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Abstract
Purpose of Review To illustrate the value of using zebrafish to understand the role of the Fgf signaling pathway during 
craniofacial skeletal development under normal and pathological conditions.
Recent Findings Recent data obtained from studies on zebrafish have demonstrated the genetic redundancy of Fgf signal-
ing pathway and have identified new molecular partners of this signaling during the early stages of craniofacial skeletal 
development.
Summary Studies on zebrafish models demonstrate the involvement of the Fgf signaling pathway at every stage of crani-
ofacial development. They particularly emphasize the central role of Fgf signaling pathway during the early stages of the 
development, which significantly impacts the formation of the various structures making up the craniofacial skeleton. This 
partly explains the craniofacial abnormalities observed in disorders associated with FGF signaling. Future research efforts 
should focus on investigating zebrafish Fgf signaling during more advanced stages, notably by establishing zebrafish models 
expressing mutations responsible for diseases such as craniosynostoses.
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Introduction

The fibroblast growth factor (FGF) signaling pathway is 
crucial in various biological processes during organ devel-
opment and homeostasis, as well as at the cellular level, 
where it influences proliferation, migration, differentiation, 
and cell death [1–3]. In humans, FGF signaling includes 
22 FGF ligands, 7 FGF receptors (FGFRs) with tyrosine 
kinase activity (resulting from alternative splicing of 4 
genes: FGFR1-4), and numerous co-factors such as heparan 
sulfate and Klotho. The diverse functions of FGF signal-
ing rely on precise regulation of expression and timing of 
FGFs, FGFRs, and co-factors [3]. Despite this tight regula-
tion, multiple FGF signaling-related genetic disorders result 

in craniofacial anomalies (Tables 1 and 2) [51]. Gain-of-
function (GOF) mutations in FGFR1, 2, and 3 are involved 
in syndromic craniosynostoses, characterized by premature 
fusion of cranial sutures [52]. Common forms of syndromic 
craniosynostoses due to mutations on FGFR2 include Crou-
zon, Apert, and Pfeiffer syndromes [32, 37, 38] with the lat-
ter resulting also from FGFR1 GOF mutation [32]. FGFR3 
GOF mutations cause Muenke syndrome and Crouzon with 
acanthosis nigricans syndrome [47, 53]. FGF9 mutations 
are also associated with craniosynostosis [16]. Additionally, 
cleft palate, skull base anomalies, and midface hypoplasia 
are observed in several of these syndromes [40, 54–56]. 
Craniofacial skeleton anomalies are also described in other 
FGFR3-related disorders such as achondroplasia (GOF 
mutation) where patients exhibit skull base, cranial vault, 
and mandibular defects in addition to rhizomelic dwarfism, 
and in CATSHL syndrome, (Loss-of-function mutation 
(LOF)) characterized by overgrowth associated with micro-
cephaly and Wormian skull bones [48, 57–59]. All these 
disorders highlight the critical role of the FGF signaling 
pathway in craniofacial skeleton development.

Numerous mouse models have been developed to 
understand the role of the FGF signaling pathway during 
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craniofacial development [3, 60, 61]. Nevertheless, over 
the past quarter-century, zebrafish has emerged as a rel-
evant model to study cellular and molecular mechanisms 
regulating craniofacial skeletal development and for the 
analysis of genetic variants underlying craniofacial defects 
[60, 62–64]. Approximately 70% of human genes have at 
least one homolog in zebrafish [65]. The presence of several 
homolog skeletal elements and the substantial conservation 

of the developmental mechanisms between zebrafish and 
mammals, makes the former an excellent model to study 
craniofacial skeleton formation. For example, the zebrafish 
ethmoidal plate of the anterior neurocranium is often 
described as analogous to the mammalian palate, the mam-
malian middle ear is analogous to the fish jaw. Cranial vault 
development and anatomy are also well conserved [31, 66]. 
From a technical point of view, the zebrafish model allows 

Table 1  Human FGFs and zebrafish orthologues: Expression patterns during craniofacial development and associated human diseases

# Human pathology with existing zebrafish model.

Human gene Zebrafish
gene

% Homologies 
with Human 
Proteins

Early craniofacial skeleton 
development expression

Juvenile/adult craniofacial 
skeleton expression

Human pathologies affecting 
craniofacial skeleton

FGF1 fgf1a 52,4 No expression No data -
fgf1b 35,5 No data No data

FGF2 fgf2 75,3 No expression cranial vault osteoprogenitors 
[4••]

-

FGF3 fgf3 62,7 rhombomeres [5], pharyngeal 
pouches [6]

No data Associated with craniosyn-
ostosis [7]—craniofacial 
microsomia [8]

FGF4 fgf4 62,3 Dental epithelium [9] No data Associated with craniosyn-
ostosis [7]—craniofacial 
microsomia [8]

FGF6 fgf6a 64,7 No expression No data -
fgf6b 64,1 No data No data

FGF7 fgf7 48,8 No expression cranial vault osteoprogenitors 
[4••]

-

FGF8 fgf8a 66,2 rhombomeres [5],paraxial 
mesoderm, pharyngeal 
mesoderm, mandibular archs 
[10–12]

chondocranium, kinetmoid 
bone, maxilla, cranial suture 
[13]

Kallman syndrome # [14, 15]

fgf8b 61,3 No expression No data
FGF9 fgf9 32,8 No expression No data Craniosynostosis [16]
FGF10 fgf10a 57,7 pharyngeal archs, mandibular 

arch CNCCs [17, 18]
cranial vault osteoprogenitors 

and chondrocytes [4••]
Associated with cleft palate 

#[19, 20]
fgf10b 52,9 No expression No data -

FGF16 fgf16 80,8 pharyngeal archs [21] cranial vault osteoprogenitors 
[4••]

-

FGF17 fgf17 65,9 pharyngeal archs [19] No data Kallman syndrome [20]
FGF18 fgf18a 68,8 pharyngeal archs [19] cranial vault osteoprogenitors 

[4••]
-

fgf18b 63,6 pharyngeal archs [19] cranial vault osteoprogenitors 
[4••]

-

fgf24 61,3 pharyngeal archs, pharyngeal 
pouches [17, 19]

cranial vault osteoprogenitors 
[4••]

-

FGF19 fgf19 41,6 pharyngeal archs [22] No data craniofacial microsomia [8]
FGF20 fgf20a 72,5 No expression inter-frontal joint osteoblasts, 

frontal bone osteoblasts [23]
-

fgf20b 76,9 cranial neural crest, pharyngeal 
archs [24–26]

No data -

FGF21 fgf21 31,7 No expression No data -
FGF22 fgf22 50,6 No expression No data -
FGF23 fgf23 32,2 No expression No data XLH (craniosynostosis) [27]
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for high-resolution in vivo imaging during skull development 
thanks to the accessibility of the embryos and the relatively 
low cell count [67]. Finally, a wide array of genetic tools 
developed for this model, such as morpholino, Tol2 system, 
and CRISPR-Cas9, has facilitated the creation of transgenic 
lines and mutants, aiding in the study of craniofacial devel-
opment under both normal and pathological conditions [68•, 
69]. In this review, we present the literature data on Fgf sign-
aling during zebrafish craniofacial development, providing 
insights into understanding FGF signaling-related anomalies 
in the craniofacial skeleton observed in human diseases, and 
offering promising avenues for future research in this field.

The Fgf Pathway in Zebrafish

31 Fgfs, including 6 paralogs resulting from genome dupli-
cation during evolution after teleost radiation, are described 
in The Zebrafish Information Network database (Table 1) 
[70]. In mammals, FGFs are often classified based on their 
mode of action, which correlates with the coreceptors 
needed to stabilize the interaction between the ligand and 
the receptor. While most ligands are paracrine and associ-
ated with heparan sulfate coreceptors, exceptions include the 
endocrine FGF19 family linked to Klotho (α and βklotho) 
and the intracrine FGF11 family, which do not bind to a 
receptor [71]. To our knowledge, zebrafish fgfs have typi-
cally been categorized only by gene location and never 
by their modes of action [70]. However, some studies on 
zebrafish coreceptors offer insights into the conservation of 
Fgfs' mode of action. Expression of heparan sulphate pro-
teoglycans is also described as regulating the majority of 
Fgf signalling [72–74]. Klotho and klothob are αKLOTHO 
and βKLOTHO orthologs, respectively [75]. In zebrafish, 
Fgf23 seems to interact with Klotho, and both fgf23 and 
klotho mutants exhibit the same phenotype, suggesting con-
servation of the Klotho/Fgf23 system [76–78]. At last, while 
no evidence of intracrine action in zebrafish has been pub-
lished for the Fgf11 family, the absence of the signal peptide 
domain in the C-terminus of Fgf11-14, akin to the human 
FGF11 family, suggests a conserved mode of action.

The zebrafish fgfrs include five genes encoding recep-
tors with tyrosine kinase activity. Specifically, fgfr1a and 
fgfr1b are orthologs of FGFR1, and fgfr2, fgfr3 and fgfr4 
are the orthologs of FGFR2, FGFR3 and FGFR4, respec-
tively (Table 2). In humans, FGFR1-3 receptors have iso-
forms resulting from alternative splicing of exon 8 or exon 
9 corresponding respectively to the immunoglobulin domain 
IgIIIb or IgIIIc [79]. Similarly, Fgfr1a and Fgfr2 have iso-
forms due to an alternative splicing (exon 7 or exon 8). The 
IgIIIb and IgIIIc isoforms of Fgfr1a and Fgfr2 respectively 
align more closely with the corresponding human IgIIIb and 
c isoforms. Fgfr1b and Fgfr3 show greater homology with 

their corresponding human IgIIIc isoforms. Finally, similar 
to mammals, the Fgfr family in zebrafish includes a receptor 
lacking a tyrosine kinase domain; specifically, FGFR5 has 
two orthologs in zebrafish, fgfrl1a, and fgfrl1b[50].

The Zebrafish Craniofacial Skeleton

The adult zebrafish skull consists of 73 bones (more than 
in mammals). There is a correlation between skull devel-
opment and zebrafish size, therefore post-embryonic stages 
(beyond 5 days post-fertilization) are mostly determined by 
standard length (SL) rather than age [31]. The craniofacial 
skeleton is made up of neurocranium and viscerocranium. 
The viscerocranium is the most ventral part of the zebrafish 
skeleton and it is the first portion that develops starting from 
48 h post fertilization (hpf). It is the feeding and respiratory 
apparatus and is composed of bones forming the jaw and 
five branchial arches: basibranchia, hypobranchials, cerato-
branchials, epibranchials, and pharyngobranchials. The first 
four branchial arches support the gills, while the fifth car-
ries the teeth. The neurocranium, supporting the brain and 
sensory systems, is comprised of four capsules: ethmoid, 
orbit, optic, and occipital, along with cranial vault bones 
[67, 80–82]. Cranial vault formation begins during the larval 
stage, around 7SL, approximately 1 month post-fertilization 
[31]. Similar to mammals, the zebrafish craniofacial skel-
eton is formed either through endochondral ossification or 
intramembranous ossification [83]. Zebrafish skull bones 
can be classified into four types: acellular and compact 
bones (e.g., frontal, parietal, occipital), cellular compact 
bones with osteocytes entrapped in the matrix (e.g., opercle, 
pterotic, sphenotic), tubular bones filled with adipose tissue 
(e.g., hyomandibula, basibranchial, ethmoid), and spongy 
bones filled with a trabecular network (e.g., quadrate, cera-
tohyal) [84].

Fgf Signaling and Early Craniofacial 
Development in Zebrafish

Despite its complexity, zebrafish craniofacial skeletal devel-
opment closely resembles that of mammals. This model was 
widely used to study early step of craniofacial development 
including cellular dynamics and the involvement of signal-
ing pathways like FGF signaling. The zebrafish skull bones 
derive from both the cranial neural crest cells (CNCCs) and 
the paraxial mesoderm [85, 86]. CNCCs originate from the 
junction between the neural tube and the ectoderm [87]. 
Around 12 hpf, coinciding with hindbrain segmentation 
into rhombomeres (R1-R7), CNCCs undergo epithelial-
mesenchymal transition, delaminate, and migrate in three 
streams (mandibular, hyoid, and five branchial), populating 
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the seven pharyngeal arches (Fig. 1A) [88]. CNCCs that con-
tribute to the formation of the mandibular arch delaminate 
adjacent to the posterior midbrain-R2 whereas CNCCs of the 
hyoid and branchial arches originate next to R4 and R6-R7, 
respectively. Each pharyngeal arch comprises of cylinders 
of CNCCs surrounding a core of mesoderm, bordered exter-
nally by ectoderm and separated from other arches by endo-
dermal out pockets called pharyngeal pouches (Fig. 1A) [21, 

24, 89, 90]. These arches serve as templates for craniofacial 
structure development in adulthood, with the first arch giv-
ing rise to the lower jaw and palate, the second arch to the 
ceratohyal and hyomandibular bones, and the third through 
seventh arches forming the ceratobranchials, epibranchials, 
and pharyngobranchials [63, 64, 67, 86, 91].

In zebrafish, early craniofacial development is char-
acterized by redundant use of Fgf signaling components. 

Fig. 1  Involvement of the Fgf signaling pathway during craniofacial 
skeleton development in zebrafish. A Diagram of the first steps of 
craniofacial development from the formation of the rhombomeres to 
the formation of the pharyngeal arches and pharyngeal pouches m: 
midbrain, r: rhombomere, PA: pharyngeal arch. B Endochondral and 
intramembranous ossification. The most important genes expressed 
during these processes are in italic. PCC: precartilaginous condensa-
tions. C Diagram showing all bones affected in the different fgf and 
fgfr zebrafish models published, in the viscerocranium and chordal 

neurocranium at 5dpf and in the cranial vault at 9SL. abc: anterior 
basicranial commissure, ac: auditory capsule, bb: basibranchial, bh: 
basihyal, cb: ceratobranchial, e: ethmoid plate, hb: hypobranchial, hs: 
hyosymplectic, lc: lateral commissure, m: Meckel’s cartilage, n, noto-
chord, ot: otic capsule, pc: parachordal, pq: palatoquadrate, pbc: pos-
terior basicapsular commissure, postch: postchordal neurocranium, 
prech: prechordal neurocranium, t: trabeculae, fr: frontal bone, pa: 
parietal bone, oc: occipital bone
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This is evidenced by the absence of distinguishable phe-
notypes in single mutants of the receptors fgfr1a, fgfr1b, 
fgfr2, and fgfr3 [92, 93••]. This differs from mice, where 
ubiquitous knock-out of fgfr1 or fgfr2 receptors are embry-
onic lethal [94, 95]. Nevertheless, the zebrafish studies 
contributed widely to reveal that fgf3 and fgf8 are part of 
a regulatory network controlling pharyngeal pouches and 
CNCCs homeostasis (Fig. 1A). Fgf8 is initially expressed 
in the lateral mesoderm, in the midbrain-hindbrain bound-
ary (MHB) and in R2 and R4 domains. Its expression over-
laps fgf3’s in neural MHB and R4 domains [5, 96, 97]. 
Between 18 and 28hpf, fgf3 and fgf8a are expressed in 
pharyngeal pouches adjacent to dlx2a-expressing CNCCs. 
Their expression in the mesoderm close to the endoderm 
is crucial for proper endodermal cell migration, segmenta-
tion of the pharyngeal endoderm into pouches, and CNCCs 
proliferation [98]. A link was reported between Fgf sign-
aling and Tbx1, which deletion in human is associated 
to DiGeorge syndrome and developmental defects of the 
pharyngeal arches and pouches [99]. Research conducted 
in zebrafish brought two significant findings: firstly, Tbx1 
triggers directional pocket growth through Fgf8a [10]; 
secondly, in pharyngeal pouches regulated by Pax1a and 
Pax1b, Tbx1 along with Fgf3 influences the expression 
of dlx2a in nearby CNCCs located in pharyngeal arches 
3 to 6. Dlx2a is essential in guiding the differentiation 
of CNCCs into ectomesenchymal cells and chondrocytes 
[100•]. To complete this network, Fgf signaling functions 
downstream of Twist1 to suppress sox10 expression in the 
CNCCs while simultaneously activating dlx2a expression 
[101]. Additionally, it was recently demonstrated that Fgf8 
is also involved in CNCCs differentiation through the neg-
ative regulation of Nkx2.3 [102].

Further, Fgf20b interaction with Fgfr1 is required for 
the ectomesenchyme formation [25]. fgf24 is expressed 
in pharyngeal pouches, and fgf8b, fgf17, fgf16, fgf18a, 
fgf18b expression was observed in pharyngeal arches but 
no data have been reported about their role during first 
step of pharyngeal arches morphogenesis [21, 24, 89]. 
By 24hpf, fgfr1a and fgfr2 are expressed in the MHB, 
hindbrain rhombomeres (R1-4), and pharyngeal pouches, 
with fgfr1a showing earlier expression [28]. Research 
using morpholino injection or CRISPR Cas9 mutagenesis 
revealed that while fgfr1a, fgfr1b, and fgfr2 are unneces-
sary for CNCCs migration into the pharyngeal pouches, 
they are vital for CNCCs maintenance [28, 92]. fgfr3 is 
also expressed in pharyngeal pouches [49••]. The role of 
Fgf signaling during pharyngeal arches morphogenesis, 
and CNCCs homeostasis is critical as it influences the later 
patterning of the viscerocranium and the neurocranium 
either via endochondral or intramembranous ossification 
[93••, 98].

FGF Signaling and the Viscerocranium 
Development: Focus on Endochondral 
Ossification

Zebrafish viscerocranium is exclusively derived from 
CNCCs and consists of bones formed via both endochon-
dral and intramembranous ossification [83, 86, 103•, 
104••]. In this paragraph, we focus on endochondral ossifi-
cation. As in mammals, itoccurs principally during growth 
and is characterized by a cartilaginous intermediate matrix 
formed by chondrocytes and invaded by blood vessels and 
osteoblasts that eventually convert the cartilage template 
into bone at larval stages. Initially, CNCCs of the pharyn-
geal arches differentiate into ectomesenchymal cartilage 
precursors expressing dlx2a and aggregate from 48hpf into 
precartilaginous condensations (PCCs) expressing barx1 
[105, 106]. These PCCs dictate the morphology of the 
facial cartilage [36••]. At 60 hpf, cartilage precursors start 
expressing sox9a (necessary for producing the cartilage-
specific collagen Col2a) and initiate chondrocyte differ-
entiation. Subsequently, between 72 and 84 hpf, chondro-
cytes stack to form the pharyngeal cartilage [107, 108]. 
Chondrocytes differentiation is then completed by their 
maturation into runx2b and col10a1-expressing enlarged 
hypertrophic cells (Fig. 1B). As in mammals, zebrafish 
chondrocytes contribute to osteoblasts, adipocytes, and 
mesenchymal cells within the adult bones [109]. How-
ever, hypertrophic cells in zebrafish minimally contribute 
to bone growth and appear to be transient, as they are 
no longer present in later stages of development [103•]. 
The spatial organization of epiphyseal growth zones in 
zebrafish resembles mammalian long bone growth plates. 
The ceratohyal exhibits a similar organization to the long 
bones of mammalian limbs, featuring two prominent 
growth zones at each end and a marrow cavity. However, it 
is important to note the absence of secondary ossification 
in zebrafish [104••]. Each growth zone consists of a rest-
ing zone (Col2a1a +) followed by the proliferative zone 
(Pcna +) and a hypertrophic zone (Col10a1 +). Pharyngeal 
bones are separated by synchondroses, as in mammals, 
that produces a bidirectional growth formed by a resting 
zone flanked by two proliferative and hypertrophic zones 
[103•, 104••].

The zebrafish studies highlighted that Fgf signaling 
plays a key role during the first steps of chondrogenesis, 
including the regulation of dlx2a expression and the dif-
ferentiation of CNCCs into ectomesenchyme (see previ-
ous section). Recently, Paudel et al. demonstrated that Fgf 
signaling participates also to PCC formation as it regu-
lates barx1 expression directly and indirectly by inhibit-
ing jag1, whose expression is inversely proportional to 
barx1. [36••]. With these insights, it becomes evident 
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that disruptions in the Fgf pathway during early chon-
drogenesis have significant repercussions on the forma-
tion of cartilage, particularly within the viscerocranium. 
This assertion finds support in several studies. Firstly, the 
inhibition of Fgf signaling in zebrafish embryos between 
24 and 36hpf, a crucial period for CNCCs differentiation 
into chondrocytes, using the pan-FGFR kinase inhibi-
tor BGJ-398, resulted in smaller viscerocranium bones 
and mineralization defects at later stages (5dpf) [93••]. 
Secondly, the absence of both Fgf8 and Fgf3 has been 
shown to hinder posterior viscerocranium formation and 
significantly impact the development of the anterior vis-
cerocranium [14, 98, 110]. Thirdly, fgfr1a; fgfr1b double 
mutants or fgfr1a; fgfr1b; fgfr2 triple mutants exhibit sig-
nificant defects in the viscerocranium, including anomalies 
in the ceratobranchials, hyosymplectic, palatoquadrate, 
and Meckel’s cartilage (Fig. 1B and C). The triple mutant 
shows even more severe viscerocranium defects, with the 
involvement of the ceratohyal as well [92]. Finally, it was 
discovered that Fgf signaling is regulated partially by the 
von Willebrand factor A domain (VWA1), during CNCCs 
aggregation and differentiation, and its absence leads to 
chondrocytes disarrangement and deformities of craniofa-
cial cartilage in zebrafish and to Hemifacial microsomia 
in Human [111].

To date, limited data are available regarding the molecu-
lar partners and roles of Fgf3, Fgf8, Fgfr1a, Fgfr1b, and 
Fgfr2 in the zebrafish endochondral ossification. However, 
studies have shown that the absence of Fgf8 or inhibition 
of FGF signaling results in the impairment of key genes 
involved in bone formation, such as runx2a, sp7, col1a1 
and col9 [14, 93••]. A recent elegant study, revealed that, 
the stabilization of fgf8 mRNA by the rRNA-processing 
protein Nucleolin is essential for the proper formation of 
the viscerocranium in osteochondroprogenitors [112••]. In 
contrast, Fgfr3 plays a distinct role. It is highly expressed 
during viscerocranium development: observed at 60 hpf 
in the mandibular and hyoid arches cartilage, followed by 
expression at 72hpf in chondrocytes of branchial arches 1–5. 
Although its expression diminishes by 4 dpf, Fgfr3 persists 
in the head cartilage until adulthood [42, 49••]. Similar to its 
function in mammals, Fgfr3 serves as a crucial regulator of 
the endochondral ossification process in zebrafish as it was 
demonstrated by the analysis of fgfr3 LOF zebrafish, estab-
lished using CRISPR-Cas9 technology, mimicking CATSHL 
syndrome with cranial vault and hyoid anomalies, along with 
midface hypoplasia [4••, 49••] fgfr3 LOF zebrafish model, 
Sun et al. described that the function of Fgfr3 is conserved 
between tetrapod and teleost during endochondral ossifica-
tion. Fgfr3 serves as a negative regulator of chondrocyte 
proliferation and is also involved in the differentiation of 
chondrocytes into hypertrophic cells (Fig. 1B) [49••, 113]. 
They demonstrated that this regulation occurs in part via the 

activation of the canonic Wnt/β-catenin and Ihh pathways. 
During the endochondral process, Fgfr3 regulates not only 
chondrogenesis but also osteogenesis. This is evidenced by 
the delayed ossification of pharyngeal bones and the reduced 
number of osteoblasts observed in fgfr3 LOF fish. Finally, 
Fgfrl1a and Fgfrl1b also appear to play a role in cartilage 
formation, especially in the development of the gills. This 
is intriguing considering that in mammals, FGFR5 interacts 
with other FGFRs to modulate Fgf signaling in cartilage 
[50, 114].

Fgf Signaling and the Zebrafish Cranial Vault 
Development: Focus on Intramembranous 
Ossification

The zebrafish cranial vault is composed mainly by pairs of 
frontal and parietal bones formed via intramembranous ossi-
fication and the supraoccipital bone formed via endochon-
dral process. These bones originate from both CNCCs and 
mesoderm, but contrary to mammals, where the boundary 
between CNCCs and mesoderm-derived cells lies between 
the frontal and parietal bones, in zebrafish, this boundary is 
situated within the frontal bones, with the anterior and pos-
terior parts respectively derived from CNCCs and mesoderm 
[86]. The cranial vault bones, are the largest ones formed via 
the intramembranous process, and offer an ideal opportunity 
to analyse the cellular mechanisms involved in this process 
due to their prominent location, and their late development 
[115].

Intramembranous ossification begins with the differen-
tiation of CNCCs and mesodermal cells to mesenchymal 
cells, expressing paired related homeobox 1a (encoded by 
prrx1a), muscle segment homeobox msx1 and 3, which ini-
tially aggregate to form the ossification center. Subsequently, 
these cells differentiate into osteoblasts through highly 
conserved mechanisms. The growth of cranial vault bones 
occurs at the periphery of the newly formed bone through 
the continuous differentiation of mesenchymal cells into 
osteoprogenitors expressing twist1a, 2 and 3 and runx2a 
and b genes. Osteoblast differentiation progresses with 
the expression of osterix (sp7), followed by the sequential 
expression of genes encoding bone matrix proteins such as 
osteopontin (spp1), collagen type 1 (Col1), col10a1, and 
osteocalcin (bglap) (Fig. 1B) [4••, 31, 116]. The expression 
of col10a1 in osteoblasts is noteworthy, as it is typically 
restricted to hypertrophic chondrocytes in mammals [117]. 
Furthermore, zebrafish cranial vault bones are acellular, as 
the maturation of osteoblasts in these bones does not lead to 
their embedding into the bone matrix and their transforma-
tion into osteocyte [84].

At the end of the cranial vault development, the bones 
come together and overlap, with a thin layer of suture 
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mesenchymal stem cells (SuSCs) and fibrous tissue form-
ing the cranial suture. Specific sutures delineate the bounda-
ries between bones: the metopic suture (frontal-frontal), two 
coronal sutures (frontal-parietal), sagittal suture (parietal-
parietal), and lambdoid suture (parietal-supraoccipital). 
Interestingly, all cranial sutures in zebrafish exhibit over-
lapping bones similar to the coronal and lambdoid sutures in 
mammals, and none feature bones facing each other, as seen 
in the metopic and sagittal sutures of mammals [118, 119]. 
The sutures impart flexibility to the cranial vault, supporting 
its growth until brain development concluded. It is worth 
noting that, unlike in mammals, where cranial sutures fuse 
by adulthood, the zebrafish cranial sutures remain an area 
of slow intramembranous ossification throughout the ani-
mal’s lifespan due to continuous growth [31]. At the cellular 
level, mammals exhibit four main clusters of SuSCs: gli1 + , 
axin2 + , prrx1 + , and Ctsk + SuSCs. In zebrafish, however, 
only gli1 + , prrx1 + , and grem1a + SuSCs have been identi-
fied thus far, necessitating further investigation [120–124]. 
Despite these differences, the limited studies on cranial 
vault formation in zebrafish emphasize the highly conserved 
nature of this process, which relies on well-orchestrated cel-
lular and molecular mechanisms [31, 125–127].

Single cell RNAseq performed during zebrafish cranial 
vault development highlighted that some fgfs are expressed 
in the osteoprogenitors fgf2, fgf10a, fgf16, fgf18b, fgf2, fgf7, 
fgf24 and finally fgf18a, which has the highest expression. 
fgfr2 is mainly expressed in osteoprogenitors, fgfr1a, and 
fgfr4 in osteoblasts and fgfr1b in chondrocytes. Interestingly 
and contrary to what has been described in mice, fgfr3 is the 
most strongly expressed during cranial vault development 
and can be detected in late osteoprogenitors and osteoblasts 
[4••]. At adult stages, fgfr1a, fgfr1b, fgfr2, fgfr3 are still 
expressed in the cranial suture. Expression of fgf8a was also 
detected [13, 31, 42, 49••]. Despite the important role of 
FGF signalling in cranial vault formation, as evidenced by 
how FGFR1, FGFR2 and FGFR3 are all involved in cranio-
synostosis, limited studies have investigated Fgf signaling 
and cranial vault development in zebrafish. The fgfr3 LOF 
zebrafish model mentioned earlier, presenting cranial bone 
growth delay, wormian bones and cranial sutures anomalies, 
has provided us with an invaluable tool to study the role of 
Fgfr3 during cranial vault development. This model is the 
only fgfr3 LOF animal model with cranial vault anomalies, 
and has enabled us for the first time to highlight that Fgfr3 
is an activator of osteoblasts expansion and differentiation 
during cranial vault development (Fig. 1B) [4••]. Further 
studies on the involvement of Fgfr3 during cranial suture 
formation are ongoing. Fgf8a plays also a role in cranial 
formation and fgf8a haploinsufficiency leads to adult skeletal 
defects including irregular patterns of cranial suturing, and 
ectopic bone formation (Fig. 1C) [13].

Many questions persist regarding FGF signaling in cra-
nial vault and suture development. Studying LOF mutants 
of other fgfs and fgfrs in later stages could elucidate their 
roles. Establishing models with GOF mutations is essen-
tial for understanding the pathophysiological mechanisms 
of craniosynostosis related to FGF signaling. The zebrafish 
model's relevance for these diseases has already been dem-
onstrated as for example the Saethre-Chotzen syndrome and 
craniosynostoses linked to Cyp26b1 [60, 124, 128, 129].

Fgf Signaling and Pre and Post Chordal 
Neurocranium Development

Finally, FGF signaling is also associated with other crani-
ofacial anomalies such as cleft palate (observed in multiple 
synostoses syndrome type 3 related to FGF9), in Kallman, 
Apert, Beare-Stevenson and Crouzon syndrome, and with 
skull base defects as in Achondroplasia, Apert and Crouzon 
syndromes [15, 40, 54–57, 130]. In zebrafish the palate and 
the skull base are interconnected, delineating the prechordal 
(anterior) and postchordal (posterior) regions of the neuro-
cranium. The first is made up of CNCC-derived cells and the 
second mostly of mesoderm-derived cells [63, 67, 86, 110]. 
The zebrafish palate consists of the ethmoidal plate, trabecu-
lae and parasphenoid bones. Clefts, truncations, hypoplasia, 
or absence of these structures indicate orofacial clefts. The 
postchordal neurocranium includes the parachordal car-
tilages, anterior and posterior basicapsular commissures 
around the developing ear, lateral commissures, and occipi-
tal arches. Few zebrafish studies have explored FGf signal-
ing and its role in these structures' development (Fig. 1C). 
Notably, one study identified fgf10a expression in both 
CNCCs and oral ectoderm, suggesting its necessary in pala-
togenesis. Morpholino-induced fgf10a knockdown results 
in shortened trabeculae and parasphenoid bones. Fgf10a 
likely regulates shh expression, guiding CNCCs migration 
towards the midline, triggering chondrogenesis, and facilitat-
ing trabeculae formation. A deeper analysis of Fgf10a's role 
during this process would be relevant, as FGF10 has been 
associated with pathologies resulting in dental anomalies 
and cleft palate (homozygous or heterozygous knock-out 
mice are either non-viable or exhibit only a very slight phe-
notype) [131, 132]. Interestingly, fish carrying the fgf8ti282 
LOF mutation display ethmoidal plate defects similar to the 
ones described in humans with Kallman syndrome (charac-
terised by cleft lip and palate) and due to mutations in FGF8 
[14]. Further, Fgf8 and Fgf3 appear to be key regulators 
in postchordal neurocranium development by stimulating 
specification of mesoderm-derived progenitors [110]. fgfr3 
expression is observed in ethmoid plates. Further analy-
sis of pre- and postchordal neurocranium development in 
fgfr3 LOF mutants would be intriguing given their severe 
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craniofacial phenotype [4••, 49••]. Anomalies in the post-
neurocranium were observed in the triple mutant (fgfr1a, 
fgfr1b, and fgfr2), supporting their involvement in cranial 
base formation. However, their redundant activity during 
early craniofacial development impedes the determination of 
their respective roles. Thus, the development of a zebrafish 
line expressing fgfr GOF mutations could provide insight 
into their specific roles.

Conclusions

In conclusion, we have underscored the strengths of the 
zebrafish model, highlighting its close resemblance to mam-
mals in craniofacial skeleton formation. This model proves 
invaluable tool for elucidating the role of the Fgf signal-
ing pathway in the cellular mechanisms driving develop-
mentand complement mammalian models, as seen in cases 
like mutant mice showing early lethality while zebrafish 
models display milder phenotypes (e.g., fgfr1, fgfr2, and 
fgf10). Conversely, there are instances where mice show 
no phenotype, yet the zebrafish model exhibits one, such 
as craniofacial anomalies in CATSHL syndrome linked to 
FGFR3. Studies using zebrafish, consistently demonstrate 
Fgf signaling's involvement at every stage of craniofacial 
development, from CNCCs to the formation of numerous 
craniofacial bones. From early investigations to recent 
ones, conducted during the early stages of zebrafish cranial 
development, they all emphasize the pivotal role of the Fgf 
signaling pathway during this stage that profoundly influ-
ences the development of various structures constituting 
the craniofacial skeleton. These data partially account for 
craniofacial anomalies observed in FGF signaling-related 
disorders, including cleft palate, cranial base defect or mid-
face hypoplasia. Future research efforts should aim to elu-
cidate the precise roles of specific Fgf ligands and receptors 
at later stages of craniofacial skeletal formation. Notably, 
studies utilizing fgfr3 LOF zebrafish at later stages align 
with this direction and demonstrate the zebrafish's potential 
as a valuable tool in understanding FGF signaling-related 
craniosynostosis. Advancements in genome editing tech-
niques in zebrafish, including base or prime editing, present 
opportunities to introduce point mutations associated with 
human pathologies. This will accelerate our comprehension 
of FGF-related craniofacial skeletal disorders and allow to 
establish zebrafish model for exploring new therapeutic 
strategies for these diseases.
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