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Abstract Fibromyalgia is a primary brain disorder or a
result of peripheral dysfunctions inducing brain altera-
tions, with underlying mechanisms that partially overlap
with other painful conditions. Although there are meth-
odologic variations, neuroimaging studies propose neural
correlations to clinical findings of abnormal pain mod-
ulation in fibromyalgia. Growing evidences of specific
differences of brain activations in resting states and
pain-evoked conditions confirm clinical hyperalgesia
and impaired inhibitory descending systems, and also
demonstrate cognitive-affective influences on painful
experiences, leading to augmented pain-processing.
Functional data of neural activation abnormalities paral-
lel structural findings of gray matter atrophy, alterations
of intrinsic connectivity networks, and variations in
metabolites levels along multiple pathways. Data from
positron-emission tomography, single-photon-emission-
computed tomography, blood-oxygen-level-dependent,
voxel-based morphometry, diffusion tensor imaging, de-
fault mode network analysis, and spectroscopy enable

the understanding of fibromyalgia pathophysiology, and favor
the future establishment of more tailored treatments.

Keywords Fibromyalgia . Magnetic resonance imaging .

Chronic pain . Postsynaptic potential summation . Pain
measurement . Brain mapping . Functional neuroimaging .
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Introduction

Fibromyalgia (FM) is characterized by chronic widespread
allodynia, associated to affective, cognitive, and autonomic
dysfunctions. It is frequently accompanied by other func-
tional conditions, suggesting a partial common substrate for
these disorders [1].

A composite score for diagnosis is reached by adding the
generalized chronic pain from any body site as a main sign, to
other symptoms (fatigue, sleep disturbance, headache,
depression, and cognitive complaints). Currently, the presence
of tenderness in specific points is not mandatory [2].

FM patients have increased sensitivity to several afferen-
ces, like intramuscular hypertonic saline injection, auditory/
olfactory stimuli, or thermal/electrical pain, leading to the
hypothesis of hypervigilance for perceptual modalities, up-
regulation of peripheral nociceptive processes, and altered
hedonic appreciation. Responses to stimuli are modulated
by cognitive and affective influences [3].

There are central nervous system (CNS) abnormalities,
including aberrant pain facilitation, generalized decrease in
mechanical thresholds, and larger areas of referred pain.
Another phenomenon linked to central sensitization is
‘windup’, in which the C-fiber nociceptive input at the
spinal cord leads to abnormal temporal summation of pain.
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Windup relies on stimulation frequency, the activation of N-
methyl-D-Aspartate (NMDA) receptor, and wide dynamic
range spinal neurons [4, 5].

FM also shows decreased central regulation of sensory
input. The impairment of spinal cord and supraspinal inhib-
itory systems, such as the diffuse noxious inhibitory control
(DNIC) and the conditioned pain modulation (distraction
and habituation effects), lead to altered attentional focusing
and hypervigilance to unpleasant stimuli.

Both facilitation increase and inhibition decrease of pain
modulation systems could be caused and perpetuated by a
tonic activation related to the presence of ongoing wide-
spread pain, so that the saturated systems cannot respond to
an external stimulus beyond a ceiling limit.

Moreover, FM is hypothesized as a prolonged stress
consequence, affecting modulation of brain circuitry and
emotions, via hypothalamic-pituitary-adrenal axis and the
sympathetic nervous system [6]. Augmented pain levels
are related to an increase in the corticotrophin-releasing
hormone, Substance P, and glutamate in cerebrospinal
fluid and salivary cortisol; FM patients have hypoactivity
of dopaminergic, opioidergic, and serotoninergic systems
[7]. The disruption of architecture of sleep in FM is
associated with increased pain sensitivity and inhibition
of serotonin synthesis [8].

Main Functional Neuroimaging Methods

Pain has been extensively studied with neuroimaging techni-
ques. Despite the variability of equipments and statistics, there
is a growing consistency of data regarding the brain regions
involved in pain processing. The study of acute experimental
painful stimulation in control subjects allowed the definition
of the ‘pain matrix’ areas: primary and secondary somatosen-
sory cortex (SI, SII), thalamus (discrimination); insular cortex
(IC), anterior cingulated cortex (ACC), posterior cingulated
cortex (PCC), amygdala (affect); dorsolateral prefrontal cortex
(DLPFC), ventromedial prefrontal cortex (VPFLC), frontal
gyrus, orbitofrontal cortex (OFC) (evaluation); supplementary
motor area (SMA), basal ganglia, cerebellum, posterior pari-
etal cortex, PAG, and cuneiformis.

These findings were possible because acute pain studies
deliver unbiased stimuli, with rapid onset-offset of relevant
evoked pain [9]. Because chronic pain fluctuates and is
susceptible to environmental and endogenous influences,
neuroimaging designs were adapted to take these co-
variables into account [10].

Neuroimaging techniques in FM allow the study of abnor-
mal nociceptive processing through quantitative sensory test-
ing, neural networks, neurotransmitters analyses, and changes
in anatomical structures (Table 1). They infer neural activity
by evaluating the changes of regional cerebral blood flow

(rCBF) in response to neuronal metabolic demand within a
time interval because there is a coupling between hemody-
namic response and underlying neuronal activity duration.

Methods such as the magnetoencephalogram detect brain
events from precise acoustic or electrical stimuli with high
temporal precision; however, they cannot measure pressure
or thermal pain, necessary in study models for FM. The
main neuroimaging methods for FM studies are described
here: single photon emission computed tomography and
positron emission tomography; after injecting radioactive
tracers, they measure the increase of regional cerebral blood
flow (rCBF), with good spatial resolution.

Functional Magnetic Resonance Imaging

Magnetic proprieties of oxygenated and deoxygenated
blood are used as physiological tracers for the blood oxygen
level dependent (BOLD) signal, to track changes in rCBF.
This data has greater temporal resolution than positron
emission tomography (PET) and single photon emission
computed tomography (SPECT), but it depends on designs
of repeated on–off switching, which hampers the study of
long-lasting effects. The functional magnetic resonance im-
aging (fMRI) analyzes the intrinsic connectivity network
(ICN), such as the interaction of multiple brain areas at
structural and functional levels. The default mode network
(DMN) is the normal activity of self-referential thinking at
the resting state. Other ICNs are the executive attention
network (EAN) involved in working memory and attention
processing, and the medial visual network (MVN). The
fMRI also performs a structural analysis of the brain tissue
(voxel-based morphometry, [VBM]), and quantifies organi-
zational changes by monitoring the mobility of water mol-
ecules in tissues (diffusion tensor imaging, [DTI]). This
technique is based on the anisotropic unidirectional move-
ment of water across axons in white matter. The anisotropy
increases with myelinization, fiber diameter, and axonal
density. Brain degeneration impairs diffusion and increases
water motility, expressed as the apparent water diffusion
coefficient (ADC), and the reduction in diffusion direction-
ality (fractional anisotropy [FA]). Magnetic resonance spec-
troscopy (H1-MRS) permits biochemical analysis, through
detection of neurotransmitters, and measures of tissue me-
tabolism. Level changes of substances (such as N-acetyl-
aspartate, creatine, choline, and glutamate) and their con-
centration ratios are associated with brain abnormalities.

PET Studies

Studies that measured resting rCBF in FM using H2
15O-PET

or SPECT preceded the fMRI popularization. They showed
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hypoperfusion in several regions, especially in the thalamus.
It is speculated that thalamic dysfunction (reduction of gray
matter and hypoperfusion) might be a substrate of different
types of chronic pain [11].

Consistent with pain modulatory system disturbance in FM,
PET results using ligand-binding techniques reveal abnormal-
ities in neurochemical pain control systems such as dopamine
(reduced binding of D2D3 receptor) and opioid transmissions
(reduced binding potentials for the μ-opioid receptor (MOR)
agonist) in several areas, including striatum, ACC, and amyg-
dala [12], inversely correlated to pain ratings. FM patients
submitted to a tonic noxious stimulation showed a reduced
dopamine release in globus pallidus and striatum [13, 14]. Poor
results in cognitive tasks in FM might be related to dopamine
dysfunction, since dopamine plays an important role in cogni-
tive abilities and perceptual speed [5]. Low dopamine levels
are also implicated in ongoing pain in FM [15].

There is a reduction of mu-opioid receptor (MOR) bind-
ing potential in several areas associated with affective mod-
ulation of pain (nucleus accumbens, ventral striatum,
amygdala, and dorsal cingulated cortex), suggesting com-
promised opioid activity in FM, but it is not known whether
findings refer to augmented opioid levels or reduced recep-
tors availability [16]. This data suggests abnormal activity
of opioid-dopamine systems.

18F-fluorodeoxyglucose (FDG)-PET directly assesses
glucose metabolism, and it was demonstrated FM show
metabolic hypoactivity in the left IC [17]. An rCBF reduc-
tion in the retrosplenial cortex, an area of pain-evaluation
processing, was also observed [18].

SPECT Studies

Basal hypoactivity of the caudate and thalamus—area of
reception of nociceptive inputs and inhibitory pathways—
was observed in painful conditions such as traumatic or
metastatic neuropathies, spinal cord injury, and restless leg
syndrome [19–21]. These findings suggest tonic inhibition
after ongoing excitatory inputs and persistent inhibitory
activation. They could indicate lack of pain-evoked respon-
siveness or pain hypersensitivity.

Because researchers focused on different brain areas for
rCBF measurements in SPECT for FM, evidences of lower
neural activity varied from the bilateral caudate nucleus and
thalamus [22], to the right thalamus, inferior pontine teg-
mentum, and right lentiform, but not in the left thalamus or
caudate [23].

The data corroborate the hypothesis of dopaminergic dys-
function in FM because thalamus and caudate are rich in
dopamine receptors. Dopamine is involved in motivation
mechanisms and motor control; the system deficit could ex-
plain the emotional symptoms of FM.T
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Functional Magnetic Resonance Imaging Evidences

BOLD Studies

Following PET and SPECT, the subsequent studies used
fMRI for stimulus-evoked regional brain blood flow. The
majority of these fMRI studies used painful blunt pressure
applied to the thumb because f its large cortical representa-
tion, and value as a surrogate for widespread tenderness.

fMRI studies support clinical findings of augmented sen-
sory processing throughout pain-related cerebral areas. At
the same perceived intensity of pain among FM and con-
trols, the same neural matrix was activated and involved
discriminative sensory processing (contralateral SI/SII,
ACC), association (contralateral superior temporal gyrus
[STG], inferior parietal lobe), motor responses (putamen,
cerebellum), and affective/cognitive/motivational process-
ing (DLPFC, VMPFC, insula, ACC, caudate, periaqueduc-
tal gray matter/PAG). However, at the same painful
intensity, there was lower activation of caudate and thala-
mus in FM, and hyperactivation of pain-related areas. This
data demonstrated an alteration in pain processing and cen-
tral augmented responses of multiple regions involved in
somatosensory integration, motricity, and affective-
motivational control [24, 25]. The same was observed be-
tween FM and LBP patients [26], and using relative/absolute
painful and nonpainful heat (anterior IC and thalamus
activation) [27].

A study series showed hyperactivation of other brain
areas in FM: SSI, SSII, DLPFC, VPFC, inferior parietal
cortex, lentiform, cerebellum, IC, mid/ACC, claustrum,
and supplementary motor area (SMA) [25, 28–31].

Clinical practice show s that FM sufferers have a lower
pain threshold and report higher pain ratings in response to
evoked pain stimuli. These are due to altered DNIC (CNS
failure of processing afferences), and windup to repetitive
stimuli at spinal cord nociceptive neurons [3]. Experimental
temporal summation inducing hyperalgesia in FM con-
firmed the altered pain processing by increased activation
of thalami, SI, SII, IC, and rostral and mid-ACC [29, 32].

During an fMRI study with individually calibrated pres-
sure stimulus of the thumbnail, rostral ACC (the primary
step of the inhibitory pathway) failed to respond to pain
stimulation, suggesting that this is a key region related to
FM impairment of pain inhibition [32, 33]. The absence of
activity of PAG and ACC thus supports the hypothesis of
both pain augmentation and impaired pain inhibitory pro-
cesses in FM [27].

Pain is a multidimensional experience; affective, envi-
ronmental, and cognitive factors influence the noxious per-
ception and lead to pain behaviors. Clinical findings suggest
depression leads to increased pain perception in FM and is
associated with chronic pain. However, fMRI studies show

that depression does not influence sensory-discriminative,
only affective-motivational, pain aspects (amygdalae, IC,
ACC) [34, 35], suggesting higher activation threshold in
the former areas because of an affective adaptation follow-
ing prolonged pain exposure [28, 36].

An individual’s perception about his own ability to con-
trol adverse events is referred to as locus of control: those
with high internal locus believe events are the result of their
own actions and are more open to treatment response. Psy-
chophysical experiences show that FM patients presenting
an external locus of control are functionally more disabled
and have worse outcomes [37], and they show more external
locus than those with rheumatic conditions [38]. These
findings were confirmed in an fMRI study using painful-
evoking pressure: external locus in FM correlated to greater
activation of parietal cortex (involved in interpretation and
evaluation of sensory input), and lower in SII [28, 36].

Catastrophizing is the behavioral tendency to characterize
pain as unbearable, and is an independent predictive of chro-
nicity and poor outcome variable [39]. It can have a broad
effect on pain coping, as it worsens pain perception by focus-
ing attention on nociception and increasing emotional and
anticipatory responses. An fMRI catastrophizing paradigm
showed activation of structures related to anticipation (medial
FC, ipsilateral cerebellum), attention (ACC, PFDLC), emotion
(ipsilateral claustrum, amygdala), and motricity (lentiform),
among catastrophizers [35]. The main aspect of catastrophiz-
ing is pain anticipation, with accentuated activation of frontal
regions, cingulated, and SMA before and after tonic painful
stimulation, with higher levels of reported pain. This effect
seems to be a specific pain mechanism of FM, since it was not
observed in other rheumatoid conditions [40•, 41].

Cognitive deficits are present in chronic painful condi-
tions [42], and also in FM (‘fibrofog’). Although some
reports show memory complaints being greater than indicat-
ed by objective tests, measured deficits are evident, even
after controlling for affect or medications influences.

When performing working memory, attention, speed of
information processing, and verbal knowledge tasks, there is
similar performance of FM and healthy elderly: both groups,
compared with healthy young, have equal grades. However,
FM uses relatively more cognitive resources and needs
greater neural activation [28, 43]. This was confirmed in a
working memory fMRI paradigm, with increased activation
of parietal and frontal areas. Poor performance in attention
and memory tasks in FM is independent of mood or sleep
disturbances [44, 45].

Spectroscopic Evidences

Magnetic resonance (H1-MRS) spectroscopy can study
spontaneous pain and describes biochemical alterations that
could precede structural changes. When compared, studies
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demonstrate glutamate elevation in different regions in mul-
tiple chosen volumes-of-interest (VOIs). However, current
data cannot conclude the precise elevated glutamate levels
corresponding to hyperexcitability because of intrinsic H1-
MRS technical limitation. Also, the molecular action of
glutamate in the brain is not fully understood [46].

Glutamate is a major excitatory neurotransmitter and is
highly concentrated in regions involved in somatosensory
pain processing and emotional regulation. One might suggest
that individuals with high levels of glutamate are prone to
present chronic pain sensitization and lower pain thresholds.

In FM, an increase of glutamate and glutamate+glutamine
(Glx) in the right posterior insula was associated with low pain
threshold [47]. Aiming to establish a cause–effect relation-
ship, the dynamics of metabolite relations were studied by the
same group. They observed pain threshold improvement after
nonpharmacologic treatment, associated to changes in gluta-
mate level in insula and BOLD response [48].

Another study used H1-MRS, DWI and DTI in a motor-
task paradigm of fMRI. Data revealed high levels of Glx at
PCC, which correlated inversely to pain threshold and di-
rectly to function and pain scales [49•]. Yet another group
demonstrated greater levels of Glx and high glutamate:cre-
atine ratios at the right amygdala, an important region for
emotional pain-processing [50].

The hippocampus seems to be an area susceptible for
metabolic changes in FM. Reduction of choline and NAA
[49•] or myoinositol [51] were detected, suggesting axonal
metabolic dysfunction, similar to bipolar disorder and de-
pression [50]. These changes in myoinositol and choline in
the hippocampus could explain part of the cognitive com-
plaints in FM.

Activation of glial cells has been considered relevant to the
induction and maintenance of chronic pain [5], since astro-
cytes participate in glutamate recycling. Among depressives
and bipolar subjects, there is an increase in absolute levels of
Glx and glutamate following astrocytic deficit [52]. This
deficit stems from stress, altered gene expression, and changes
in extracellular neurotransmitters levels. Augmented gluta-
mine in astrocytes could also precipitate a metabolic cascade,
leading to neuronal dysfunction and astrocytic edema. There
is a compensatory myoinositol and choline influx to extracel-
lular space, leading to a reduction in their concentration [53].
Therefore, astrocytic deficit might be responsible for altera-
tions in glutamate/gamma-aminobutyric acid (GABA) trans-
missions in FM.

Voxel-Based Morphometry Studies

Growing VBM evidences indicates structural alterations in
chronic pain conditions, like fatigue syndrome, headache,
phantom pain, irritable bowel syndrome, headache, and

CLBP [54•] , with overlapping results [55, 56]: decrease in
regional gray matter density in spinal dorsal horn [56] and in
several brain regions (thalamus, FC, ACC, IC, and para-
hippocampal gyrus) [15, 24, 54•, 57].

Reports of gray matter changes in FM are contradictory,
varying according to functional differences among subjects
and techniques. Initial VBM studies had shown gray matter
decline in PFC, ACC, IC, thalamus, and basal ganglia. Since
neither pain duration nor functional disability correlate to gray
matter volumes, tissue reductions might be a precondition for
central sensitization in FM [58]. Conversely, 1 study showed
an increase of gray matter volumes in left OFC, left cerebel-
lum, and bilateral striatum, and reduction in right STG and left
posterior thalamus [59]—areas belonging to the somatosen-
sory system, motor functioning, and tonic pain perception.
Such increases could be explained by a dopamine regional
lack, leading to secondary pallidus-striatal hypertrophy.

However, a recent VBM study investigated gray matter
of volumes-of-interest (VOIs) related to pain in FM, previ-
ously identified by a temporal summation fMRI paradigm
[54•]. Authors observed that 3 VOIs presented gray matter
atrophy (left mid-IC, left rostral ACC, and left mid-ACC),
and these reductions could not be attributed to influences of
negative affect [54•]. Besides, no global gray matter atrophy
was seen [57], and no regional gray matter changes were
detected in other expected VOIs (left parahippocampal gy-
rus, bilateral mid-PCC, and medial FC [57, 59].

It is speculated that gray matter reduction and cognitive
deficits in FM are related, similar to structural changes and
reduced cognitive performance observed in the elderly. VBM
verified that FM had a significantly lower global volume of
gray matter and 3.3 times greater age-associated decline in
gray matter than controls. The longer they had FM, the greater
the gray matter loss, especially in the thalamus, mid-PCC,
insular and medial FC, parahippocampal gyrus, and ACC.
These results support the theory of premature aging of brain
nuclei as a cause for FM [57]. Worth noting that parahippo-
campal gyrus and amygdala atrophy occur following elevated
glucocorticoid levels released during sustained stress, support-
ing the stress-induced theory for FM [58].

The association between poor performance in memory
tests, high pain scores, and morphologic brain alterations
(Prefrontal Dorsolateral Cortex (PFDLC), supplementary mo-
tor area, temporal cortex, medial FC, and ACC) indicates the
functional significance of gray matter atrophy in FM, and a
structural basis of pain-cognition interaction [60]. Gray matter
reduction in those areas may be implicated in emotional and
decision-making impairments, since memory tasks and psy-
chomotor speed rely upon mesolimbic pathways [12] Gray
matter atrophy in FC and impaired performance on a frontal
cognitive task was observed in CLBP [61].

Volumetric brain reduction in depression occurs in front-
al, limbic and thalamic regions [62•]. Since a VBM study
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revealed no volume difference between right anterior IC of
FM without depression and controls [63], it is possible that
gray matter atrophy observed in FM is in fact a superposi-
tion of other putative causes.

The mechanisms of gray matter decline are not clear, but
might involve neuronal apoptosis, decreased dendritic arbor-
ization, excitotoxicity, or glial activation abnormalities [12].
Increased free radical activity and brain homocysteine, a typ-
ical neurodegeneration biomarker, are found in FM [64]. One
cannot know at this juncture whether the findings are a con-
sequence of nociceptive input or a part of FM pathogenesis.

Intrinsic Connectivity Network Functional Imaging

The ICN refers to the magnitude of synaptic activity and
neural transmission among brain regions networks. The
fMRI signals of ICN follow known synaptic pathways, are
consistent with relevant neurophysiological activity, and are
used to study spontaneous pain. For instance, in diabetic
neuropathy, connectivity is altered in attentional networks,
including dorsal ACC and frontal/parietal areas, which are
activated for the stimulus salience control [65].

Aiming to investigate the connectivity between networks
in FM and the correlation between networks and spontane-
ous pain, a recent work used resting-state MRI to evaluate 3
brain networks: DMN, EAN, and MVN. Results show
greater connectivity in DMN and right EAN, and DMN-
insula [66•], and reduction of PAG-rEAN, which are asso-
ciated with spontaneous clinical pain. Cognitive deficits of
FM have a significant neural correlate in the intrinsic con-
nectivity disturbance: upon evoked-pain increase, insula
enhances connection to rEAN, hampering normal function
of working memory. MVN is not affected in FM [66•].

Insula is a key area in experimental pain and is associated
with perceptual function, since it coordinates internal and
external inputs, and participates in cortical homeostatic in-
tegration, evoked-intensity processing, affective subjective
awareness, and anticipation [24, 67]. These recent ICN
findings provide a further role for the insula, linking its
intrinsic connectivity to spontaneous pain.

Diffusion Tensor Imaging

When studying pain networks, DTI could detect volumetric
and microstructural changes in a more sensitive way than
VBM because functional and clinical data in FM correspond
only to DTI-detected alterations [68]. Subsequently, the
superiority of DTI sensitivity was not replicated [49•].

However, an FA increase was seen in the same areas of
gray matter loss (postcentral gyrus, amygdalae, hippocampi,
ACC, and frontal gyri), which indicates tissue complexity
and neuronal disorganization increase [68]. This finding is

parallel to a thalamic FA decrease and normal ADC in FM
with poor coping profile [69].

Arterial Spin Labeling and Dynamic Susceptibility Contrast
Imaging

Other methods of measuring blood perfusion using fMRI are
DSC and ASL, which allow the study of task-induced activa-
tions and spontaneous pain. ASL uses magnetized blood as
contrast; it is relatively invulnerable to artifacts and stable over
time, and is able to evaluate long-duration interventions over
neural activity. Using heat-evoked pain, ASL studies could
find brain activation areas, similar to BOLD [70]. DSC-MRI
uses injected gadolinium contrast, and can evaluate spontane-
ous pain in non-task studies. Recently, DSC showed differ-
ences of brain activation patterns between FM and controls,
similar to BOLD findings [23, 71].

Functional Imaging Evaluating FM Treatment

Neuroimaging studies can be used to monitor treatment
effects in FM. Patients treated with amitriptyline showed
an increase of rCBF in thalami and basal ganglia [72]. There
was also an improvement of thalamic rCBF and pain ratings
in FM submitted to electroconvulsive therapy [73]. The
same group verified rCBF reduction in frontal/temporal
gyrus, postcentral gyrus, ACC, and occipital gyrus in those
who responded poorly to gabapentin [74•]. Treatment with
serotonin and noradrenaline reuptake inhibitor (milnacipran)
is associated with reduction of pain sensitivity and increased
activity in regions implicated in the descending inhibitory
system, PCC, and precuneus [36, 75].

An ongoing fMRI study proposes to measure clinical im-
provement in pain catastrophizing in FM patients submitted to
a protocol of repeated exposure to exercise activities images.
In this sense, neuroimaging is both an investigation for neural
correlates of symptoms, and a therapeutic instrument of virtual
reality, for potential improvement of exercise-related cata-
strophizing in FM [76]. Following this tendency, real-time
fMRI has been used to guide the training of FM patients to
‘control’ rostral ACC, with real-time success feedback. After a
training protocol for attention and painful experience control,
patients reported pain decrease [77].

Also, FDG-PET tracked patients’ clinical improvement
after multidisciplinary rehabilitation and modulation of
brain metabolism in several limbic structures [78].

Conclusions

In recent decades, neuroimaging has been applied to the
study of FM, especially PET, SPECT, and fMRI. This
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review briefly reported the main findings that help the
determination of objective neural biomarkers for eviden-
ces from psychophysical studies (Fig. 1). SPECT and
PET data indicate decreased rCBF in the thalamus and
caudate, and an absence in the PAG. They also show
reduction of dopamine and opioid receptor levels in
basal ganglia, amygdala and insula. BOLD-fMRI dem-
onstrates augmented responses, explaining tenderness
and allodynia. Windup and behavioral mechanisms such
as external locus of control and catastrophizing are
linked to enhanced brain activation in pain-evoked stud-
ies. Depression is likely an independent factor in the
pain sensory-discriminatory dimension. Moreover, FM
uses a wider neural network to perform cognitive tasks.

Recently, other techniques have attempted to explore
the study of FM etiology. Most VBM studies support
the gray matter atrophy hypothesis in the thalami, PCC,
ACC, FC, and parahippocampus. HMRS studies report
alteration in glutamate metabolism in insula, cingulated,
and amygdala, suggesting the astrocytic edema as an
underlying phenomenon for FM development. The asso-
ciation of cognitive and executive deficits and regional
gray matter abnormalities was evidenced by altered in-
trinsic connectivity.

Neuroimaging studies evaluate treatments effects in
FM, and could demonstrate a decrease of hyperactivated
brain areas after tricyclics, gabapentin, milnacipran,

electroconvulsive therapy, and non-pharmacologic approaches,
such as multidisciplinary rehabilitation programs.

Although controlled, the FM studies use small samples are
exploratory, and present methodological variations (manage-
ment of multiple comparisons/covariates), preventing an ab-
solute comparison of results. Also, heterogeneity of FM
population increases individual data variability. Therefore,
conclusions must be drawn carefully. Most studies are cross-
sectional, preventing a causal inference. Only long-term pro-
spective research and consistent animal models would allow
the full understanding of pathophysiological substrates of FM.
Further neuroimaging studies on pharmacological treatments
and other approaches are encouraged.

The present literature has identified differences between
FM and control individuals. However, structural changes,
thalamic activation decrease, altered binding of receptors,
increased brain glutamate, or changes in pain processing in
several sites of neuroaxis are findings observed in other
chronic pain syndromes and, therefore, might be chronic
pain epiphenomena. Future neuroimaging studies should
be able to verify whether the observed neural abnormalities
in FM can be modified after a therapeutic intervention,
possibly being able to identify onset risk factors and to help
define individualized treatments. The current studies cannot
provide this information because diagnostic subgroups of
FM patients have not been explored as yet. Novel perspec-
tives in brain studies for FM also include analyses of

Fig. 1 The use of neuroimaging for the study of different steps of physiopathogenesis of fibromyalgia, according to a theoretical integrated model [1,
79]
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sensitivity/specificity of the methods, cost-effectiveness of
using neuroimaging in clinical practice as a diagnostic tool
or a guide for decision-making when tailoring specific treat-
ments, use of other protons in MRS, placebo response, and
use of associated neuroimaging methods.
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