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Advances in the cellular and molecular biology of noci-
ceptors have profoundly revolutionized the field of pain
research in the past decade, particularly with respect to the
efforts to define biochemical markers and biophysical
mechanisms of the "nociceptive phenotype(s).” At the start
of the 1990s, the concept of two neurochemically different
classes of small afferents became established, followed by
recognition of the molecular diversity of neurotrophic
factors and their receptors. Subgroups of sensory neurons
were shown to depend on differential trophic support, and
some trophic interactions were shown to be maintained in
adulthood and to be involved in the modulation of noci-
ceptor function. Workers in other fields established the
molecular identity and properties of glutamate and
neuropeptide receptors, many of which are involved in
nociceptive signaling both in the spinal cord and periphery;
the subtleties of their molecular organization are important
for a better understanding of neurotransmission from noci-
ceptors centrally, but are beyond the scope of this review.

By the middle of the decade an unexpected and
bewildering array of ion channel subunits were identified,
and nociceptors were shown to express several unique
channels. Channels such as tetrodotoxin-resistant voltage-
gated sodium channels and certain purinergic ligand-gated
channels that are specifically expressed by nociceptors will
surely provide unique opportunities for pharmacologic
manipulation. Finally, the decade ended with the cloning
of hypothetical transducers of noxious stimuli, including
the vanilloid receptors and acid-sensing cation channels.

Neurochemical Classification 
of Nociceptor Subtypes
Based on the conduction velocity of their axons, nociceptors
are commonly classified into Ad- or C-nociceptor categories,
with each group having subtypes that differ in their response
characteristics. A dual classification also emerges when
nociceptor cells are considered in terms of their neurochemi-
cal profiles. One major subpopulation of small dorsal root
ganglion (DRG) neurons (presumed nociceptors) expresses
neuropeptides such as calcitonin gene-related peptide
(CGRP) or substance P (SP), whereas the other major group
does not contain these neuropeptides.

Development of the concept of neurochemical 
subgroups of nociceptive afferents
Thomas Hokfelt’s [1,2] group pioneered the characteriza-
tion of neuropeptide expression in the DRG, with empha-
sis on neuropeptides such as CGRP, SP, and somatostatin.
Their work demonstrated the existence of overlapping and
nonoverlapping patterns of neuropeptide expression in
small sensory neurons, presumably representing different
classes of nociceptors. It is now well-known that neuropep-
tide expression in sensory neurons can be altered in situa-
tions of clinical relevance. After peripheral nerve injury,
CGRP, SP, and somatostatin are down-regulated within a
few days and a different set of neuropeptides is upregu-
lated [3]. Neuropeptides expressed in intact DRGs were
referred to as type 1 to underscore a distinction with those
upregulated after injury (referred to as type 2). Generally, it
is thought that type 1 neuropeptides have some role in
nociceptive signaling whereas type 2 neuropeptides are
presumed to be involved in regenerative processes; “intact”
DRG neurons that express type 1 neuropeptides are often
loosely referred to in the literature as “peptidergic”
neurons. CGRP is the most “generalized” marker for this
sensory neuron population because of its widespread
expression in peptide-containing afferents [2].

The laboratory of Stephen Hunt intensively analyzed
the nature of peptide-containing and other "fine" afferents.
The peptide-containing group was identified by its
expression of SP, which labels fewer "peptidergic" neurons
than antibodies against CGRP. Importantly, it was found
that the "nonpeptidergic" afferents could be labeled using
an assay for a specific enzymatic activity, namely fluoride-
resistant acid phosphatase (FRAP), which had been
observed many years earlier in DRG neurons. In the spinal
cord, SP-containing afferents were shown to project mainly
to lamina I and the dorsal or outer half of lamina II (LIIo).

This review summarizes recent developments in the 
context of the neurochemical classification of nociceptors 
and explores the relationships between functionally and 
neurochemically defined subgroups. Although the complete 
picture is not yet available, several lines of intriguing 
evidence suggest that despite the complexity and diversity 
of nociceptor properties, a relatively "simple" neuro-
chemical classification fits well with several recently 
identified molecular characteristics.
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In contrast, FRAP-reactive afferents occupied the ventral
half or inner lamina II (LIIi). Unfortunately, FRAP
histochemistry is quite capricious, resulting in conflicting
reports on the relative numbers, distribution, and central
projections of these population of afferents. Despite these
problems, the study of Hunt and Rossi [4] led to the pro-
posal of parallel pathways established by peptide-contain-
ing and nonpeptide-containing nociceptors. However, this
seminal idea remained in relative obscurity until recently.

Meanwhile, early studies by Dodd and Jessell [5] on the
surface interactions that guide axonal elongation and
targeting during development focused on the molecules
responsible for specifying the spinal cord laminar projec-
tion patterns characteristic of different functional
subgroups of sensory afferents, and by the mid 1980s a
number of surface markers (mostly carbohydrate moieties
of various glycolipids) were identified. Some, but not all,
of these markers labeled the cell bodies and central termi-
nals of small DRG neurons that contained neuropeptides.

Following this line of investigation, Alvarez et al. [6]
found that one monoclonal antibody (LA4), directed
against an a-galactose and a-fucose extended glycolipid,
labeled a large subpopulation of small primary afferents
that projects to LIIi. Quantitative analysis proved that the
CGRP and LA4 positive populations represented roughly
equivalent numbers of small afferents and together
accounted for over 85% of all small sensory neurons.
Moreover, the combined central projections of these
populations occupied the full dorsoventral extension of
lamina II, with slight overlap in mid-lamina II [6].

A number of lectins (oligosaccharide-binding plant
proteins) also selectively label subpopulations of primary
afferent neurons. One lectin, Griffonia (or Bandeiraea)
simplicifolia isolectin B4 (IB4), labels a subpopulation of
DRG neurons that largely overlap with the FRAP sub-
population, but little with peptide-containing primary
afferents, and projects to LIIi [7]. The IB4 lectin has a
similar specificity as LA4 for galactose-extended oligosac-
charides, but a side fucose is not necessary for its binding.
Hence, the binding properties of IB4 are more robust and
perhaps also more generalized. Lectin-binding efficiency
can be increased with divalent cations and this results in
the labeling of neuropeptide-containing afferents as well
[8]. This might explain why a larger overlap with CGRP
and SP-containing DRG neurons is usually obtained with
IB4 lectin (around 20%) than with LA4 (usually 10% or
less). However, the availability and ease of use of lectin
labeling made this  the marker of  choice in most
subsequent studies and we refer to this population as IB4-
binding for most of this review.

Early emphasis was (and still is in many medical text-
books) on the “peptidergic” sensory neuron as “the”
nociceptor. However, large numbers of small DRG neurons
do not express neuropeptides. It is also noteworthy that
recent surveys of the peripheral innervation of cutaneous
territories using very sensitive markers suggest that

nonpeptidergic small afferent terminations outnumber
those containing neuropeptides [9].

Taken together, these studies suggested that it would be
appropriate to consider a relatively simple division of
small “nociceptive” DRG neurons into two groups: one
group that expresses a variety of neuropeptides and is
usually labeled with CGRP-immunoreactivity and a
second group that does not normally express neuro-
peptides but displays FRAP/LA4/IB4 reactivities. The
CGRP-containing DRG population is quite heterogeneous
and includes neurons that give rise to unmyelinated and
myelinated fibers, whereas the IB4 population is rather
homogeneous and is predominantly comprised of neurons
with unmyelinated axons.

Caveats
There are, however, significant limitations to a simple
duality of small-sized “nociceptive” afferents. For example,
almost all visceral sensory neurons, which represent a
sizable proportion of DRG neurons, contain CGRP and SP
[10], and it is not clear that all of them subserve a typical
“nociceptive” function. In addition, little is known about
the extent to which the complement of "small" DRG cells
includes cutaneous low threshold non-nociceptive
afferents like thermoreceptors and C-mechanoreceptors.
Moreover, some DRG neurons do not fit cleanly into the
two neurochemical subgroups. One subpopulation of
“peptidergic” afferents characterized by the expression of
CGRP and somatostatin also exhibits immunoreactivity for
a-galactose-specific monoclonal antibodies, strong IB4
binding, and projects to the region of overlap between
CGRP and FRAP/ IB4/LA4 afferents in mid-lamina II [11].
Finally,  some small DRG neurons do not contain
neuropept ides or  FRAP/ IB4 /LA4  reac t i v i ty,  but
prominently express vanilloid or vanilloid-like receptors,
suggesting a nociceptive function.

Trophic Support
A major breakthrough was the discovery of high-affinity
nerve growth factor (NGF) binding or TrkA-immuno-
reactivity (TrkA is a high-affinity receptor for NGF) in adult
DRG neurons that show “strong” expression of CGRP and/
or SP [11–15] (interestingly, no TrkA expression is seen in
CGRP/SP neurons that also coexpress somatostatin).
Furthermore, very few IB4 or LA4-binding afferents
contained TrkA-immunoreactivity. NGF/TrkA is directly
responsible for the normal development of neuropeptide
expression, and for maintaining CGRP and SP expression
in TrkA-expressing neurons in adult DRG [16], but exerts
no trophic actions over the IB4-binding afferents present in
the adult. NGF is released in normal tissue by smooth
muscle cells, basal keratynocytes, and fibroblasts among
other cell types. During inflammation, NGF levels rise in
the periphery [17], resulting in increased uptake and
retrograde transport of NGF to the DRG where it can
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upregulate CGRP and preprotachykinin gene expression
(the precursor of SP and other related neuropeptides). The
enhanced peripheral release of SP and CGRP, key
molecules in the development of neurogenic inflam-
mation, then promotes hyperalgesia. In addition to this
slow “trophic” action, NGF released during inflammation
also rapidly sensitizes nociceptors and causes hyperalgesia,
either directly on TrkA-expressing nociceptor peripheral
terminals or indirectly by inducing the release of other
nociceptor-sensitizing agents by neighboring TrkA-express-
ing mast cells [18]. Hence, NGF exerts both “trophic” and
“acute” influences on nociceptor activity after injury.

During development, however, NGF promotes the
survival of both peptide-containing and IB4-binding
afferents [19]. In fact, all embryonic small afferents express
TrkA, but IB4-binding neurons down-regulate TrkA shortly
after birth [20,21] and switch to glial cell line–derived
neurotrophic factor (GDNF) dependence [22]. These cells
then express members of the GDNF receptor complex,
inc lu ding  th e  s i gna l  t r ansdu c ing  d omain ,  RET
(“Rearranged in Transformation,” a tyrosine kinase trans-
membrane receptor originally described as an oncogene),
and one or more GDNF-family-receptor (GFR) ligand-
binding domains [23•,24]. Little expression of any of these
GDNF receptor components is detected in TrkA-positive
DRG neurons. Similar to the role of NGF in maintaining
CGRP/SP expression, GDNF is directly responsible for
maintaining the IB4-binding phenotype and somatostatin
expression in adult DRGs. Thus, the two neurochemical
populations of small afferents differ in their neurotrophin
dependence in the adult but not during development.

Interestingly, in mice, elimination of the proapoptotic
BCL-2 homologue BAX “rescues” small DRG neurons even
in the absence of NGF or TrkA [25•]. However, in double
null mutants (for BAX and NGF, or BAX and TrkA),
although the cells survive, the lack of NGF/TrkA signaling
prevents sensory axons from reaching peripheral targets.
However, their central projections develop normally. Thus,
during development, NGF promotes peripheral targeting
and phenotype acquisition of both peptidergic and IB4-
reactive nociceptors. Interestingly, down-regulation of TrkA
in IB4-binding afferents occurs during a postnatal period
(first 2 weeks in the rat) in which peripheral trophic factors
fine tune the response characteristics of sensory afferents
by directing the development of their peripheral transduc-
tion apparatus [26].

Response Properties
A fundamental question is whether the two major neuro-
chemical subgroups of small afferents differ in their
response characteristics to nociceptive stimuli. Function-
ally, nociceptors are identified as those sensory afferents
that respond to potentially damaging stimuli (ie, they have
high thresholds for mechanical or heat stimuli), or to the
presence of tissue injury by responding to a variety of

inflammatory mediators and chemicals. Nociceptors are
divided into two groups according to conduction velocity
(Ad or C) and into further subgroups by virtue of their
responses to different noxious stimuli, thresholds,
sensitization, and adaptation, all of which can be further
influenced by tissue location [27,28].

Most C-nociceptors are polymodal nociceptors
(CPMs), meaning that they display relatively fast responses
to noxious mechanical, thermal, and chemical stimuli.
Because chemical mediators are frequently not tested,
these units are also referred to as C mechano-heat nocicep-
tors. The population of CPMs is not uniform—they display
varying thresholds and responses to different modalities of
noxious stimuli, and the structure of their receptor fields
can also be different. In addition, a well-defined popula-
tion of C-nociceptors that readily responds to noxious
mechanical stimuli but is relatively unresponsive to
noxious heat, has been frequently reported. In contrast, C-
nociceptor units responsive to noxious heat but not to
noxious mechanical forces are uncommon. Classifications
according to chemical sensitivity are more complex
because chemical actions are affected by interactions with
the tissue environment surrounding the sensory terminals
and can directly or indirectly alter the transduction mecha-
nism. In addition, chemicals could affect ion channels
related to membrane and firing properties independent of
the transduction process. They can also induce the release
of agents, like neuropeptides, from the nociceptors them-
selves. The reader is referred to recent reviews on this aspect
of the nociceptor response [29,30].

In contrast to C-nociceptors, it is somewhat more
straightforward to subdivide Ad nociceptors into two
categories that can be clearly differentiated according to
their response to noxious heat. Type I Ad nociceptors have
relatively high thresholds to heat stimuli (> 53°C) but
eventually sensitize to maintained noxious heat. Because
they more readily respond to noxious mechanical stimuli
they were originally named Ad high threshold mechano-
receptors (AdHTMs). In contrast, type II units have lower
thresholds (approximately 45°C) and more rapid
responses to noxious heat, and are known as Ad mechano-
heat nociceptors (AdMHs). Finally, some C or Ad nocicep-
tors exhibit extraordinarily high thresholds to mechanical
stimuli and are not responsive in uninjured tissue.
However, they strongly sensitize during inflammation.
These afferents have been referred to as "silent” or
“sleeping” nociceptors and have been found and character-
ized in the skin of rodents, monkeys, and humans [31–33].

The correlation of this large diversity of nociceptor
response characteristics with their neurochemical
phenotype is a daunting enterprise. The direct approach,
ie, to record the response properties from individual DRG
neurons or afferent fibers in vivo and thereafter neuro-
chemically characterize the recorded sensory afferent, is a
simple concept but it is technically challenging. Conse-
quently, sample size in these studies is usually low (with
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one notable exception published by Lawson et al. [34])
and is also subject to well-known biases on sampling and
classification due to search stimulus, fiber or cell body size,
and/or recording stability. Nevertheless, studies in cat and
monkey spinal cords have revealed the ultrastructure and
immunoreactivity of the central terminations of a relatively
large population of AdHTMs [35,36], one C-nociceptor
that readily responded to noxious mechanical stimulation,
and one C-fiber with no identifiable superficial receptive
field using mechanical search stimuli [37]. Remarkably, all
the central terminals from the C-nociceptor were filled
with large dense-core vesicles that contained immuno-
reactivity for CGRP and SP, whereas none of the AdHTM's
central terminals exhibited large dense-core vesicles or
immunoreactivity for either of the two neuropeptides.

More recently, an extensive sample of sensory neurons
were recorded from guinea pig DRG and combined with
successful immunostaining against SP and CGRP [34,38].
The conclusions from this study also suggest that AdHTMs
with superficial cutaneous receptive fields lack SP or
CGRP-immunoreactivity. In contrast, all AdMH afferents
from hairy skin contained neuropeptides, as did most Ad
nociceptors with “deep” cutaneous fields. Half of the
CPMs with receptive fields in the surface of the skin
contained SP and/or CGRP, whereas all CPMs with
receptive tissues in deep skin displayed strong neuropep-
tide-immunoreactivity. It is important to note that whereas
the SP-immunoreactive afferents were all nociceptors, a
few of the CGRP-immunoreactive neurons displayed low
threshold mechanoreceptor receptor properties, had recep-
tive fields located in hair follicles, and conducted in the
Aa/b range. This latter result confirmed an earlier more
limited report that used a similar recording and labeling
strategy in rat DRGs and found CGRP-immunoreactivity in
3 of 5 deep high threshold mechanoreceptors (HTMs), 1 of
1 skin HTMs, 1 of 12 hair follicle afferents, and none in
other 11 skin low-threshold mechanoreceptors [39], again
indicating that CGRP is expressed by a larger number of
functionally distinct DRG neurons than SP, including some
afferents that are not nociceptors.

Although very little attention has been devoted to the
direct study of the nonpeptidergic population of afferents
[39], some conclusions can be extrapolated from the
previously mentioned studies. For example, AdHTMs and
large numbers of C-nociceptors with superficial, probably
epidermal, receptive fields are “nonpeptidergic” (however,
some may not be IB4-reactive either). This is in agreement
with recent surveys of skin innervation that indicate a larger
proportion of nonpeptide than peptide-containing fine
afferents penetrate the epidermis [13]. Peptide-containing
afferents are more common in the deeper dermis, particularly
around blood vessels [13], whereas IB4-binding afferents
seem not to target vascular tissue extensively.

In a recent study of DRG neurons in culture, it was
found that the amplitude of heat-evoked currents differed
between IB4-positive and IB4-negative cells [40•]. In

general, IB4-positive neurons had smaller heat-evoked
currents, supporting previous data in vivo indicating that
some nociceptors with poor responses to acute noxious
thermal stimuli belong to the nonpeptidergic population.
Obviously, much more work and different approaches are
needed to understand the response characteristics of differ-
ent neurochemical types of primary afferents. The recent
cloning of some of the molecular transducers that could
mediate the response to noxious stimuli opened the possi-
bility of directly localizing these receptor molecules to
subpopulations of sensory afferents. Interestingly, the
initial observations have uncovered even more complexity.

Transducers
Heat transduction, vanilloid receptors, and acid sensing
It has been known for some time that the responses to
capsaicin (the active vanilloid compound in hot chili
peppers) and noxious heat in primary afferents were corre-
lated [41]. Moreover, injection of capsaicin to a patch of
skin evokes thermal hyperalgesia [42]. The discovery of
nonselective cation currents in DRG cells gated by capsai-
cin [43,44] and by noxious heat (threshold approximately
45°C) [41,45] suggested that a capsaicin receptor might be
responsible for the transduction of noxious heat stimuli.
This hypothesis was firmly established after the cloning of
a vanilloid receptor (VR1) and the demonstration that VR1
confers capsaicin and noxious heat sensitivity to trans-
fected cells by generating cation currents very similar to
those found in DRG neurons [46, 47•].

Small DRG neurons giving rise to unmyelinated fibers
express VR1, as do a few DRG neurons with myelinated
fibers [47•,48]. VR1-expressing neurons comprise around
40% of the DRG population. Interestingly, 65% of CGRP-
immunoreactive and 75% of IB4-binding sensory neurons
express VR1 [48], but detailed quantitative analysis of
mRNA hybridization signals in situ suggest that IB4-
binding sensory neurons express VR1 at lower levels than
peptide-expressing neurons [48]. This conclusion is in
agreement with the observation that smaller heat-evoked
currents are found in IB4-binding sensory afferents, but it
also points out that a sizable number of neuropeptide-
containing afferents do not express VR1. In addition, VR1
is strongly expressed in a further small population of
neurons (1% of the total DRG population), which does
not express neuropeptides or IB4-binding.

The vanilloid receptor (VR1) is one of several noxious heat
transduction mechanisms found in DRG neurons, and it is
known that only partial block of noxious heat-evoked responses
is obtained in animals with VR1 gene deletions [49,50]. Other
candidates include a mechanism mediated by a vanilloid
receptor-like (VRL1) protein that shows a higher threshold for
thermal stimuli (above 53°C) [51•], does not respond to
capsaicin, and displays a different pharmacology than VR1.

Activation threshold differences between VR1 and
VRL1 fit well with differences in the sensitivity to noxious
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heat in cultured DRG neurons. Whereas smaller cells have
thresholds of around 45°C (close to the thermal threshold
of many C-polymodal nociceptors and type II AdHTMs)
and are sensitive to capsaicin, larger cells have thresholds
of around 51°C (close to the threshold for type I AdHTMs)
and appear quite insensitive to capsaicin [52]. The pattern
of expression of VRL1 suggests that its distribution is more
restricted than that of VR1, comprising around 16.4% of
DRG neurons, most of which are medium to large in size
and express myelinated-fiber markers [51•]. Very few VRL1-
expressing neurons exhibit IB4-binding (1.7%) or SP-
immunoreactivity (5%), and around a third of VRL1-
positive neurons (36%) contained CGRP-immunoreactiv-
ity. Therefore, many VRL1-positive sensory afferents belong
to neither the IB4 or "peptidergic" populations, and may
include type I AdHTMs.

Further transduction mechanisms are suggested by the
description of a thermally-dependent internal release of
Ca2+ that results in additional heat-evoked currents in
DRG neurons [53]. Little is known about the expression
patterns and significance of this intracellular transduction
mechanism for heat stimuli.

Injured tissue undergoing inflammation is character-
ized by low pH, and protons (H+) have been shown to
elicit both acute responses and sensitization of nociceptor
terminals [54] and to generate cation currents in isolated
DRG cells [55]. VR1 responds to solutions of low pH in the
physiologic range of inflamed tissue [47•]. Low pH is also
capable of lowering the threshold of VR1 for inducing
heat-evoked currents, providing a mechanism for the
known sensitizing action of low pH on both capsaicin and
noxious heat responses. Hence, it has been proposed that
VR1 might be a "polymodal" transducer because of its
capacity to respond to various forms of injury via its acid
sensitivity [47•]. In contrast to VR1, VRL1 exhibits no
response to acid stimulation.

In addition, other families of cation channels gated by
protons have been identified in DRG neurons. These
channels are related to the degenerin/epithelial sodium
channel family (DEG/ENaC) and include the acid sensing
ionic channel (ASIC) isoforms a and b, dorsal root acid
sensing ionic channel, and the modulatory subunit of the
mammalian degenerin homologue, MDEG-2 [56]. ASICa
is specifically expressed by small DRG neurons that express
neuropeptides [57] or that are IB4-negative [58]. ASICb, an
amino-terminal splice variant of ASIC, is located on a few
small (unmyelinated) but many large (myelinated) pri-
mary afferents, none of which displayed IB4-binding [58].

The exact role of these varieties of acid-sensing
channels and mechanisms is at present unclear. Fast-inacti-
vating proton-gated currents similar to those elicited by
DEG/ENaC channels are found in 70% to 80% of DRG
neurons. However, a proton-gated non-inactivating current
with thresholds at pHs known to occur in inflamed tissue
(usually above pH 6) is expressed by only 40% of DRG
neurons and has been linked to nociception and capsaicin

sensitivity [55] and is similar to VR1 [47•]. In contrast,
DEG/ENaC currents are predominantly fast inactivating
and open at lower pHs, but a role in nociception is never-
theless emphasized by the appearance of sustained cur-
rents in some DEG/ENaC channels after potentiation by
the FF peptide, a neuropeptide released during inflam-
mation [59]. Novel properties might arise when several
DEG/ENaC channels are coexpressed. The distribution of
these channels points to differences in the acid-sensing
capabilities of peptide-containing nociceptive neurons that
coexpress VR1 and members of the DEG/ENaC channel
family and IB4-binding neurons that express less VR1 and
few DEG/ENaC channels.

Non-nociceptive functions for DEG/ENaC channels have
also been proposed. The fact that ASICb is predominantly
expressed by large afferents, many of which are mechano-
receptors, and the molecular similarity to candidate degen-
erin-type mechanoreceptor transducers identified in
Caenorhabditis elegans [60], prompted the suggestion that this
channel could be involved in mechanosensitivity [58].
Interestingly, acid solutions are known to evoke mechanical
hyperalgesia [54]. Further work should clarify whether or not
this channel family is involved in mechanotransduction of
noxious and/or innocuous stimuli.

Purinergic receptors and mechanotransduction
Mechanical injury releases ATP from damaged cells, and
other sources of ATP in the periphery include sympathetic
fibers and tumor cells, which contain very high concentra-
tions of ATP [61]. ATP in the skin activates nociceptors and
elicits pain [62]. Several purinergic receptor families are
present in sensory neurons and can mediate the actions of
released ATP. ATP can act through P2X ligand-gated cation
channels or P2Y G-protein coupled receptors [63]. In
addition, released ATP is quickly metabolized to adenosine
that activates P1 adenosine receptors. DRG neurons
express P2X1 to P2X6 receptor subtypes [64,65] in addition
to G-protein coupled P2Y and P1 receptors. Most DRG
neurons express one or other purinergic receptors, and
consequently almost 90% of DRG neurons are responsive
to ATP either by opening a cation current or increasing
intracellular Ca2+.

Several characteristics of the purinergic receptors point
to potential roles in sensory transduction, and more
specifically to mechanical sensitivity. For example, P2X
receptor structure is also related to that of the degenerin
family of putative transducers from C. elegans [60].
However, evidence of  other  roles  in  nocicept ive
neurotransmission at the level of the spinal cord have also
been shown for P2X receptors [66,67].

One P2X channel, P2X3, is almost exclusively expressed
in the DRG [68,69]. The majority (> 94%) of DRG neurons
expressing P2X3 are IB4-reactive and 20% of them express
CGRP, including the majority of somatostatin-containing
neurons. In contrast, very few P2X3-expressing sensory
neurons contained SP (3%) [70,71]. P2X3 homomeric
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cation channels differ somewhat from those expressed in
small DRG neurons, but heteromerization with P2X2
forms a channel that better mimics the characteristics of
DRG channels [69]. P2X2 and P2X3 are highly co-localized
in DRGs [72]. In addition, P2X2 imparts strong pH-
sensitivity (around pH 6) to heteromeric complexes with
P2X3 [73]. It is therefore plausible that P2X2/3 heteromeric
receptors are involved in the transduction of noxious
stimuli and that this response is increased by low pH in the
range typical of inflamed tissues.

Innocuous mechanoreception could involve different
transducers, and stretch sensory neurons express ATP-
mediated currents that differ from those produced by P2X3
[74]. Furthermore, an mRNA isolated from DRG neurons
that conferred mechanosensitivity when heterologously
expressed in oocytes was found to encode P2Y1 receptors
and was specifically expressed by large DRG neurons [75].
Activation of P2Y1 receptors after mechanical stimulation
was due to the autocrine release of small amounts of ATP.
The authors suggest the intriguing possibility that the high
affinity of P2Y1 for ATP is able to detect small concentra-
tions of ATP released by low-threshold stimulation,
whereas lower-affinity P2X receptors need higher amounts
of ATP and therefore have higher thresholds (noxious) for
mechanical stimulation.

Thus, several putative mechanotransducers have been
suggested from the DEG/ENaC family and various classes
of purinergic receptors. The early evidence points to a
differential expression of different molecules by low-
threshold mechanoreceptors (P2Y1, ASICb, P2X other than
P2X3), and peptide-containing (ASICa, few P2X3) and
nonpeptide containing nociceptors (P2X3, little ASICa).
Unfortunately, for most of these molecules there is yet no
direct electrophysiologic data to prove a role in the
mechanotransduction process. More recently, genetic
approaches in Drosophila have identified the products of
the gene nompC as the transducer of mechanical stimuli in
the apical dendrites of neurons attached to mechano-
sensory bristles [76•]. Homology searches in C. elegans
have identified similar gene-products and these are distinct
from the degenerin family. This new family of mechano-
transducers seems to be specifically located in ciliated
mechanosensory  neurons and are not present  in
nonciliated “touch” neurons. Mammalian homologues are
unknown but their discovery is likely to be “around the
corner.” nompC encodes a novel cation channel with
several ankyrin repeats and similarity to the transient
receptor potential family of channels. Intriguingly, both
these characteristics are shared by the VR1 receptor [46].

Conclusions
The task of defining the "nociceptive phenotype" is incom-
plete, and the data so far gathered reveals diversity of phys-
iologic, biochemical, and molecular features. Despite this
diversity, there are remarkably consistent correlations

between general functional properties, trophic interac-
tions, transduction mechanisms, and the "peptide-contain-
ing" or "IB4-reactive" neurochemical profiles of presumed
nociceptive sensory neurons. It is expected that a better
understanding of the molecules that mediate stimulus
transduction will clarify the range of properties of different
sensory afferents.

The function of this variety of nociceptors is also an
important consideration and there is evidence for different
targets both in the periphery and centrally. Obviously, a
neuropeptide content endows this population with a
broader range of possible actions both over spinal neurons
and in the skin. In addition, there is evidence indicating a
different complement of voltage-gated channels and these
probably generate differences in the encoding properties of
each population [40•]. Present evidence also suggests a
larger homogeneity in phenotype in IB4-binding sensory
neurons than in neuropeptide-containing sensory
neurons, which include several distinct subtypes. Finally, it
is important to stress that some nociceptors might not
easily fit the dichotomy of neuropeptide-expressing versus
IB4-reactive nociceptors, although these appear to be the
two major neurochemical subgroups.
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