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Abstract
Purpose of Review To summarize the fundamental role of transforming growth factor beta (TGFβ) signaling in osteocytes and 
highlight the physiological and pathophysiological conditions stemming from the deregulation of this pathway in osteocytes.
Recent Findings Osteocytes perform a myriad of skeletal and extraskeletal functions, including mechanosensing, coordinat-
ing bone remodeling, local bone matrix turnover, and maintaining systemic mineral homeostasis and global energy balance. 
Transforming growth factor-beta (TGFβ) signaling, which is crucial for embryonic and postnatal bone development and 
maintenance, has been found to be essential for several osteocyte functions. There is some evidence that TGFβ might be 
accomplishing these functions through crosstalk with the Wnt, PTH, and YAP/TAZ pathways in osteocytes, and a better 
understanding of this complex molecular network can help identify the pivotal convergence points responsible for distinct 
osteocyte functions.
Summary This review provides recent updates on the interwoven signaling cascades coordinated by TGFβ signaling within 
osteocytes to support their skeletal and extraskeletal functions and highlights physiological and pathophysiological condi-
tions implicating the role of TGFβ signaling in osteocytes.

Keywords Osteocytes · TGFβ signaling · Crosstalk · Mechanosensitivity · Endocrine metabolism

Introduction

The mammalian skeleton is one of the largest organs in the 
human body, accounting for 15% of body weight [1]. Bones 
serve as the building blocks of the skeleton and provide a 
structural framework for the body. The roles of bone are 
diverse; these include skeletal functions, like providing 
mechanical support, movement, blood cell production, 
and mineral storage, as well as extraskeletal functions, like 
endocrine regulation of mineral metabolism and whole-body 
energy metabolism, that are integral to a better quality of 
life [2–4]. Bone mechanical integrity is determined by the 
bone mass and quality. Bone mass is dynamically regulated 

by three primary cell types: osteoclasts, which dissolve and 
degrade the mineralized bone matrix; osteoblasts, which 
synthesize and secrete proteins forming the bone matrix; and 
osteocytes, which act as mechanosensory cells orchestrating 
activities of osteoblasts and osteoclasts [5]. Bone quality is 
dynamically regulated by osteocytes. The term bone quality 
encompasses all the parameters other than bone mass that 
influence bone’s resistance to fractures, including trabecu-
lar microarchitecture, bone matrix composition and material 
properties, collagen quality, and mineralization [6].

Osteocytes, which represent the majority of adult skeletal 
cells, have the longest lifespan of any bone cells and are pro-
foundly ingrained in bone [7]. Although derived from osteo-
blasts, osteocytes have a distinct stellate-shaped morphology 
similar to the neurons in the brain [8]. The osteocyte cell 
body resides within tiny cavities called lacunae in the calci-
fied bone matrix, and their emanating dendritic projections 
extend through narrow tunnels called canaliculi [9]. Within 
the confines of the lacunocanalicular network (LCN), osteo-
cytes occupy more than 215  m2 of the total bone surface 
area [10]. The extensive LCN enables an osteocyte to con-
nect with neighboring osteocytes as well as the cells lining 
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the surfaces of bone (i.e., osteoblasts and osteoclasts), the 
vasculature, the adjacent marrow space, and articular car-
tilage. The intricate LCN also gives osteocytes the ability 
to sense the changes in the mechanical environment that 
stimulate fluid flow through the network [11]. Apart from the 
LCN, osteocytes are also endowed with cytoskeletal compo-
nents, focal adhesions, gap junctions, the primary cilium, ion 
channels, and the glycocalyx [12] that collectively provide 
osteocytes enhanced capabilities of perceiving physical cues 
and initiating biochemical signals to modulate osteoblast 
and osteoclast behavior. Apart from mechanosensation, the 
extensive osteocyte LCN surface area also serves as a site of 
calcium release from bone [13]. Although the essential role 
of transforming growth factor-beta (TGFβ) in the skeleton 
has been studied for decades [14–20], this review focuses on 
the more recently discovered actions of TGFβ in the skeletal 
and extraskeletal functions of osteocytes.

Basics of the Transforming Growth Factor 
Beta (TGFβ) Pathway

The TGFβ superfamily consists of an evolutionarily con-
served family of proteins, including TGFβs, activins, bone 
morphogenetic proteins (BMPs), and other related proteins 
[18]. The members of the TGFβ family of proteins include 
three highly homologous isoforms—TGFβ1, β2, and β3 that 
demonstrate distinct spatial and temporal expression and 
exert mostly non-redundant functions. Together, the TGFβ 
family regulates a wide variety of biological processes, 
such as cellular migration, proliferation, commitment, and 
differentiation [21]. TGFβ ligand isoforms are secreted as 
polypeptide dimers formed from the tethering of conserved 
cysteine residues of the monomers into a single inter-chain 
disulfide bond [22]. The dimeric TGFβ ligand then associ-
ates with the pro-region-derived latency-associated protein 
(LAP), which in turn binds to latent TGFβ binding protein 
(LTBP) or glycoprotein-A repetitions predominant (GARP) 
proteins to form latent complexes [23, 24]. These latent com-
plexes shield the active TGFβ and prevent it from binding 
to receptors. In bone, TGFβ1 is the most abundant isoform, 
and, once synthesized, it is bound to latent complexes and 
stored in the bone extracellular matrix (ECM) [25]. TGFβ 
is activated mechanically upon integrin binding to LAP [24] 
or by exposure to an acidic microenvironment, such as that 
created by osteoclasts during bone resorption [26]. Several 
other mechanisms of TGFβ activation exist in various tis-
sues, and these distinct mechanisms add to the complexity 
and precision of regulating TGFβ signaling.

Once activated, the TGFβ ligands promote the assem-
bly and activation of the heterotetrameric TGFβ receptor 
complexes consisting of two subunits of type I (TβRI or 
ALKs) and type II transmembrane receptors (TβRII), both 

of which possess serine/threonine kinase activity [14–20]. 
Activated TβRII-TβRI effectively phosphorylate Smad or 
non-Smad effectors to modulate target gene transcription 
[27]. The Smad-dependent canonical pathway of TGFβ 
involves the activation of three subgroups of Smad proteins 
by the TGFβ ligand-receptor complex: the receptor-activated 
Smads (R-Smads, Smad2/3 for TGFβ/activin receptors, and 
Smad1/5/8 for BMP receptors), the common mediator Smad 
(Co-Smad, Smad4) that translocates R-Smads into nuclei 
to control gene transcription, and the inhibitory Smads 
(I-Smads, Smad6, and Smad7) that dampen signal trans-
duction by rerouting the R-Smad/Co-Smad trimeric complex 
towards proteasomal degradation via ubiquitin ligases such 
as Smurf2 [28, 29]. In the non-canonical, Smad-independent 
TGFβ signaling pathway, TβRI or TβRII phosphorylate non-
Smad proteins, such as TGFβ activation kinase 1 (TAK1) 
and its binding protein (TAB1), protein kinase C (PKC), pro-
tein phosphatases 2 (PP2A), and phosphoinositide 3-kinase 
(PI3K) complexes that can, in turn, activate various signal-
ing pathways to regulate cellular processes like migration, 
proliferation, differentiation, and apoptosis [13, 30]. Overall, 
the TGFβ pathway is precisely regulated at multiple levels, 
including ligand bioavailability and activation, permutation 
of receptor assembly, internalization, stabilization, selection 
of canonical vs. non-canonical effectors, and recruitment 
of I-Smads. Together, these mechanisms enable the TGFβ 
pathway to invariantly turn on and off gene expression pro-
grams in a cell-type specific and context-dependent manner 
to support diverse biological processes. Abnormalities in the 
regulation of the TGFβ pathways disrupt normal physiology 
and lead to the development of pathological diseases.

The Biological Role of the TGFβ Pathway 
in Bone

A large body of work has examined the role of members of the 
TGFβ family in skeletal development and maintenance [14–20, 
30–33]. Briefly, TGFβ controls bone development through 
endochondral and intramembranous ossification [30]. TGFβ 
powerfully induces chondrogenic differentiation by stimulating 
the recruitment, proliferation, and condensation of mesenchy-
mal cells, as well as the formation of a cartilage template, all 
of which are essential for the formation of mineralized bone 
by endochondral ossification. Accordingly, ablation in TGFβ 
signaling in early development leads to severe abnormalities in 
the axial and appendicular skeleton. Mice deficient in TGFβ2 
and TGFβ3 have short ribs and craniofacial defects [34–36]. 
Similarly, TβRII deletion inhibited the proliferation and differ-
entiation of osteo-chondrogenic progenitors leading to defects 
in the development of joints and long bone [37]. TGFβ signal-
ing is equally important for the formation and maintenance of 
intramembranous bones of the craniofacial skeleton and tooth 
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eruption. Deletion of TβRII in Gli1 + osteogenic progenitors 
and Col1 + (3.2 kb) early osteoblasts leads to reduced alveolar 
bone development [38]. Inactivation of TβRII also impacts 
tooth development by targeting dental mesenchymal prolifera-
tion and odontoblast maturation [39].

The importance of intact TGFβ signaling for postnatal 
growth of the appendicular skeleton is illustrated by stud-
ies reporting low trabecular and cortical bone mass in mice 
exhibiting TβRII deletion in Osx + mesenchymal stem cells 
[38]. Despite the marked increase in CAR + osteoprogeni-
tors, the reduced number of osteoblasts accounts for the 
low bone mass phenotype in these mice [38]. A drasti-
cally opposite high bone mass phenotype is observed upon 
expression of a dominant negative TβRII or deletion of 
TβRII in Ocn + mature osteoblasts [15, 40•]. Interestingly, 
blockade of TGFβ signaling using a pharmacologic inhibi-
tor of TβRI-kinase or antibodies against TGFβ ligand also 
leads to increased bone mass [41]. Although there is a con-
sensus regarding TGFβ’s importance in postnatal skeletal 
development and maintenance, the dramatic differences in 
bone phenotypes in different mouse models suggest that the 
role of TGFβ signaling in bone is highly cell type-specific 
and context-dependent. This has also been observed from a 
pathological perspective, particularly conditions of osteo-
genesis imperfecta and Camurati–Engelmann disease, where 
increased TGFβ ligand bioavailability has severe skeletal 
consequences, in part due to its effects on bone remodeling 
[42].

TGFβ signaling integrates the activity of multiple cell 
types involved in bone remodeling to maintain bone mass. 
TGFβ regulates RANKL-induced osteoclast formation 
and bone-resorbing activity [43]. Both TGFβ1 and TGFβ2 
ligands control osteoclasts in a dose-dependent manner. 
Low concentrations of TGFβ ligands stimulated osteoclast 
development, whereas high levels of TGFβ attenuated osteo-
clastogenesis [44]. Time-dependent regulation of osteoclas-
togenesis by TGFβ signaling has been recently reported; 
TGFβ signaling promoted RANKL-mediated osteoclas-
togenesis in the early stages of differentiation and inhib-
ited osteoclasts in the late stages [45]. Remarkably, TGFβ 
induces osteoclast apoptosis at later stages by upregulating 
Bim [46]. To maintain the close coordination between bone 
resorption and production, TGFβ signaling in osteoclasts 
couples their actions with those of osteoblasts in the bone 
[26].

The Function of TGFβ Signaling 
in Osteocytes

Over the last 5 years, new data has emerged that identifies 
the TGFβ pathway as a critical regulator of osteocyte func-
tions [47•, 48•, 49, 50•, 51, 52•, 53]. Several breakthroughs 

have been made that greatly improved our knowledge of the 
mechanisms that upregulate or downregulate osteocytic 
TGFβ signaling through differential signaling pathways, as 
well as the pathophysiological response to multiple stimuli. 
These studies reinforce the notion of balanced TGFβ sign-
aling and the context-dependent impact of TGFβ signal-
ing in osteocytes. In this review, we summarize the several 
molecular mechanisms that crosstalk with TGFβ signaling in 
osteocytes and highlight the different skeletal and extraskel-
etal functions impaired in response to the ablation of TGFβ 
signaling within osteocytes (Table 1). In the following sub-
sections, we review four main functions of osteocytes that 
TGFβ signaling contributes to, including- regulation of bone 
quality, mechanical loading, mineral metabolism, and energy 
metabolism as shown in Fig. 1.

Regulation of Bone Quality

Bone material properties, one of several bone quality param-
eters, are regulated by osteocytes, at least in part through 
the process of perilacunar/canalicular remodeling (PLR) 
[47•, 48•, 54, 55]. PLR involves resorption of the mineral 
and proteolysis of the organic matrix lining the lacunae and 
canaliculi, mediated by vacuolar H + ATPases (Atp6V1G1, 
Atp6V0D2, and Atp6V0B), carbonic anhydrases (CA1 and 
CA2), tartrate-resistant acid phosphatase (TRAP), cathep-
sin K (CTSK), and matrix metalloproteinases (MMPs) and 
replenishment of the resorbed matrix by secretion of colla-
gen I, dentin matrix protein 1 (DMP1), matrix extracellular 
phosphoglycoprotein (MEPE), and a phosphate-regulating 
gene with homologies to endopeptidases on the X chro-
mosome essential for phosphate metabolism (PHEX) [13, 
56–60]. Phenotypic characterization of PLR can be con-
ducted through visualization of the enlargement of lacunar 
volume and canalicular diameters of osteocytes or by moni-
toring PLR enzyme levels, among other strategies [13, 19, 
54, 61].

TGFβ is a key regulator of PLR [47•, 48•, 49]. In vitro, 
TGFβ promotes osteocytic expression of resorptive genes, 
and its blockade leads to reduced osteocyte-mediated 
acidification. In vivo, inhibition of TGFβ signaling using 
a pharmacologic inhibitor (TβRI) or in a mouse model 
with osteocyte-intrinsic ablation of TβRII (TβRIIocy−/−) 
led to suppressed PLR. Although PLR suppression did not 
impact bone mass, it led to a marked reduction in bone mate-
rial properties and increased fragility of cortical bone of 
TβRIIocy−/− mice. Besides regulating PLR gene expression, 
TGFβ signaling also impacts the LCN. Whether through 
systemic pharmacologic inhibition of TGFβ signaling or 
in TβRIIocy−/− mice, osteocyte dendricity and canalicular 
length were reduced [47•, 49]. The underlying mechanism 
behind the disruption of osteocytic dendrites with ablation 
of the TGFβ pathway is unclear. Expression of at least two 
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genes essential for dendrite formation in early osteocytes, 
such as podoplanin (E11/gp38) and MT1-MMP (MMP14), 
are controlled by TGFβ signaling and could likely be respon-
sible for altered LCN. Whether the regulation of E11/gp38 
and MMP14 by TGFβ signaling is direct requires further 
investigation. Several proteins that are transcriptionally 
regulated by TGFβ signaling, including sclerostin (SOST), 
parathyroid hormone receptor (PTH1R), yes-associated 
protein (YAP), and transcriptional coactivator with PDZ-
binding motif (TAZ), have been identified as mediators of 
PLR and bone quality [13, 56, 62]. Additional research will 
be needed to determine if these factors act in an epistatic 
fashion to control bone quality.

Regulation of Osteocyte Mechanosensitivity

TGFβ signaling, which is integral for mechanical load-
induced bone anabolism, can be suppressed in bone via 
hindlimb loading [63•]. In fact, loss of sensitivity to TGFβ 
signaling blunts the anabolic effects of mechanical loading 
on bone, as seen in mice expressing the dominant negative 
version of TβRII under the control of an osteocalcin pro-
moter. Unlike loading, the role of TGFβ signaling in unload-
ing models has been quite controversial and contradictory. 
Bone unloading, characterized by disuse-associated bone 
loss, has been studied using spinal cord injury or denervation 
models in rodents. In the murine spinal cord injury model, 
inhibition of TGFβ mitigated the disuse-associated bone loss 
[64]. While in the murine denervation model, exogenous 
administration of TGFβ partially relieved denervation-
induced bone loss by supporting osteoblastic differentiation 
and activity and mitigating the effects of glucocorticoids 
on the bone [65, 66]. Which of these effects result from 
mechanoregulation of TGFβ, relative to innervation or other 
factors, remains unknown.

At the cellular level, TGFβ’s role in osteocyte mechano-
biology has been attributed to several molecular cascades. 
Several studies show a close link between the regulation of 
TGFβ signaling and the expression of sclerostin in osteo-
blasts and osteocytes [50•, 63•, 67•]. TGFβ signaling tran-
scriptionally regulates sclerostin expression in osteocytes 
and loss of sensitivity to TGFβ impairs load-induced sup-
pression of sclerostin, thereby causing loss of bone anabo-
lism. The deregulated sclerostin expression has also been 
detected in subchondral bone osteocytes of mice expressing 
ablated TGFβ receptor under the control of the Dmp1-Cre 
promoter [50•]. Apart from sclerostin, TGFβ can indirectly 
promote Wnt signaling in osteocytes through the suppres-
sion of microRNA-100, a negative regulator of the Wnt/
βcatenin pathway [51]. Other than Wnt, TGFβ also induces 
expression of gap junction protein, connexin 43 (Cx43), and 
channel protein pannexin (Panx1) through non-canonical 
activation of mitogen-activated protein kinase (ERK1/2) 

[52•]. Both Cx43 and Panx1 are large-pore channel proteins 
located on the dendritic processes of osteocytes and mediate 
permeation of ions (i.e., Ca2 +) and key metabolites (ATP 
and prostaglandins), which are crucial for mechanotransduc-
tion in bone [68, 69]. Similarly, YAP and TAZ serve as key 
mechanosensors in various cell types. In bone, YAP/TAZ 
was recently found to support osteocyte dendricity; TGFβ 
signaling acts upstream of YAP/TAZ to modulate osteocyte 
behavior [62]. While TGFβ-YAP/TAZ dictates PLR, what 
remains unclear is how this molecular mechanism coordi-
nates the mechanobiology of osteocytes. Studies using finite 
element modeling have postulated that load will induce 
changes in perilacunar and canalicular volume within osteo-
cytes and that lacunar and canalicular structures will expe-
rience different strain distributions [49, 70]. Furthermore, 
changes in canalicular density are also predicted to alter the 
corresponding shear stress experienced by osteocytes [49]. 
Based on the predictions from the computational model, 
the mechanosensitivity of the osteocytes will be negatively 
affected as the LCN and canalicular density are known to be 
reduced in mice with osteocytic TGFβ-signaling ablation. 
Experimental studies in the TβRIIocy−/− mice will be useful 
in understanding the relevance of LCN in mediating cellular 
mechanosensitivity and load-induced bone anabolism.

Regulation of Mineral Metabolism

Osteocyte-mediated regulation of mineral metabolism 
is attributed to PLR [57], osteoclast governing functions 
of osteocytes [57, 71], and to the osteocytic secretion of 
FGF23, a phosphaturic hormone targeting endocrine regula-
tion of phosphate metabolism [72]. In physiological condi-
tions of mineral stress, such as lactation, where bouts of 
calcium are needed to support milk production, osteocytes 
rapidly resorb and release calcium and phosphate from the 
bone matrix lining the lacunae and canaliculi, leading to 
increased lacunar volume and canalicular diameter. With the 
cessation of mineral demand, the geometry of the osteocyte 
lacunar and canalicular structures fully recovers, along with 
an increase in bone mass [73]. While osteocytes support 
maternal calcium needs, deregulated PLR fails to detectably 
impact milk production. Maternal calcium demands are met 
through other compensatory mechanisms, such as increased 
intestinal calcium absorption [73, 74].

TGFβ signaling is intimately linked to the activation of 
osteocytic PLR during lactation [48•]. Under basal condi-
tions, female TβRIIocy−/− mice do not exhibit any phenotypic 
differences relative to controls. However, with lactation, the 
typical trabecular and cortical bone loss phenotype observed 
in control mice is mitigated in the TβRIIocy−/−bones. The 
impaired lactation-induced bone loss in TβRIIocy−/− mice 
stems from reduced PLR and reduced type I receptor 
(PTH1R) expression in osteocytes. PTH1R, the common 
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G-protein-coupled receptor for PTH and PTHrP ligand, is 
crucial in osteocytes for lactation-induced PLR, such that 
its ablation block PLR and induction of osteoclasts during 
lactation [13].

Although osteocyte-specific ablation of PTH1R in mice 
can lead to hypocalcemia [75], systemic calcium levels are 
maintained in mice with osteocytic TβRII deficiency [48•]. 
It is possible that with a deficiency in PLR, systemic mineral 
needs in the TβRII knockout mice are met in an endocrine 
manner via increased osteocytic secretion of FGF23 and 
vitamin D3 (1,25(OH)2D3).

Interestingly, in osteoblasts, TGFβ can stimulate FGF23 
production and enhance cellular calcium levels [76]. Simi-
larly, intense crosstalk between TGFβ and vitamin D3 sign-
aling has been previously characterized [77], and newer 
studies indicate transcriptional induction of vitamin D 
receptors by TGFβ in non-bone cells [78, 79]. Although 
osteocytic TGFβ signaling is crucial for PLR-mediated 

regulation of systemic mineral metabolism, it is worthwhile 
to understand how osteocytic TGFβ signaling influences 
the endocrine arm of systemic mineral metabolism regu-
lated by osteocytes when considering the crosstalk between 
TGFβ-FGF23-PTH-1,25(OH)2D3.

Pathological conditions associated with defective min-
eral metabolism, chronic kidney disease (CKD), and renal 
osteodystrophy have been widely studied recently. Elevated 
ligands, receptors, and downstream targets of TGFβ sign-
aling have been observed in animal models of CKD and 
CKD patients [80]. Given the link of TGFβ with PTH and 
FGF23 signaling, both mechanisms could be implicated 
in disrupted mineral metabolism. In fact, the resistance 
of CKD bones to the calcemic action of PTH, reported in 
many studies [81, 82], could be attributed to the attenua-
tion of PTH1R by TGFβ signaling [40•, 83]. Similarly, the 
increased serum FGF23 levels in CKD patients track with 
increased TGFβ ligands and further strengthen the notion 

Fig. 1  The multifaceted role of osteocytic TGFβ signaling. Osteo-
cytic TGFβ signaling regulates both the conventional skeletal and 
extraskeletal functions of bone. A In basal conditions, osteocytic 
TGFβ signaling supports the maintenance of bone quality; B in 
mechanical stress conditions, osteocytic TGFβ signaling inte-
grates and converts mechanical cues into biological signals (such 
as RANKL and SOST) that modulate the number and activity of 
osteoclasts and osteoblasts; C in conditions of mineral metabolic 
stress, osteocytic TGFβ signaling controls calcium homeostasis by 
locally lysing and then remodeling perilacunar and canalicular bone 

matrix (e.g., during lactation); although untested, it is possible that 
osteocytic TGFβ signaling also functions in an endocrine manner 
by releasing factors like fibroblast growth factor 23 (FGF23), which 
will act on the kidney and parathyroid glands to modulate systemic 
calcium and phosphate homeostasis; D TGFβ signaling can also 
directly impact osteocyte energetics and affect the production of other 
cytokines like sclerostin to modulate whole-body energy metabo-
lism through regulation of adipogenesis, muscle activity, and glucose 
metabolism. Figure created with BioRender.com
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that TGFβ signaling is upstream of FGF23 signaling and 
could be targeted for restoration of impaired bone turno-
ver and mineral metabolism in CKD. Deducing the role of 
osteocyte-intrinsic TGFβ in the regulation of FGF23 and 
PTH-mediated calcium and phosphate metabolism in CKD 
will provide a unique opportunity of targeting a new cell 
type that as per new evidence, is implicated in the develop-
ment of CKD and vascular calcification [84–86].

Regulation of Energy Metabolism

The contribution of osteocytes in the regulation of whole-
body metabolism has been well-recognized. Since the func-
tion of a cell is tightly linked to its metabolism, much inter-
est has risen in understanding the metabolic pathways and 
substrates in osteocytes  [87].

The first evidence that TGFβ regulates glucose metab-
olism in the skeleton came from a study in the articular 
chondrocytes [88]. TGFβ stimulates glucose consumption 
and lactate production in human articular chondrocytes. 
Increased glucose consumption was attributed to increased 
cellular glucose transport in articular chondrocytes due to 
TGFβ-mediated upregulation of glucose transporter type 
1 (Glut1). Apart from Glut1, TGFβ1 also induced the 
expression of hexokinases I and II and upregulated glyc-
olysis-mediated lactate production in articular chondro-
cytes. Similarly, a recently presented abstract provided at 
the ASBMR 2022 annual conference also implicated the 
positive role of TGFβ signaling in promoting glycolysis in 
chondrocytes through Glut1/3 upregulation during embry-
onic joint development [89]. Interestingly, TGFβ mediated 
upregulation in glucose uptake and induction of Glut 1 
and hexokinases (HKI and HKII) has also been reported in 
fibroblasts [90–92]. In murine and human lung fibroblasts, 
TGFβ-stimulated glycolysis is crucial for profibrotic gene 
expression, cell migration, colony formation, and activation 
of the transcription factors YAP/TAZ [91].

Although the mechanism underlying TGFβ-stimulated 
aerobic glycolysis is an active line of investigation, it will 
be interesting to if conservation in TGFβ’s action on cellu-
lar metabolism persists across different skeletal tissues. It is 
remarkable to consider that both chondrocytes and mature 
osteocytes sustain in a hypoxic environment [93–95]. 
Remarkably, hypoxia is a known inducer of TGFβ signal-
ing, and this may be integral for metabolic reprogramming in 
hypoxic environments. Further studies need to be conducted 
to understand the relevance of aerobic glycolysis in osteo-
cyte survival and function.

Whether an osteocyte’s metabolic program (normoxic vs. 
hypoxic environment) is affected by where they are located 
inside the cortical bone (closer to the bone surface vs. deeply 
embedded in the calcified bone matrix) needs to be inves-
tigated. Notably, elevated glucose levels stimulate TGFβ 

signaling in non-osteocyte cells [89]. A positive feedback 
loop may exist to support the upregulation of TGFβ signal-
ing in conditions of high glucose to mediate glucose uptake 
and continue cell reliance on glycolysis. Whether such a 
feedback loop exists in osteocytes and the relevance of TGFβ 
mediated metabolic reprogramming for osteocyte function 
in physiological and pathological conditions requires further 
investigation. Unlike osteoblasts or osteoclasts, where the 
relationship of glucose utilization to cell differentiation and 
function is clear [96–99], the functional consequences of 
control of osteocytic glucose utilization remain unresolved. 
The sequestration of osteocytes within the mineralized bone 
matrix makes it challenging to characterize their metabolism 
in vivo. As a result, we rely primarily on ex vivo metabolic 
profiling techniques despite their inability to recapitulate the 
osteocytic environment. With these challenges, many gaps 
remain regarding the role of the osteocytic TGFβ pathway 
in regulating cellular fatty acids, glucose, and glutamine 
metabolism, and the impact of changes in the cellular metab-
olism of osteocytes on the regulation of whole-body energy 
metabolism.

The notion that bone is a driver of energy metabolism 
has been strengthened by the growing list of bone-derived 
factors coordinating systemic energy intake and expendi-
ture. Recent reports in conference proceedings have opened 
the possibility that TGFβ signaling within bone cells could 
contribute to the maintenance of whole-body (organismal) 
energy metabolism [53, 100, 101]. Although this is still a 
subject of active investigation, it is not far-fetched to con-
strue that the effects of bone intrinsic TGFβ signaling on 
energy metabolism could possibly be mediated through its 
molecular partners like sclerostin. Sclerostin, a direct tar-
get of the TGFβ pathway, has been shown to increase in 
the bones of mice that were fed a high-fat diet (a model of 
type 2 diabetes) [102]. In addition, sclerostin overexpres-
sion results in increased adiposity and impaired glucose 
homeostasis in mice [103, 104]. Moreover, both TGFβ and 
sclerostin are recognized as mediators of bone-muscle cross-
talk [105–107]. In fact, the regulation of skeletal muscles 
by bone-derived TGFβ has been elegantly described in the 
context of cancer cachexia following tumor metastasis to 
bone. Cancer metastasis increases TGFβ release from the 
bone extracellular matrix and upregulates NADPH oxidase 
4-mediated RyR1 oxidation in muscle cells. Oxidized RyR1 
leads to calcium leak from the sarcoplasmic reticulum and 
impairs muscle contraction and muscle wasting. Inhibition 
of TGFβ signaling using TGFβ receptor I kinase inhibitor 
(SD-208) or TGFβ neutralizing antibody (1D11) improved 
muscle weight and function and increased body weight [105, 
108]. Similarly, osteocytic Cx43, which is a target of TGFβ, 
has also been recognized as a regulator of bone-muscle 
crosstalk [109]. While these studies highlight the role of 
bone-derived TGFβ signaling in regulating muscle mass 
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and function, the key point to take away is that some of the 
effects of TGFβ signaling on whole-body energy metabolism 
could be mediated directly or indirectly through the regula-
tion of skeletal muscle and adipose tissue functions. Apart 
from cancer, increased TGFβ signaling has been reported in 
the pathophysiology of obesity and type 2 diabetes.  Bridg-
ing the gap between how TGFβ signaling within bone cells 
drives whole-body energy metabolism could contribute to 
improving declining metabolic health associated with obe-
sity and T2D.

Conclusion and Future Perspectives

All the preclinical studies highlighted in this review empha-
size the multifaceted role played by osteocytic TGFβ signal-
ing in bone, where its regulation is linked to the maintenance 
of bone mass and quality, bone anabolic response to load-
ing, and facilitating systemic mineral metabolism (Fig. 1). 
We believe that the interactions of the TGFβ pathway with 
SOST, PTH1R, Cx43, and YAP/TAZ serve at the interface 
of many of these functions and epistatically fine-tune osteo-
cyte responses. Our understanding regarding the choice or 
the sequence of the molecular partners of TGFβ signaling 

during a particular physiological or pathophysiological con-
text (Table 1) is very limited.

The emerging line of research implicating TGFβ signal-
ing in the coordination of cellular energy metabolism adds 
another level of complexity to the already confounding effects 
of TGFβ in bone. We believe that understanding how TGFβ 
signaling within osteocytes regulates metabolic flexibility 
will help us comprehend, to some extent, the context-depend-
ent effects of the TGFβ pathway on bone during homeosta-
sis vs. in a physically (exercise) or metabolically (lactation) 
challenging situation. It is worth noting that cellular energy 
metabolism also actively regulates TGFβ signaling. This has 
been evidently shown in the context of cancer, where intracel-
lular metabolites and metabolic proteins affect the production 
or bioactivity of TGFβ ligands, influence the expression of 
TGFβ receptors, and regulate the activation and abundance of 
Smad proteins [110–114]. With the recent push towards map-
ping metabolomic signatures linked to poor skeletal health, 
delineating metabolites associated with deregulated osteo-
cytic TGFβ signaling could offer newer options for improv-
ing skeletal health [115–117]. For example, in obesity where 
lipid metabolites are in abundance, understanding the impact 
of increased intracellular lipid metabolites on TGFβ signaling 
could help us target obesity-associated bone fragility.

Table 1  Molecular partners of osteocytic TGFβ signaling and its direct and indirect role in supporting skeletal and extraskeletal functions of 
bone

TGFβ molecular partners Skeletal and extraskeletal functions of bone supported 
by TGFβ molecular partners

Physiological and Pathophysiological conditions impli-
cating TGFβ molecular partners

Sclerostin
(SOST) [50•, 63•, 67•]

Regulation of osteoblastogenesis [118]
Osteocyte mechanosensitive response and load-induced 

bone formation [119]

Bone mechanosensitivity [63•, 67•]
Age-induced bone loss and decline in bones mechano-

sensitivity [119]
Osteoarthritis [50•]

Regulation of adiposity and body composition [103, 
104]

Bone-muscle crosstalk [106, 120, 121]

Obesity and T2D risk [103, 104]
Osteosarcopenia [122]

PTH type 1 receptor 
(PTH1R) [40•, 48•, 83]

Bone remodeling [123]
Osteocyte dendricity [124]
Perilacunar/ canalicular remodeling [13]
Osteocyte mechanosensation [125]

Increased bone mass and high turnover [123, 126]
Lactation-induced bone loss [13, 48•]
Age-associated bone loss [127]

Maintaining mineral homeostasis through FGF23 regu-
lation [128]

Kidney-Bone mineral disorders [81, 82]

Connexin 43 (Cx43) [52•] Osteocyte formation and viability [69]
Regulation of cell–cell communication via gap junction 

formation and cellular mechanosensitivity [52•, 69]

Bone response to mechanical loading/unloading [52•]

Bone-muscle crosstalk [109] Age-associated decline in bone mechanosensitivity and 
muscle mass [109]

YAP/TAZ [62, 91] Osteocyte dendricity and Perilacunar/canalicular remod-
eling [62]

Mechanosensitive response to load-induced bone forma-
tion [129]

Glucose uptake and cell-intrinsic energy metabolism 
[91]

Bone material properties and bone quality maintenance 
[62]

Glut1 and
HKI/HKII [88, 91]

Metabolic reprogramming to support anaerobic glyco-
lysis [88]

Osteoarthritis [88]
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Lastly, since TGFβ signaling is a growth factor with 
non-linear effects, a thorough mechanistic analysis of 
the new anticipated extraskeletal functions of osteocytic 
TGFβ is necessary. TGFβ ligand neutralizing antibodies 
and TGFβ receptor antagonists have proved to be benefi-
cial for the restoration of skeletal health in diseases like 
osteogenesis imperfecta. However, in light of the new find-
ings indicating that the effects of TGFβ can extend beyond 
bone, it will be crucial to carefully weigh the benefits and 
drawbacks of modulating this pathway on the overall phys-
iology of the organism prior to developing novel strategies 
for refining TGFβ signaling.
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