pain.

Additionally, synergistic effects have been seen when ad-
ministering DENKIs with morphine, cannabinoid, purinergic
receptor (P2X3) antagonists, and cholecystokinin (CCK) an-
tagonists [57–60]. Clinically, this could help improve pain
management, beyond that of DENKIs alone, and lessen the
adverse effects from larger doses of opioids and other
analgesics.

Future Considerations

There are two pharmaceutical companies with DENKIs that
are currently in clinical studies for neuropathic and postoper-
ative pain [9••] (see Table 2). One example is PL37, a DENKI
that is currently in phase I clinical trials (started in 2019) and is
being evaluated for postoperative pain [10••]. This formula-
tion is the first oral DENKI, developed as a prodrug with
excellent bioavailability. PL37 forms two active metabolites
that peripherally inhibit NEP and APN [10••, 41]. Another
example is PL265, which started clinical trials for treatment
of diabetic neuropathy in 2018. The design of this medication
focuses more on concentrated peripheral action with just one
metabolite that blocks both NEP and APN [10••, 40]. STR-
324 is an analog to opionorphine, a specific DENKI found in
human saliva, that has performed well in postoperative and
neuropathic pain models with limited opioid adverse effects
[61, 62•]. Enkephalinase inhibition is an area of pharmacology
with limited human studies; therefore, it is prudent to be aware
of the long-term consequences of NEP and APN inhibition
since they are involved in the metabolism of several other
bioactive peptides [63]. Future research to analyze this drug
class’s effects in humans is possible since the FDA approved
the first dual-acting angiotensin-receptor–NEP inhibitor for
the treatment of heart failure in 2015 [9••].

Conclusions

Many chronic pain patients have been inappropriately pre-
scribed opioids, leading to overuse and addiction.
Additionally, due to the various side effects from opioid med-
ications, long-term management of pain can be complicated
by respiratory depression, sedation, nausea, and constipation.
Due to the current opioid crisis, an alternative mode of anal-
gesia is essential, especially one with less adverse effects and a
better safety profile. Dual enkephalinase inhibitors provide a
more natural treatment of pain by utilizing the body’s own
pain modulators and enhancing their effect by decreasing their

degradation. Currently, two DENKIs for neuropathic and
postoperative pain are undergoing clinical trials. Future stud-
ies are required to further evaluate the drugs’ effectiveness and
any adverse effects from inhibiting these enzymes.
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