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Abstract
Purpose of Review  The objective of this review is to summarize the literature on the prevalence and diagnosis of obesity 
and its metabolic profile, including bone metabolism, focusing on the main inflammatory and turnover bone mediators that 
better characterize metabolically healthy obesity phenotype, and to summarize the therapeutic interventions for obesity with 
their effects on bone health.
Recent Findings  Osteoporosis and fracture risk not only increase with age and menopause but also with metabolic diseases, 
such as diabetes mellitus. Thus, patients with high BMI may have a higher bone fragility and fracture risk. However, some 
obese individuals with healthy metabolic profiles seem to be less at risk of bone fracture.
Summary  Obesity has become an alarming disease with growing prevalence and multiple metabolic comorbidities, resulting 
in a significant burden on healthcare and increased mortality. The imbalance between increased food ingestion and decreased 
energy expenditure leads to pathological adipose tissue distribution and function, with increased secretion of proinflammatory 
markers and harmful consequences for body tissues, including bone tissue. However, some obese individuals seem to have 
a healthy metabolic profile and may not develop cardiometabolic disease during their lives. This healthy metabolic profile 
also benefits bone turnover and is associated with lower fracture risk.

Keywords  Adipose tissue · Metabolically healthy/unhealthy obesity · Adipokines · Bone marrow fat · Bone turnover · 
Fracture risk · Osteosarcopenia

Introduction

Obesity has become a major public health problem world-
wide with a growing epidemiology, and increased burden 
from chronic diseases (including diabetes mellitus, hyper-
tension, dyslipidemia, heart disease, stroke, sleep apnea, 
and cancer) and mortality [1]. Obesity also has economic 
impacts with considerable costs for health care systems 
and broader society [2]. Its prevalence has nearly tripled 

worldwide since the 1970s [3, 4, 5•] (5.5% of males and 
9.8% of females) [6].

However, the relationship between obesity and cardio-
metabolic complications is not linear. More than 80% of 
individuals with type 2 diabetes are obese, but 10–30% of 
obese individuals have a metabolically healthy profile char-
acterized by preserved insulin sensitivity and normal blood 
pressure and lipid profiles [7]. The latter are described as 
metabolically healthy obese (MHO). Conversely, 30% of 
normal-weight individuals will develop metabolic diseases 
during their lifetimes [8, 9•, 10].

Like obesity, osteoporosis is a major public health chal-
lenge due to its high prevalence and its association with mor-
bidity, mortality, and healthcare costs. Osteoporosis has been 
diagnosed in more than 200 million people worldwide and 
is responsible for more than 8.9 million fractures annually, 
leading to an osteoporotic fracture every 3 s [11, 12]. The 
interaction between obesity and bone metabolism, particu-
larly in the context of MHO, is complex and not completely 
understood; therefore, understanding the interaction between 
healthy and unhealthy fat and bone is an essential key to the 
optimal management of these two chronic conditions. This 
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review summarizes current evidence on the metabolic and 
inflammatory profiles of MHO and metabolically unhealthy 
obese (MUHO) individuals, including their clinical pheno-
types and the changes induced by these two profiles on bone. 
Finally, the impact of these profiles on osteoporosis treat-
ment will be discussed.

Obesity and Cardiometabolic Risk

Obesity Definition

Obesity is an abnormal or excessive fat accumulation that 
presents a health risk [13]. The body mass index (BMI), a 
surrogate measure of body fat (BF) based on the person’s 
weight adjusted for height, is typically used to categorize 
normal weight (< 25 kg/m2), overweight (25–29.9 kg/m2), 
and obesity (≥ 30 kg/m2) [14•] with morbid obesity defined 
as a BMI ≥ 40 kg/m2. However, it does not consider the large 
variability in body adiposity and fat distributions between 
individuals, partially related to age, sex, and ethnicity. For 
instance, Asians have a higher percentage of body fat than 
Caucasians for the same BMI [15].

Abdominal obesity has been associated with a greater 
cardiometabolic risk than other locations of fat mass. Many 
studies have suggested that waist circumference, or the 
waist-to-hip ratio, may better indicate abdominal obesity 
than BMI [16]. Indeed, guidelines recommend measuring 
waist circumference when BMI is between 25.0 and 34.9 kg/
m2, with a cutoff point of 102 cm in men and 88 cm in 
women [17]. However, the fat distribution and its type are 
better prognostic health indicators than the above anthro-
pometric measurements. Excess of visceral adipose tissue 
(VAT) may be more often associated with cardiovascular and 
metabolic disease, as well as colorectal cancer, than subcuta-
neous adipose tissue (SAT) [18, 19]. To date, the two gold-
standard imaging methods for quantification of VAT and 
SAT are magnetic resonance imaging (MRI) and computed 
tomography (CT), which have limited use in research and 
clinical medicine given their cost and exposure to radiation 
(CT only) [20]. Dual-energy X-ray absorptiometry (DXA), 
initially used for osteoporosis diagnosis and monitoring, is 
also a validated technique to assess body composition, with 
lower cost and more availability [21]. These data support 
that there are heterogeneous obesity phenotypes among 
populations, depending on body fat distribution, each one 
with a different metabolic risk profile, leading to the concept 
of MHO and MUHO phenotypes [22•].

Metabolic Obesity: Pathophysiology and Definition

Adipose tissue is a dynamic organ with a major role in 
energy homeostasis, composed mainly of white adipose 

tissue (WAT) and brown adipose tissue (BAT). WAT is 
involved in energy storage and includes VAT (the fat 
stored around internal organs), which is endocrinologi-
cally active, and SAT which is mainly metabolically inac-
tive. In contrast, BAT is involved in energy expenditure 
and is mostly localized in the supraclavicular and paraver-
tebral regions [23–25].

Accumulation of fat in visceral organs (VAT) and ectopic 
fat deposition (muscle, liver, heart) could lead to MUHO 
together with an increased risk of conditions associated with 
metabolic abnormalities such as hypertension, dyslipidemia, 
and impaired glucose metabolism, which are consequently 
associated with an increased risk of type 2 diabetes (T2DM) 
and cardiovascular disease (CVD) [26]. In addition, excess 
hepatic fat (NAFLD) is a potential predictor of the MUHO 
phenotype and subclinical atherosclerosis [27]. Failure adi-
pose tissue expansion (hypertrophic fat cells), occurring 
after a positive energy balance, results in ectopic deposition 
of lipids with associated lipotoxicity, abnormal proinflam-
matory markers secretion, high immune cell infiltration, and 
consequently, insulin resistance in peripheral tissues [28].

Regarding MHO, there is no universal definition for 
this phenotype which can explain the large variability 
of its prevalence (6–40% of obese individuals) [29, 30]. 
This subgroup of people with obesity (BMI ≥ 30 kg/m2) is 
mainly characterized by the absence of insulin resistance, 
none of the criteria of metabolic syndrome (or some of its 
components) and no cardiovascular disease. Some studies 
also include a favorable inflammatory status according to 
C-reactive protein (CRP) levels [31–33]. Consequently, 
body composition, fat distribution, and function are criti-
cal in distinguishing metabolically healthy from metaboli-
cally unhealthy individuals.

Determinants of MHO/MUHO in the Genesis of CVD

Gender, age, genetic polymorphism, gut microbiota, and 
ethnicity are major etiologic factors leading to variation 
in fat visceral deposition, in addition to lifestyle factors 
[26, 34, 35••]. Despite the heterogeneity in classification, 
MHO individuals appear to have higher SAT levels and 
less visceral and ectopic fat deposition than MUHO indi-
viduals with the same BMI and usually do not develop 
cardiometabolic disease. Conversely, there are individuals 
with normal BMI and increased cardiometabolic risk36].

The quality of adipose tissue is equally important to 
explain the more favorable metabolic profile. MUHO 
might be the consequence of an impaired adipose tissue 
function after a chronic positive energy balance, leading to 
the inability of the subcutaneous adipose tissue to expand 
sufficiently to counter this long-term imbalance [7]. The 
inflammatory status also plays a key role field [37]: MHO 
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phenotype is associated with lower proinflammatory 
cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-
6), and TNF-α, as well as lower levels of proinflammatory 
M1 macrophages and CD4 + T cells [37, 38].

Several adipokines produced by the adipose tissue are 
linked to the development of insulin resistance and T2DM 
[39–41]. Adiponectin, whose production is inversely cor-
related with adipose mass, and omentin-1 are both consid-
ered anti-inflammatory and cardioprotective adipokines 
and are higher in MHO subjects. Two non-cardioprotective 
adipokines, visfatin and resistin, are lower in MHO [42–44]. 
Leptin, expressed in levels proportionate to adiposity, is a 
product of the obesity gene with a pleiotropic effect on food 
intake, body weight, reproductive system, proinflammatory 
responses, and lipid metabolism [45]. It may act as a bio-
marker for cardiovascular diseases in obese individuals, as 
elevated plasma leptin levels are associated with proinflam-
matory effects, atherosclerosis, hypertension and metabolic 
syndrome [46]. Moreover, high serum leptin/adiponectin ratio 
may be a marker of “at risk” obesity, independent of waist 
circumference and BMI. In the literature, higher leptin lev-
els among MUHO subjects have been found. However, some 
studies showed no difference between the two groups [47–49]. 
These few studies with contradictory results are likely second-
ary to other confounder parameters (differences in race, age, 
gender, definition of MHO used, or sample size).

In summary, the most important biological factors used 
to determine MHO profile are a lower amount of visceral 
and ectopic fat, a higher amount of subcutaneous adiposity, 
a decreased inflammation and fibrosis, specific adipokines 
secretion, and a preserved insulin sensitivity compared to 
MUHO profile.

Obesity and Bone Metabolism

Interaction Bone‑Adipose Tissue

Osteoporosis is characterized by low bone mineral density 
(BMD), defined by a T-score 2.5 SD or more below the 
mean adult value with DXA (femoral neck measure), and 
progressive bone microarchitectural deterioration resulting 
in decreased bone strength and increased susceptibility to 
fractures [50]. Historically, the common belief was that 
obesity has a protective effect against osteoporosis [51]. 
Additionally, higher BMI results in lower fracture risk in 
the “fracture risk assessment tool (FRAX). Indeed, some 
studies showed a positive effect of fat on bone mass due to 
a higher BMD and local adipose padding in obese people 
compared to people with normal weight [52–54]. A low 
body weight is also a risk factor for fragility fracture [55]. 
Conversely, there is evidence that obesity has a harmful 
effect on bone mass [56•].

Several mechanical and biochemical mechanisms have 
been suggested to understand the complex communication 
between the adipose tissue and bone tissue. Higher body 
mass results in increased mechanical load on bone, leading 
to an increase in BMD to adapt to mechanical stress [57]. 
This hypothesis has been supported by precise quantita-
tive methods (e.g., high-resolution peripheral quantitative 
CT) [58]. Moreover, fracture risk in obese people seems to 
be site-dependent: obesity is associated with higher frac-
tures in the ankle, leg, humerus, and vertebral column, 
and lower fractures in the wrist, hip, and pelvis [59, 60].

Fat distribution also plays an important role. Each adi-
pose tissue compartment has a specific metabolic profile 
and bone effect. VAT secretes more proinflammatory 
markers, negatively impacting BMD [61, 62]. Excess of 
SAT is associated with more leptin secretion and results 
in lower bone resorption and higher bone strength than 
excess VAT. Intramuscular fat leads to muscle perfor-
mance impairment and myocyte insulin resistance [63, 64]. 
Additionally, brown fat (BAT) positively affects bone mass 
[65]. The bone marrow adipose tissue (BMAT), named 
yellow bone marrow, is another metabolically active adi-
pose tissue involved in bone homeostasis and body ener-
getic metabolism by direct or indirect effects.

Estrogens, synthesized from androgen precursors by 
aromatase in adipose tissue, have a crucial role in bone 
protection by promoting bone formation and reducing 
bone resorption. Obese post-menopausal women have been 
shown to have higher estrogen levels in blood compared 
with non-obese individuals [66]. Overproduction of pro-
inflammatory cytokines, such as tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), IL-6, results in osteoclast 
differentiation stimulation and bone resorption through 
activation of RANKL/RANK/osteoprotegerin (OPG) 
pathway [67, 68]. In addition, adipokines such as leptin, 
typically high in obesity, and adiponectin, low in obesity, 
as well as bone turnover markers (vitamin D, parathyroid 
hormone, calcium, osteocalcin), are other potential param-
eters involved in this interaction [69, 70].

Bone Metabolism Changes and Effects 
in MHO/MUHO

Bone Marrow Adipose Tissue (BMAT)

BMAT has a metabolically distinct phenotype with some 
similar WAT and BAT properties [71]. The degree of BMAT 
is not strictly related to BMI or body adipose tissue. To sup-
port these data, excess bone marrow is well described in 
patients with anorexia nervosa [72]. BMAT is considered 
a potential marker of compromised bone integrity and a 
major regulator of bone turnover with evidence showing an 
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increased amount of bone marrow adipose tissue in osteo-
porosis, although it is unclear what is the cause and the 
consequence [73, 74••]. The hypothesis is that the higher 
amount of bone marrow fat may decrease bone mass in obe-
sity due to aberrant differentiation of progenitor stem cells 
in the bone marrow. Indeed, osteoblasts and marrow adipo-
cytes, come from the same progenitor cell, the mesenchymal 
stromal cell (MSC) ]. The ratio of bone marrow fat might 
increase with menopause, aging, and chronic renal failure, 
resulting in decreased bone density and enhanced fracture 
risk [76]. A high-fat diet might also increase BMAT in mice 
[77, 78]. In vitro 1,25(OH)2D treatment of pre-adipocytes 
in culture suppresses adipogenesis [79] and enhances MSC 
differentiation to osteoblasts [80]. In vivo, administration of 
1,25(OH)2D in senescence-accelerated mice (SAM-P/6) was 
shown to inhibit adipogenesis and to accelerate differentia-
tion of MSC into osteoblasts compared to placebo-treated 
animals [81]. This was accompanied by an increase in both 
cortical and trabecular bone strength [82].

The differentiation in osteoblast or adipocyte involves spe-
cific transcription factors (RUNX2 and Osterix for osteoblasts 
and PPARγ2 for adipocytes), and excess adipogenesis decreases 
bone formation [83–85]. Consequently, PPARγ suppression 
would result in bone formation and adipogenesis suppression 
[86]. Modified selection from the mesenchymal lineage to the 
adipogenic lineage rather than the osteogenic lineage might 
involve several mechanisms, such as oxidative stress, proin-
flammatory factors (TNF-α and IL-6) and adipokines [87, 88].

The only study that compared specific abdominal fat dep-
osition, including lumbar bone marrow fat, between MHO/
MUHO in 114 children showed no differences between the 
two groups [89]. Other studies showed a positive correlation 
between bone marrow fat and visceral fat [90–92]. Thus, 
MHO individuals, known to have lower visceral fat, might 
have lower bone marrow fat levels than MUHO individuals 
and, therefore, might be less at risk of osteoporosis.

Blood Biomarkers, Micronutrients, and Bone Mass

Adults with class III obesity are more at risk of having bone 
metabolism dysfunction, leading to an increase in bone turn-
over [93]. Consequently, even if there is limited literature on 
the bone metabolic changes in each phenotype, the detection 
of certain blood biomarkers and micronutrients specific to 
each metabolic profile would be a promising advance in the 
early screening of MHO/MUHO phenotypes and their bone 
risk fracture, in order to better target the indication for early 
BMD as well as therapeutic interventions (Fig. 1).

Leptin directly and indirectly affects bone through central 
(hypothalamic) and peripheral pathways, possibly partially 
explaining the contradictory results reported in vivo and 
in vitro [94••]. In vitro, leptin activates the differentiation 
of MSC to osteoblasts, enhances osteoblast proliferation, 
and inhibits osteoclastogenesis through increasing OPG and 
the RANK/RANKL/OPG pathway [95, 96]. In vivo stud-
ies demonstrate that leptin has positive or negative effects 
on bone tissue, depending on its site and mode of action 
[97–99]. Human studies are limited and reported both posi-
tive [100, 101] and negative effects [102, 103] on bone mass. 
Furthermore, in the clinical field, an increased level of leptin 
in obese patients is usually associated with high bone mass, 
contrary to the decreased level seen in young women with 
anorexia nervosa and low BMD.

Adiponectin levels are inversely correlated with central and 
visceral fat volumes in MHO individuals. This has been dem-
onstrated to stimulate both bone formation and bone resorp-
tion, but its action on bone mass is controversial [104–108]. 
In many studies, adiponectin is inversely correlated with bone 
mass, although its effects on bone are unclear. Nevertheless, 
obesity is an inflammatory state with the secretion of inflam-
matory mediators (CRP, IL-1, IL-6, and TNF-α), which 
might be inhibitors of adipokine expression, with a known 
negative impact on BMD [109]. A recent meta-analysis of the 

Fig. 1   Bone regulatory factors 
associated in MHO versus 
MUHO: Metabolic healthy 
obesity is associated with lower 
insulin resistance (HOMA-IR), 
lower inflammatory markers 
(CRP, TNFα, IL-1, IL-6), lower 
leptin and higher adiponectin, 
potential higher estrogen and 
IGF1, higher vitamin D, cal-
cium, phosphorus, osteocalcin, 
and lower alkaline phosphatase, 
parathyroid hormone, than 
metabolic unhealthy obesity. 
In addition, increased levels of 
marrow adiposity are observed 
in MUHO individuals (prepared 
using BioRender software)
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pooled correlations between adipokines and BMD included 
47 studies and showed that leptin is correlated with BMD, adi-
ponectin is inversely correlated with BMD, and patients with 
osteoporosis had lower leptin values and higher adiponectin 
values than patients with normal bone mass. Consequently, 
both adipokines might be promising blood biomarkers to pre-
dict bone fracture risk in obesity [110].

Multiple studies found an association between an increase 
in central adiposity, insulin resistance, and cardiometabolic 
disease with the menopause state [111–113]. Then, estrogen 
levels might be lower in MHO individuals than in MUHO 
individuals. Visceral obesity is associated with relative GH 
and IGF-1 deficiency [114]. IGF-1, a growth-promoting 
polypeptide, is an important determinant of cortical area in 
mice models [115]. Furthermore, it stimulates bone remod-
eling and has an anabolic effect on bone tissue. To support 
this finding, previous studies found a positive correlation 
between IGF-1 and bone mass and a negative correlation 
between IGF-1 and vertebral bone marrow fat in premeno-
pausal women with or without obesity [62, 90]. These data 
could suggest a lower amount of IGF1 in MHO subjects.

Vitamin D plays a major role in mineral homeostasis 
through its essential ability to regulate calcium and phos-
phorus absorption, stimulating bone remodeling and mod-
ulating parathyroid hormone (PTH) and FGF-23 synthesis. 
Vitamin D insufficiency/deficiency is highly prevalent in 
the general population [116], and several studies have 
found a strong inverse correlation between weight and cir-
culating vitamin D levels [117–119]. There are, however, 
substantial differences in the prevalence of vitamin D defi-
ciency/insufficiency according to race/ethnic group, which 
is disproportionately more common in African Americans 
and Mexican Americans and in whom obesity is quite 
prevalent. Of particular interest was the finding that young 
Mexican American women with vitamin D insufficiency 
were significantly heavier and had 40% more subcutaneous 
and 80% more intra-abdominal fat than women with nor-
mal vitamin D levels [117]. It has been proposed that the 
association between obesity and vitamin D insufficiency/
deficiency may be bidirectional through several potential 
pathophysiological mechanisms [120]. However, few stud-
ies have examined the effect of vitamin D supplementation 
on weight with diverging results. One study reported that 
high BMI might be associated with a modified response 
to vitamin D supplementation [121]. Another study by 
Ortega et al. found that baseline 25OHD levels predict 
the efficacy of the weight loss regimen and that the vitamin 
D status potentiates the effect of low caloric diet [122]. 
However, most studies found that in overweight and obese 
subjects, supplementation with vitamin D does not lead to 
a significant reduction in weight, percentage of fat mass, or 
change in fat distribution as evaluated by the waist-to-hip 
ratio [123–125]. Unfortunately, difficulties in controlling 

for the confounding effects of diet in vitamin D trials or 
weight reduction interventions have hindered the examina-
tion of the vitamin D/obesity link.

Moreover, since vitamin D is likely stored in body fat, 
simply increasing the vitamin D dosage may not be effec-
tive in overweight individuals. Nevertheless, overweight, or 
obese people tend to have secondary hyperparathyroidism 
and lower serum osteocalcin concentrations, which may, in 
part, be explained by low vitamin D levels leading to poten-
tial metabolic abnormalities [126, 127]. Significantly, vita-
min D insufficiency/deficiency is also associated with the 
accumulation of muscle fat and reduction in muscle strength 
[128, 129], a known risk factor for falls and fractures. 
Overall, the combination of chronic vitamin D, calcium, 
and phosphorus deficiencies, particularly in obese people, 
enhances the risk of osteoporosis and fractures [130, 131].

Loureiro et al. [132] showed that the MHO profile in 
subjects with obesity class III does not protect against the 
abnormal secretion of bone biomarkers and micronutrients. 
However, among MUHO individuals, vitamin D levels are 
inversely correlated with BMI, and alkaline phosphatase, 
a marker of bone turnover regulated by vitamin D, is more 
concentrated. The lower vitamin D level could be partially 
explained by the higher abdominal fat responsible for vita-
min D sequestration [133]. Moreover, there is an association 
between calcium, vitamin D and phosphorus in the MUHO 
phenotype. Thus, we can postulate that MUHO people with 
obesity class III have a higher risk of alterations to vitamin 
D, calcium, phosphorus, and PTH, promoting the develop-
ment of bone disease. Sukumar et al. [134] showed that the 
MHO phenotype has higher serum concentrations of osteo-
calcin with lower serum PTH, and PTH positively correlates 
with body fat mass. Osteocalcin, a protein involved in bone 
mineralization, recently has been considered to regulate 
energy metabolism by increasing insulin secretion in β-cells 
and promoting insulin sensitivity.

In summary, early screening of these adipokines, hor-
mones, and nutrient alterations, detected by simple blood 
tests, could help predict bone health in overweight or obese 
patients and lead to early and targeted management of bone 
disease.

Bone Structure and Fracture

Historically, obesity has been considered to protect against 
bone loss via mechanical loading under the influence of bio-
markers secreted or regulated by adipocytes. Several studies 
tried to find an association between BMD and metabolic 
syndrome (MS) components, as seen in the MUHO profile, 
but the results have been discordant [135–137].

MHO profile is characterized by greater lean mass and 
lower fat mass, particularly visceral fat. Lean mass has been 
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considered as the strongest predictor of BMD in premeno-
pausal women. Yamaguchi et al. [138] found that VAT area 
measured by CT was positively correlated with BMD in a 
Japanese population with T2DM, but there was no longer a 
significant association after correction by BMI. The effect 
might be due to general obesity rather than visceral fat. 
Recent studies showed an inverse correlation between VAT 
and BMD, contrary to SAT, for which negative or no asso-
ciation was found [61, 139–142]

Currently, only a few studies have explored the specific 
bone phenotype in healthy/unhealthy obesity. Mirzababaei 
et al. [143••] found a potential link between BMD and met-
abolic healthy/unhealthy phenotypes among adult obese 
individuals. After adjusting for age, sex, and BMI, MUHO 
individuals had higher total BMD and positive correlation 
with hip BMD compared to MHO individuals. There was no 
statistical association with lumbar BMD. The BMI between 
the groups was the same, but fat percentage, fat spine, vis-
ceral fat, and trunk fat were higher in the MUHO group. 
Specific skeletal sites with local mechanical load on bone 
may explain the higher hip BMD seen in the MUHO group.

Wang et al. [144] described the relationship between 
metabolic obesity and forearm BMD in young, middle-aged 
Chinese people and found a lower forearm BMD in men 
with MUHO profile and women metabolically unhealthy but 
with normal weight than in the MHO group. They concluded 
that metabolic obesity might be a better predictor of bone 
health than BMI alone and showed that waist circumference, 
LDL-c concentration and insulin resistance might be nega-
tively associated with bone health. Additionally, Ubago et al. 
[145] examined the association between areal BMD (aBMD) 
and metabolic obesity in overweight/obese children and the 
role of moderate-to-vigorous physical activity (MVPA) and 
cardiorespiratory fitness (CRF) in this association. A higher 
aBMD was found in TBLH (total body less head), trunk and 
pelvis in MHO compared to MUHO patients and was par-
tially explained by MVPA and CRF. Confounding variables 
used were more reliable in this study (TBLH lean mass) than 
those used by Mirzababei (BMI) and could partially explain 
the different findings.

A meta-analysis of seven studies with 551,224 individuals 
conducted by Li et al. [146] found that waist circumference 
and waist-to-hip ratio positively correlate with an increased 
risk of hip fracture. Nguyen et al. [147] showed that the 
abdominal adipose tissue measured by DXA has a modest 
contribution to the risk of hip fracture in adults over 60 years 
old. However, this finding could be explained by the measure 
of abdominal obesity combining the sum of the differential 
effects of subcutaneous and visceral adipose tissues on bone 
health. Yamaguchi et al. [138], also evaluated the fracture 
risk and suggested a potential protective role of VAT on 
vertebral fractures in patients with T2DM.

Fracture risk may depend on BMD but also on applied 
loads experienced during activities (local higher body 
masses), explaining the fracture occurrence in specific 
skeletal sites in obese individuals [148]. A biomechanical 
study found a higher risk for low-trauma and compression 
fracture in the spine in obese patients with the same BMI 
but increased waist circumference, leading to increased local 
pressure on the spine [149]. Gandham et al. [150] found that 
obesity defined by BMI is associated with a lower risk of 
incident fracture mediated by higher BMD but associated 
with a higher risk if body fat percentage was used instead 
of BMI. MUHO profile is often associated with T2DM as 
part of metabolic syndrome. Evidence suggests that influ-
ence of advanced glycation end products (AGEs) on bone 
matrix, complications of diabetes and medication used (ex: 
thiazolidinediones) probably have a major impact on bone 
fragility and the increased fracture risk [151].

In summary, bone fracture risk, specifically in healthy/
unhealthy obese individuals, has not been studied yet, but 
most available studies demonstrate a negative association 
between visceral adipose tissue or T2DM and BMD or 
fracture risk, suggesting that MUHO phenotype might be 
associated with a higher risk of osteoporosis, than MHO 
phenotype.

Intervention

In longitudinal and prospective studies, almost 50% of MHO 
patients progress to MUHO phenotypes within 10 years 
[152, 153]. Prevention and reversal of this transition should 
be considered in therapeutic management. Thus, the devel-
opment of risk prediction tools is crucial. As seen above, 
several biomarkers could be helpful in characterizing the 
metabolic obesity profile and maybe predicting this transi-
tion (Fig. 1).

Lifestyle Intervention and Prevention 
of Osteoporosis

Guidelines recommend weight loss by lifestyle intervention 
first in all obese patients, without stratifying according to 
MHO and MUHO phenotypes. A low-fat, healthy diet with 
adequate dairy, calcium, and vitamin D intake, exercise, and 
smoking and alcohol intake cessation should be advised. 
Multiple studies suggested that weight loss is associated 
with loss of BMD in the hip and trabecular bone [154–156]. 
Other studies demonstrated that BMD is not decreased, and 
bone geometry is preserved with moderate weight loss 
(8 ± 4%) [157]. Conversely, a randomized clinical trial of 
101 post-menopausal women with obesity showed that an 
intense energy restriction was associated with a higher loss 
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of BMD in the hip BMD but not in the lumbar spine, com-
pared to moderate energy restriction [158]. Clinical stud-
ies also showed a trend toward a reduction in BMAT with 
dietary-induced weight loss in obese patients [159••]. Given 
the potential role of hyperinsulinemia in converting MHO to 
MUHO, lower sugars and carbohydrate diet to avoid post-
prandial insulin increments should also be suggested [160].

Regarding physical activity, studies showed that exercise 
training increases the probability of having MHO pheno-
type [161]. Resistance exercise programs, alone or combined 
with aerobic exercise programs, reduce frailty and attenuate 
bone mass and sarcopenia in the context of a weight loss 
program [162, 163]. In summary, a moderate weight loss 
program associated with resistance alone or with aerobic 
exercise training is currently the best lifestyle option advised 
in MHO to avoid the transition to MUHO and the harmful 
bone effects.

Treatment Options and Bone Health

In addition to its effect on appetite and food intake, evi-
dence suggests that GLP-1 receptor agonists (GLP-1 RA) 
have positive effects on bone by promoting bone formation 
and inhibiting bone resorption [164]. Furthermore, several 
studies found an increase in BMD and a decreased risk of 
fracture in subjects with type 2 diabetes treated with GLP-
1RA compared to placebo or other antihyperglycemic drugs 
[165, 166]. Another hormone secreted in the upper small 
intestine, a glucose-dependent insulinotropic peptide, GIP, 
when combined with GLP-1RA, named Tirzepatide, leads 
to significative weight loss and improvement of nonalco-
holic steatohepatitis (NASH) biomarkers and fibrosis in 
patients with type 2 diabetes [167]. Overexpression of GIP 
has shown increased bone strength in experimental stud-
ies [168]. Consequently, GLP-1 RA and GIP, leading to the 
improvement of metabolic syndrome and potentially pre-
venting progression to MUHO, could be beneficial treat-
ments for bone health when osteoporosis is superimposed.

Bariatric surgery, such as Roux-en-Y gastric bypass 
surgery (RYGB), promotes sustained weight loss, with an 
improvement of metabolic profile and inflammatory profile, 
and could be, consequently, a benefic therapeutic option in 
obesity, including MHO [169]. Nevertheless, several effects 
on bone have been described in the literature: A decrease 
in BMD with a reduction of cortical load [170, 171], and 
an increase of bone turnover biomarkers, both resulting in 
increased risk of fracture, with increased incidence between 
2 and 5 years after surgery, and mainly occurring in dif-
ferent sites than those associated with obesity [172, 173]. 
Interestingly, exercise could mitigate these negative bone 
effects [174].

Conclusion

Despite a higher BMD, accumulating data demonstrate a 
negative effect of obesity on bone tissue with a site-depend-
ent fracture risk, secondary to increased mechanical loads 
on some bones, excess of visceral, ectopic (including hepatic 
adipose tissue) and BMAT, with a metabolic profile spe-
cific to each tissue, and secretion of inflammatory cytokines, 
adipokines, hormones and bone remodeling factors (Fig. 1). 
The MHO phenotype is characterized by a more favorable 
body composition, distribution (less visceral, ectopic and 
bone marrow fat), and function than MUHO phenotype, and 
thus, associated with less metabolism alterations.

Understanding the mechanisms underlying these different 
metabolic effects is paramount to help improve the indica-
tion for early bone densitometry, develop possible interven-
tion targets against obesity and osteoporosis, and detect 
early metabolic complications, including bone disease. To 
date, the potential determinants of MHO are not clear, how-
ever, most studies found a positive or negative correlation 
with inflammatory markers (CRP, cytokines, adipokines), 
hormones (estrogen, IGF1), and bone turnover biomarkers 
(vitamin D, calcium, phosphorus, PTH, osteocalcin, alkaline 
phosphatase), which could be therefore detected in simple 
blood tests.

Few data comparing bone metabolism changes and 
healthy/unhealthy obesity are currently available, and com-
parability between the studies is difficult given the lack of 
a universal definition for metabolically healthy obesity. The 
main hypothesis is that MHO is defined by excess visceral 
fat and the absence of metabolic syndrome features, includ-
ing T2DM, associated with a better bone structure and mass, 
and potentially a lower risk of fracture and osteoporosis than 
in unhealthy obese. However, other studies are needed to 
confirm this hypothesis. Patients with MHO still have an 
indication for lifestyle management (moderate weight loss 
and exercises) with or without medical or surgical treatments 
to avoid or delay the transition to the MUHO phenotype, 
which may lead to a higher risk of bone metabolism-related 
changes.
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