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Abstract
Purpose of Review Obesity is highly prevalent and is associated with bone fragility and fracture. The changing nutrient avail-
ability to bone in obesity is an important facet of bone health. The goal of this article is to summarize current knowledge on the
effects of carbohydrate and dietary fat availability on bone, particularly in the context of other tissues.
Recent Findings The skeleton is a primary site for fatty acid and glucose uptake. The trafficking of carbohydrates and fats into
tissues changes with weight loss and periods of weight gain. Exercise acutely influences nutrient uptake into bone and may affect
nutrient partitioning to bone. Bone cells secrete hormones that signal to the brain and other tissues information about its energetic
state, which may alter whole-body nutrient trafficking.
Summary There is a critical need for studies to address the changes that metabolic perturbations have on nutrient availability in
bone.
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Introduction

Maintaining a healthy musculoskeletal system is a critical
component of wellness across the lifespan. Nutrition and
physical activity are lifestyle factors that contribute to bone
quality and quantity, where bone characteristics are altered by
the coordinated activity of osteocytes (mechanosensitive bone
maintenance cells), osteoblasts (bone-forming cells), and os-
teoclasts (bone-resorbing cells). Chronic overnutrition and
physical inactivity leads to obesity and has a prevalence of
epidemic proportions in children, adolescents, and adults [1].

Obesity is associated with metabolic dysfunction, reduced
mobility [2, 3], and fracture in youth [4]. In older adults,
obesity is linked with a lower risk of fracture at certain skeletal
sites [5] (Table 1), but these studies utilized cohorts who were
raised during a time in which childhood obesity was rare (i.e.,
born before 1975). When Generation Xers and Millennials
reach older age (> 60 years), cohort studies may reveal a
different association between obesity and fracture rates in
adults because of the higher proportion of individuals who
developed obesity prior to achieving peak bone mass. Since
obesity is often associated with physical inactivity and a rela-
tively high intake of fat and sugar, nutritional and exercise
management is recommended for improving multiple health
outcomes [6, 7].

Bone is a metabolically active organ with its own macro-
nutrient requirements to support healthy bone remodeling [22,
23, 24••]. Glucose is a major energy source for bone, and the
skeleton is one of the primary sites for the uptake of fatty acids
[25]. Bone appears to have mechanisms in place to commu-
nicate or regulate its energetic state, as bone-derived factors
help regulate aspects of systemic energy metabolism, such as
glucose homeostasis [23, 26, 27, 28]. For bone to store or
utilize energy substrates, they must be trafficked to and taken
up by bone cells. Nutrient availability to bone is an integral
aspect of how diet affects bone health, and this may be influ-
enced by obesity or weight change (Table 1). The purpose of
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this narrative review is to provide a unique perspective on how
nutrition influences bone health.

Association Between Western Diets and Bone
Health

Studies have evaluated the relationship of Western dietary
patterns and obesity prevalence with bone health in different
ages, cultures, and countries [8, 9]. In North America,
Australia, and Europe, long-term consumption of high-fat
and high-sucrose diets has been found to be inversely associ-
ated with bone quality in humans, such as a decrease in bone
mineral density (BMD) and increased bone fragility and frac-
ture prevalence [8, 29]. Health studies in Asia report positive
associations in dietary patterns and BMD as Western dietary
habits have merged into lifestyles with increasing prevalence
[30, 31]. People in China who regularly consume fish, vege-
tables, and carotenoid have lower incidence of osteoporosis
and fractures, when compared to people who consume little
to no fish, vegetables, and carotenoid [30]. In addition, post-
menopausal women on a Mediterranean diet were found to
have superior femoral neck, lumbar spine, and total hip
BMD, and a reduction in the risk of hip fracture [32, 33,
34]. In contrast, those who prefer Western-style diets with
land-based animal meat, saturated fats, and sugars have in-
creased fracture risk associated with excess adiposity [29,
35]. One of the consequences of obesity is hyperglycemia.
Human studies have suggested that skeletal fragility is strong-
ly associated with persistent hyperglycemia [10, 11•]. This is
contrary to animal studies in which increases in bone volume
fraction and strength have been noted with high sugar intake,
although this increase in bone strength may be explained by
gains in body weight [36, 37].

There are several major lines of thought explaining how a
high-fat diet (HFD) can decrease bone parameters. First is the
induction of adipogenesis at the expense of osteoblastogenesis
in mesenchymal stem cells, particularly when there is a short-
age of n3 fatty acids, which results in reduced bone formation
[18]. Second, excess lipid accumulation in osteoblasts and
osteocytes negatively influences bone remodeling [19•, 20].
Other important factors include the potential effect of HFD on
inflammatory mechanisms, and the association between HFD
and high sedentary time [38, 39, 40]. Persistent hyperglycemia
also induces an inflammatory response that may decrease
BMD and impair bone turnover and mineralization through
a decrease in osteoblast migration and mitochondrial biogen-
esis [12, 13]. What has not been fully established is whether
the development of metabolic dysfunction or obesity is a re-
quirement for HFD to have a negative association with bone
parameters (Table 2).

Preclinical studies have also demonstrated the effect of
HFDwith and without obesity on bone health. Animal models
under prolonged exposure to a HFD recapitulate an obese
state in humans [16, 18, 21, 48]. Dietary fat intake has been
positively and negatively associated with osteoclast activity
and osteoclastogenesis in bone-remodeling processes [49,
50]. HFD and obesity detrimentally affect bone structure,
strength, and mass to a greater extent in skeletally immature
mice when compared to mature mice [14, 15]. In addition,
mice fed a HFD have increased bone marrow adiposity
(BMA) when compared to mice fed a low-fat diet (LFD) or
regular-chow diet [18, 21]. There have also been observations
of a decreased mineral to matrix ratio and increased crystal-
linity in male and female rats on a HFD when compared to
LFD-fed rats [16]. However, one study found an increase in
femur size and whole bone mechanical properties in mice on a
HFD [51]. These conflicting results may point to a HFD re-
ducing the microscale bone quality and not whole bone

Table 1 Alterations in bone and bone marrow adiposity under excessive nutrient availability conditions

Bone • Reductions in BMD [8, 9]
• Increases hyperglycemia in humans [10, 11•, 12, 13]
- Reduces BMD
- Impairs bone turnover
- Impairs mineralization
• Reduces bone structure, strength, and mass in mice [14, 15]
• Reduces mineral:matrix ratio in HFD fed rats [16]
• Increases crystallinity in HFD fed rats [16]
• Increase in chylomicron uptake in cortical bone [17]
• Increases in lipid accumulation in osteoblasts [18, 19•, 20, 21]
• Induction of lipotoxicity leading to apoptosis in osteocytes [19•, 20]

Bone marrow adiposity • Expansion of marrow adipose volume [21]
• Increases in adipocyte differentiation at expense of osteoblast differentiation [18]
• Increase in chylomicron uptake in marrow [17]
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geometry and strength, thus generating the rationale for more
studies to investigate microscale bone outcomes. One of the
major limitations to preclinical models of obesity in bone
health is the use of diets that contain 60% of their kilocalories
from fat. These diets do not translate to human dietary condi-
tions. The type of fatty acid in the diet could be driving the
resulting effect on bone outcomes independently from the
amount of fat consumed. Studies that included diets rich in
fat have led to both increases and reductions in BMD, depend-
ing on the type of fatty acid content [52, 53]. Diet product
numbers and therefore fatty acid types are not always
disclosed in published work, but it is critically important for
studies to disclose the product numbers of diets used to im-
prove the reproducibility and interpretation of results.

Glucose Uptake and Utilization in Bone

Glucose is essential for osteoblast differentiation and bone
formation [26, 46•, 54, 55]. Short-term administration of
high-concentration glucose is associated with enhanced bone
differentiation and mineralization [13]. Osteoblasts express
GLUT1, GLUT3, and GLUT4 [41], indicating that glucose
uptake occurs through insulin-independent and insulin-
dependent mechanisms [56]. GLUT4 expression increases
up to fivefold when primary mouse osteoblasts undergo fur-
ther osteogenic induction [41]. Glucose uptake and RUNX2,
an indispensable transcription factor in osteoblast differentia-
tion, have been shown to have synergistic effects in osteo-
blastogenesis and bone formation throughout life [57].
Hence, osteoblastogenesis could be compromised if glucose
uptake and utilization is impaired [57, 58]. Glucose uptake

into bone can be altered with metabolic perturbations. One
study demonstrated that glucose uptake into bone is sup-
pressed in mice lacking the insulin receptor in osteoblasts
and osteocytes, as well as after being fed a HFD, which may
have been due to resistance to insulin-stimulated glucose up-
take in bone. It is unknown how quickly glucose uptake in
bone is reduced with obesity, relative to other tissues. Glucose
uptake into bone was enhanced in the presence of insulin in
low-fat diet–fed mice [45].

Multiple studies have demonstrated that bone glucose up-
take increases with acute exercise, indicating a short-term
need for heightened nutrient availability. For example, an in-
crease in intensity from low to moderate cycling was shown to
increase glucose uptake in femoral bone marrow in healthy
young men [46•]. Glucose uptake in bone was increased dur-
ing knee extension exercise [47]. More studies are needed to
determine how long glucose uptake in bone remains elevated
after exercise and if this is directly impacting bone formation
and mineralization by osteoblasts.

It is well established that weight loss improves glucose dis-
posal and hyperlipidemia status [59, 60, 61, 62]. During and
after diet-induced weight loss, the liver, skeletal muscle, and
adipose tissue undergo metabolic changes that improve nutrient
trafficking and can increase appetite, lower energy expenditure,
and promote weight regain (reviewed in [63]). In the liver,
carbohydrate and lipid metabolism improves, glucose produc-
tion is decreased, and there is an increase in trafficking of glu-
cose to lipid storage as opposed to glycogen pools [63, 64, 65].
Skeletal muscle facilitates the clearance of excess carbohy-
drates, thus increasing glucose uptake. This preference for glu-
cose as fuel is associated with the suppression of fat oxidation
[66] (reviewed in [63, 65]), and consequently leaves surplus

Table 2 Current gaps in nutrient
trafficking changes in bone What we know about nutrient trafficking What is unknown

• Glucose and fat are major energy sources for bone
[41, 42•, 43, 44]

• The skeleton is a primary site for fatty acid uptake
[17, 25]

• A HFD suppresses glucose uptake in bone in mice
lacking the insulin receptor [45]

• A low fat diet enhances glucose uptake in bone [45]

• Glucose uptake in bone is increased with exercise
[46•, 47]

• Does a caloric restriction suppress or stimulate
lipolysis in marrow adipose tissue?

• How does obesity alter glucose uptake in bone,
relative to other tissues?

• How long does glucose uptake in bone remain
elevated after exercise?

• What is the role of bone nutrient uptake during
weight loss?

• Is there a preferential trafficking of dietary fat to
marrow versus bone?

• Can nutrient trafficking into bone be altered by
exercise or diet?

• Does weight loss suppress fat oxidation or lipolysis
in bone or bone marrow?

• Does weight loss from high loading influence
nutrient trafficking changes?

• What is the relationship between bone loading and
appetite?
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nutrients to be stored. The induction of lipogenesis by insulin in
adipose tissue is restored, and there is a reduction in the average
size of adipocytes and an increase in adipocyte number that
become prepared to store excess energy [67]. Together, these
changes enhance rapid utilization of nutrients, shuttle glucose
effectively into tissues, and therefore decrease circulating glu-
cose. The role of bone in nutrient uptake during weight loss
remains unknown. Bone is highly dependent on glucose for
energy, but the increase in glucose uptake in the liver and skel-
etal muscle may deplete the glucose availability for bone when
carbohydrate intake is very low.

Fat Trafficking and Utilization in Marrow
and Bone

Fat trafficking and utilization in bone are most frequently
thought of in terms of marrow adiposity, where the marrow
cavity is an adipose depot [68]. Marrow cavities are mainly
filled with hematopoietic cells at birth, but with aging and
menopause, marrow adiposity gradually occupies as much
as 70% of long bone cavities [69, 70, 71]. Appendicular skel-
etal regions are the main adipose storage sites, accounting for
over 10% of total fat volume in adults [72•]. Progression of
bonemarrow adiposity (BMA) occurs during obesogenic con-
ditions, where chylomicrons are cleared from circulation into
bone marrow, mediated by perisinusoidal macrophages from
endothelial cells [73•]. When radiolabeled chylomicron rem-
nants were intravenously injected into mice, the skeleton
(marrow and cortical bone) had the second highest uptake of
those remnants [17]. A study found that diet-induced obesity
increases the marrow cavity and BMA [74], thus supporting
the notion that more lipid is being transported to the bone. On
the other hand, BMA volume and adipocyte area have been
found to be increased in a calorie-restricted diet compared to a
normal diet, which was followed by reductions in trabecular
thickness and cortical area fraction [75••]. Diet-induced
weight loss decreases BMA in animals and humans [76, 77,
78]. Surgical weight loss and, more specifically, sleeve gas-
trectomy increases BMA [79, 80]. Although the role of BMA
in bone health is unclear, observed reductions in BMA should
coincide with the decreases in BMDduringweight loss, due to
the lack of nutrient availability. Curiously, people who expe-
rience anorexia nervosa often have a high BMA [81], adding
to the lack of clarity regarding the function of BMA during
caloric restriction. The purpose of marrow adiposity is uncer-
tain, but potential functions are as follows.

One potential function ofmarrow fat includes acting as a local
energy source to support the energy requirements of bone turn-
over or blood cell production, as exercise attenuates BMA accu-
mulation and reduces BMAvolume in obesemice [21, 74, 75••].
Also, the marker of fatty acid uptake, CD36, is increased in mice
exercising on a normal diet but is reduced inmice exercising on a

calorie restriction [75••], thus pointing to the skeleton’s ability to
shift nutrient uptake in a low-nutrient environment. Despite ev-
idence that BMA is negatively associated with bone
microarchitecture and BMD [68], one study indicated that ex-
cessive suppression of BMA in caloric restriction was associated
with enhanced bone resorption [75••], suggesting that BMA is
important formaintaining optimal bone health. Another potential
function of bonemarrow is to protect osteoblasts, osteocytes, and
osteoclasts from excess lipid accumulation. The expansion of
BMA from nutrient excess to the degree that ectopic adiposity
is accumulating in osteoblasts and osteocytes may explain why
an increase in BMA is often accompanied by bone loss. The
consequences of prolonged high marrow adiposity are not
known and could result in more lipolysis that mimics an
insulin-resistant state, along with the release of inflammatory
cytokines. The regulation of BMA may differ from other fat
depots. Like other depots, obesity is associated with increased
BMA. Unlike other depots, marrow adiposity can remain high
during periods of prolonged negative energy imbalance, such as
in anorexia nervosa [81], suggesting that marrow adipose is re-
sistant to depletion of lipid.

Fat trafficking to osteoblasts, osteoclasts, and osteocytes
needs to be considered as well, as cortical bone is a major
destination for dietary fat [25]. Fat is an essential energy
source for all bone cells [42•, 43, 44, 82]. The ability to oxi-
dize fat may also prevent excess accumulation of lipid. Studies
have observed an excessive accumulation of lipids in bone
tissue that leads to lipotoxicity that induces apoptosis in oste-
ocytes and affects osteoblast differentiation and function [19•,
83]. Fatty acid delivery was investigated in transgenic mice
that lacked central regulators of fatty acid transport and exhib-
ited impairments of fatty acid uptake in the tibia and femur
when compared to wild-type mice [25]. Aside from evidence
that cortical bone and bone marrow had a similar fatty acid
profile [25], it is unclear whether there is a preferential traf-
ficking to marrow versus bone. It is also unclear whether
nutrient trafficking can be altered by exercise or diet, but data
related to fat trafficking in other tissues yield clues. For exam-
ple, one study investigating the influence of a HFD on dietary
fat trafficking found a preferential disposition to store dietary
fat in adipose tissue in obesity-prone rats. Obesity-prone rats
were able to clear tracer more rapidly from the plasma and had
a decreased 14CO2 production following a HFD, suggesting a
lowered oxidation of dietary fat. In obesity-prone females on a
HFD, there was a decrease in dietary fat tracer oxidation in
both the liver and skeletal muscle. This was followed by an
increase in triglyceride content in the liver and a decrease in
dietary fat tracer in the muscle. Lastly, there was an increase in
the tracer in whole-body adipose tissue following HFD, but to
a greater extent in obesity-prone rats [84]. These results indi-
cate that an introduction of a HFD alters the way nutrients are
trafficked between tissues, and a genetic predisposition to
obesity may further amplify these changes. Therefore, the
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excess circulating dietary fat as a consequence from a HFD
could end up in the bone and in turn influence bone turnover.

With weight loss, skeletal muscle enhances the suppression
of fat oxidation [63]. It is undetermined whether weight loss
suppresses fat oxidation/lipolysis in bone or bone marrow. If
so, then this would likely suppress bone formation, possibly
accelerating bone resorption and leading to the bone loss that
is frequently observed. So like muscle, the loss of bone mass
may preserve the energetic state of the whole body in a way
that protects body weight and promotes weight regain.
Adipose appears to send signals to the brain that indicate its
energetic state [67], and growing evidence that bone is an
endocrine organ indicates that bone may do the same.

Bone: an Endocrine Organ with the Power
to Regulate Nutrient Availability

The skeleton serves as an endocrine organ that helps regulate
nutrient availability and uptake into other tissues [22, 85].
Studies thus far have examined three skeleton-secreted pro-
teins that appear to have endocrine-like functions. Sclerostin,
a glycoprotein produced by osteocytes, inhibits bone forma-
tion. Interestingly, sclerostin appears to act in an endocrine-
like manner and is associated with diet-induced obesity.
Specifically, there was a reduction of white adipose tissue
and improvements in glucose handling, fatty acid oxidation,
and reduced adipocyte de novo fatty acid synthesis in both
sclerostin-deficient mice and sclerostin-neutralizing antibody
treated mice on a HFD [28].

Recent studies proposed a new osteocyte-dependent mech-
anism to attenuate the accumulation of fat mass in response to
loading, resulting from the observation of reduced body
weight and fat mass in animals that received implanted
weighted capsules compared to unweighted capsules [86].
The depletion of osteocytes prevented persistent weight loss
in mice. Although an osteocyte-mediated reduction of food
intake was the proposed means of weight loss, food intake
and relative (body weight) VO2 were only reported in
osteocyte-replete animals at 1 time point, and energy balance
was never reported. Therefore, it is unclear if osteocyte deple-
tion independently influenced energy expenditure, energy
storage, and/or food intake because of the removal of the
energy required to detect and respond to loading. It is possible
that a weighted capsule creates enough discomfort to reduce
appetite. Weight loss was also observed in humans that wore a
high-load (11% of body weight) vest for 8 h a day when
compared to humans that wore a low-load (1% of body
weight) vest [87]. However, rats exposed to simulated hyper
gravity did not lose body weight [88]. Importantly, abruptly
inserting a weighted capsule in a rodent or a vest on a human
creates a form of overload exercise, which can reduce appetite
in males and some females [89]. Having a heavier load on the

skeleton may increase the energy demand on the osteocytes
which may alter nutrient trafficking to the bone and marrow.
Further studies are needed to determine the relationship be-
tween bone loading, appetite, and energy balance.

Osteoblasts secrete osteocalcin (OCN) and lipocalin-2
(LCN2); these proteins serve different roles as potential hor-
mones to regulate energy balance. Experiments in lean and
obese mice demonstrated that bone-derived LCN2 can reduce
appetite, improve glucose intolerance, and increase circulating
insulin levels [23]. Another study suggests that increases in
LCN2 levels in obese mice may counteract metabolic dysreg-
ulation and reduce fat mass [24••]. OCN has been shown to
stimulate pancreatic islet β-cell proliferation, enhance insulin
production and secretion from the pancreas, improve insulin
sensitivity inmice, improve glucose tolerance, and prevent obe-
sity in wild-type mice fed a HFD, and this has been reviewed
extensively [26, 27]. The question remains why OCN plays a
role in endocrine functions similar to insulin, which points to
the idea that OCN may be assisting the skeleton to communi-
cate its energetic state or protect its nutrient availability.

Conclusion
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Obesity-related overconsumption of food has a negative im-
pact on bone quality. Fat and glucose oxidation are necessary
to provide the energy required for bone formation and remod-
eling processes. However, ectopic lipid accumulation and
chronic hyperglycemia in osteoblasts and osteocytes due to
chronic overfeeding impair bone formation and adaptations
to mechanical loading. These changes may begin with relative
differences in nutrient trafficking to bone and other tissues,
but bone has been largely omitted from nutrient trafficking
studies. Exercise may affect the capacity to take up and oxi-
dize glucose and fat in bone cells, but more studies are needed
to support this notion. Further investigations are needed to
understand how mechanical and metabolic perturbations alter
nutrient trafficking to bone and marrow and subsequently af-
fect glucose and fat oxidation and storage in bone.
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