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Introduction

Cellular mechanisms such as collagen deposition, mineraliza-
tion, and bone resorption rely on cellular energy to effectively
produce changes in bone quality. Examinations of bone qual-
ity often focus on altered bone composition and morphology,
neglecting the bioenergetic pathways necessary for tissue-
level changes. Mammalian cells generate reservoirs of energy
in the form of adenosine 5’-triphosphate (ATP) via several
pathways. Glycolysis produces two units of ATP per glucose
input and can take place anywhere in the cytosol of the cell.
Oxidative phosphorylation is more energy efficient and

produces 32 ATP molecules per input glucose; however, the
bioenergetic advantage of this pathway is limited due to the
reliance on oxygen availability, confinement to the mitochon-
dria, and extended length of time required for ATP generation.
Converted glucose molecules are the primary oxidative input
in most cells, but mitochondrial respiration can also be fueled
by fatty acids and amino acids [1] (Fig. 1).

Across all cell types, energetic pathways can both activate
or be activated by other biological processes. Glycolysis ini-
tiates downstream signaling pathways, such as Wnt signaling
[2]. Oxidative phosphorylation produces reactive oxygen spe-
cies, which have established roles in inducing DNA damage
and cell death but can also act as signaling molecules through
various pathways such as differentiation, proliferation, and
antioxidant production [3, 4]. The extent of glycolytic and
oxidative activity within cells also are altered by numerous
upstream signaling pathways. Energetic pathway activity is
critical for healthy bone cell function, influencing bone re-
modeling activities and regulating organ-level bone quality.
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Abstract
Purpose of Review Bone quality and strength are diminished with age and disease but can be improved by clinical intervention.
Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is
associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic
pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level
and bioenergetic changes in bone health and disease.
Recent Findings Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic
activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and
disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered
bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell
energetics.
Summary Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic
pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to
the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the develop-
ment and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will
improve patient treatment.
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Many bone diseases and their treatments can alter bioenergetic
activity within bone cells, highlighting the complex interac-
tions between osteogenic signaling and energetic pathways.

Bone Cell Energetic Demands

[11]. Both osteoclastogenesis and resorption were suppressed
in mouse models lacking Pdk2 [7], a positive regulator of
aerobic glycolysis. Osteoclasts have more abundant mito-
chondria compared to most other cell types [15, 16], yet the
resorptive process relies on both oxidative phosphorylation
[9] and glycolysis [11, 13, 14].

Osteoblasts, cells that deposit mineralized matrix that
forms bone tissue, differentiate from mesenchymal stromal
cells. As osteoblastic differentiation progresses, oxidative
phosphorylation and glycolysis are elevated simultaneously
[17–19, 20•, 21•]. Mitochondrial size [18, 22], volume [18,
22], and number [17] increase over the course of osteoblastic
differentiation. Despite osteoblastic reliance on increased ox-
idative phosphorylation during differentiation [23], mature
osteoblasts use both oxidative phosphorylation and glycolysis
[17, 19, 21•, 22, 24]. Compared to progenitors, mature osteo-
blasts generate a greater portion of ATP via glycolysis over
oxidative phosphorylation [19, 21•, 25••, 26]. Although oste-
oblastic oxidative phosphorylation is likely primarily fueled
by pyruvate [25••], amino acid consumption also plays a role.
Reduction in amino acids via inhibition of Eif2ak4 led to
decreased proliferation of precursors, diminishing osteoblast
function in vivo [27]. Inhibition of Slc7a, an amino acid trans-
porter responsible for rapid increases in glutamine, reduced
Wnt signaling-induced osteoblast differentiation [28].
Systemic bone formation marker P1NP was associated with
metabolic activity related to the TCA cycle and pyruvate me-
tabolism in healthy adults [12].

Bioenergetic programs affect downstream signaling in os-
teoblasts and their precursors; glucose availability is required
for Runx2-mediated osteoblastic differentiation and

Fig. 1 Cells derive energy from
glucose, fatty acids, and amino
acids such as glutamine
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Osteoclasts, osteoblasts, and osteocytes each play unique roles
in bone growth, maintenance, and repair. The energetic path-
ways supporting bone cell function remain underexplored.
Osteoclasts participate in bone remodeling by resorbing miner-
alized tissue, and the release of minerals during this process
contributes to whole-body calcium homeostasis [5]. During
osteoclast differentiation, cells produce more energy via oxida-
tive phosphorylation compared to glycolysis, but both energet-
ic pathways are necessary [6–8]. Disruption of mitochondrial
function during differentiation negatively affected osteoclasts;
inhibition ofMfn2, a gene encoding mitochondrial outer mem-
brane protein Mitofusin 2, decreased osteoclast number [9] and
global deletion of mitochondrial complex I decreased osteo-
clast differentiation and subsequent resorption [10].

Osteoclastic resorptive activities rely on the influx of glu-
cose as the primary substrate, and lactate or pyruvate supple-
mentation can support resorptive activities in the absence of
glycolysis [11]. Although serum-level fatty acid oxidation
was associated with systemic bone resorption marker CTX
[12], fatty acids and amino acids have relatively small contri-
butions to the bioenergetic programs driving resorption [13].
Compared to progenitors, mature osteoclasts have diminished
glycolytic efficiency and elevated intracellular ATP [14];
however, inhibition of glycolysis prevented resorptive activity



deposition of collagen by osteoblasts [29]. Wnt signaling, a
canonical pathway associated with bone formation, has differ-
ential effects on osteoblasts and their precursors; Wnt signal-
ing stimulates glutamine catabolism through the TCA cycle in
osteoblastic precursors [30] but increases aerobic glycolysis in
mature osteoblasts [31]. Downstream effects ofWnt-Lrp5 sig-
naling influence whole-body fatty acid levels [32].
Mitochondria may be enhanced by Wnt signaling; Wnt3a
treatment increases mitochondrial biogenesis in osteoblasts
and their progenitors [33]. Molecules in the Wnt signaling
pathway may serve as promising targets for future therapeu-
tics to treat bone disease [34], but the connection betweenWnt
and bioenergetic function highlights a new set of pharmaceu-
tical opportunities.

As osteoblasts deposit new bone, they can further differentiate
into bone resident cells, osteocytes. Early studies reported that
osteocytes have fewer mitochondria than osteoblasts, suggesting
an energetic shift from oxidative phosphorylation to glycolysis
[15]. However, more recent evidence indicates that mitochondrial
respiration is greater in osteocytes compared to osteoblasts [20•,
35].Mitochondrial numberwithin osteocytes varieswithin cortical
bone tissue as a function of cell distance from the bone surface,
suggesting spatial differences in bioenergetic activity [35, 36].
Mitochondria can be transferred between osteocytes in response
to metabolic stress [37]. Osteocyte signaling can control the bone
remodeling unit, affecting both bone resorption and formation
[38]. Energetic pathways affect osteocyte signaling, and osteocytic
production of RANKL and osteocalcin is dependent on glucose
uptake by Glut1 [39].

Biological Factors Influencing Bone
Metabolism

Aging

Osteogenic metabolism reflects the unique aspects of bone
and varies across health conditions and between sexes.
Within many organ systems, aging is associated with in-
creased mitochondrial dysfunction and accumulation of mito-
chondrial DNA (mtDNA) mutations. In bone, mitochondria
become more porous with age and produce reactive oxygen
species [40]. Age-related mitochondrial swelling has been re-
corded in osteocytes but not osteoblasts [41]. Murine models
containing genetic modifications that increase the rate of
mtDNA mutations are associated with early-onset osteoporo-
sis following the accumulation of peak bone mass [42].

The reliance on glycolysis or oxidative phosphorylation likely
shifts with age. Whole bone metabolites were altered with age;
compared to young animals, older mice have elevated glycolytic
intermediates but similar TCA cycle metabolites, suggesting dys-
functional mitochondrial activity that is compensated for with
glycolysis [41]. Old animals also had reduced energy demand

compared to young animals [41, 43]. The number ofmitochondria
located in osteocytic dendrites decreased with age [37]. Bone
research pursuing age as a variable should consider the age-
related differences in bioenergetic function.

Sex

Bioenergetic profiles in bone likely differ by sex; in skeletally
mature mice, the bones of males had greater metabolites associat-
ed with amino acid metabolism (cysteine, methionine, arginine,
proline), glycolysis, and TCA cycle whereas lipidmetabolism and
fatty acid biosynthesis were upregulated in females [44•].
Clinically, energetic fuel can be altered by diet; patients may be
advised to reduce caloric intake to improve overall health.
However, following weight loss in obese patients, bone mineral
density increased in males but decreased in females [45], suggest-
ing sex-dependent effects on bone quality.

Mechanical Stimuli
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The beneficial effects of mechanical loading are dependent on
age and sex. In men, mechanical loading enhances bone mor-
phology throughout life [46] whereas load-induced improve-
ments in bone quality occur in women pre-menopause
[47–49], but female mechanoresponsiveness is reduced with
age [50, 51]. In murine loading models, bioenergetic path-
ways are transcriptionally activated in whole bone samples
[52, 53] and vary spatially across the cortex [54]. Load-
induced metabolic changes also were altered with age. Old
female mice had reduced metabolic transcriptional activity
following mechanical loading compared to younger animals
[52]. Mesenchymal stromal cells isolated from adult rats pro-
duced more reactive oxygen species following loading com-
pared to younger animals [55].

Diminished gravitational loading via spaceflight re-
duces bone quality. In mesenchymal stromal cells, de-
creases in osteogenic differentiation and oxygen consump-
tion rate induced by simulated microgravity were recov-
ered with upregulation of Sirt1 [56], a molecule that pro-
tects against oxidative stress, highlighting the connection
between oxidative phosphorylation and mechanical load-
ing. The greatest transcriptional changes in osteocyte-like
cells exposed to microgravity via spaceflight or the ISS
included activation of bioenergetic pathways and upregu-
lated glycolytic genes [57•], suggesting that mechanical
loading is an essential regulator of energetic pathways.
The direct effects of load-induced changes in bioenergetic
function on bone quality warrant further investigation.

Tissue Envelope: Cortical and Cancellous Bone

Bone can be classified as distinct tissue types; cortical and cancel-
lous bone have different morphological structures and unique



Substrate Availability Affects Bone Quality

Activation of energetic pathways by bone cells is dependent
on substrate availability. Changes in substrate availability are
linked to altered bone quality, which may be a downstream
effect of bone cell bioenergetic activity (Fig. 2). Compared to
other organs in the body, bone takes up a large proportion of
glucose [43, 60], highlighting the role of bone in global energy
metabolism. Both preclinical and clinical examinations of

bone quality should take past dieting patterns and therapeutic
manipulation of substrate availability into account.

If an excess of glucose is available within the body, in cases
like obesity or diabetes, bone quality is diminished [61, 62]. In
high-fat diet-fed mice, cancellous bone morphology is nega-
tively altered; bone volume fraction was decreased, trabecular
number reduced, and trabecular spacing increased [63–67].
Cortical bone quality also was reduced following induction
of obesity, with fewer morphological changes than cancellous
bone [65–67]. The reduced bone quality following obesity is
related to the cellular activities within bone. High glucose
availability can lead to mitochondrial dysfunction and altered
activation of oxidative phosphorylation in some cell types
[68] and may have similar effects in bone cells. Following
high glucose culture conditions, the ability of osteoblast-like
MC3T3 cells to mineralize during differentiation was dimin-
ished [69•]. Bonemarrowmesenchymal stromal cells cultured
in high glucose media had reduced cell viability and osteo-
genesis compared to cells cultured in normal glucose condi-
tions [70•].

Glucose can be restricted by dietary intake or therapeutic
intervention. If calories are restricted, available glucose within
the body is diminished. Patients with anorexia nervosa have
diminished bone quality and increased fracture risk [71–73].

Fig. 2 Altered bone cell
energetics are associated with
changes in bone quality. Substrate
availability influences the
metabolic capabilities of cells;
altered bone cell energetics may
account for differences in bone
morphology following changes in
available glucose. Bone cell
energetic activity also may play a
role in the reduced bone quality of
osteoporotic patients. Created
with Biorender.com
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transcriptional profiles [58]. The bioenergetic profiles of each tis-
sue envelope also may differ; cortical bone is presumed to have
more variability in oxygen and glucose availability across the
cortex due to its compact structure compared to cancellous bone.
The increased surface area of cancellous bone likely facilitates
more frequent nutrient acquisition. Therapeutic inhibition of gly-
colysis improved cortical bone architecture and increased bone
strength in both young and adultmalemice, but had limited effects
on cancellous bone in young animals [59]. In this study, glycolytic
inhibition prevented further trabecular bone loss in aged animals.
Cortical and cancellous bone may employ unique bioenergetic
programs that facilitate the different responses to aging and ther-
apeutic or external stimuli.

http://biorender.com


Caloric restriction in humans is associated with decreased
bone mineral density [74, 75]. Following caloric restriction
in the mouse, bone quality is diminished in the cortical enve-
lope [76–80]. The effect of calorie restriction on cancellous
bone is less clear; some studies report that cancellous bone is
negatively affected by caloric restriction [76, 77] whereas oth-
er researchers report improved cancellous bone morphology
[78–80]. Caloric restriction also leads to increased adipogen-
esis in bone marrow stromal cells [76].

Canagliflozin, a therapeutic used to treat patients with type 2
diabetes mellitus and cardiovascular disease [81, 82], reduces
available glucose by inhibiting SGLT2, the transporter responsible
for the reabsorption of glucose from urine. Although glycemic
control and cardiovascular health improvewith canagliflozin treat-
ment, SGLT2 inhibitors are associated with greater fracture risk
[83], despite the lack of Sglt2 expression in bone tissue. In mouse
models, lifelong loss-of-function of Sglt2 reduced bone minerali-
zation with no significant changes to bone strength [84]. Long-
term treatment with canagliflozin reduced cancellous bone quality
in non-diabetic mice [85]. The negative effects associated with
SGLT2 inhibition in bone are most likely due to the systemic
decrease in available glucose following canagliflozin treatment.

Bone Cell Energetic Changes in Disease
Progression and Treatment

Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is a disease directly related
to the regulation and processing of glucose. Patients diag-
nosed with T2DM are initially insulin resistant but ultimately
produce insufficient amounts of insulin, a hormone regulating
cellular sugar intake, resulting in excess circulating glucose. In
addition to challenges with glycemic control, diabetic patients
have increased fracture risk, highlighting the connection be-
tween T2DM and bone [62]. Hyperglycemia and T2DM lead
to the accumulation of advanced glycation endproducts
(AGE’s), which are associated with decreased bone quality.
In mouse models, diabetes may be induced with high-fat diet
feeding or drugs. Therapeutic initiation of T2DM reduced
both cortical and cancellous bone quality, resulting in dimin-
ished bone strength [85, 86].

Bone cells are directly affected by diabetes. Insulin signal-
ing in osteoblasts leads to osteocalcin expression that in turn
upregulates glucose metabolism [87]. Tissue composition is
altered in T2DM patients, with increased AGE’s and greater
mineral content compared to non-diabetic controls [88].
Following AGE accumulation, mitochondrial oxidative me-
tabolism is reduced and reactive oxygen species accumulate
[22]. Mesenchymal stromal cell viability and differentiation
potential were reduced following treatment with AGE’s [89].
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Further, osteocyte apoptosis has been associated with AGE
accumulation [90].

Therapeutic treatment of T2DM improves glycemic con-
trol for patients and affects bone quality. Metformin treatment
is associated with reduced fracture risk in humans [91, 92].
Alternatively, treatment with thiazolidinediones reduced bone
mineral content, bone formation, and trabecular bone volume
[92, 93]. Metformin and thiazolidinedione treatments may
have direct or indirect effects on bone quality through their
regulation of energetic pathways; both therapeutics reduce
oxidative phosphorylation [94, 95] but in a dual, independent
manner, metformin also may reduce oxidative stress and
mitochondrial-mediated apoptosis [94]. Given the effects of
diabetes and therapeutic treatment on bone cell energetics,
evaluation of patients’ diabetic history and pharmaceutical
usage is critical when evaluating the current and potential
future bone quality.

Fracture Healing

Following bone fracture, the healing cascade includes an early
influx of immune cells. The increase in total cell number with-
in the fracture space decreases available oxygen, causing cells
to shift towards glycolytic metabolism [96]. The increase in
lactate production produces signaling cascades that attract
mesenchymal stromal cells, increase extracellular matrix syn-
thesis, and enhance angiogenesis. The revascularization fol-
lowing fracture enables the delivery of more oxygen and
therefore enhanced oxidative phosphorylation, which initiates
stromal cell differentiation [96]. Protection of mitochondria
via inhibition of the mitochondrial permeability transition
pore improves fracture repair, highlighting the important role
of bioenergetic processes [97]. The coordinated cascade of
healing during fracture healing relies on the efficient bioener-
getic function of immune and osteogenic cells.

Local delivery of bone morphogenic protein-2 (BMP-2) to
the fracture site is clinically used to promote fracture healing.
BMP-2 induces SMAD signaling, and initiates cartilage and
bone formation. Following BMP-2 treatment, markers of gly-
colysis and the TCA cycle are increased in bone areas that are
Alp+, suggesting increased energetic activity by osteoblasts
[98]. BMP-2 signaling in the pancreas and adipose tissue sim-
ilarly alters cellular energetics [99]. Therefore, BMP-2 may
directly or indirectly alter the bioenergetic function of osteo-
blasts to improve fracture healing.

Osteoporosis

Osteoporosis is a disease of low bone mass that leads to an
increased risk of fracture [100–103]. Morbidity and mortality
are positively correlated with the incidence of osteoporotic
fracture [104]. In addition to reduced bone quality, osteopo-
rosis may be associated with altered bioenergetic function of



bone cells. Low bone mass at the spine is associated with
activation of both fatty acid oxidation and glycolysis in patient
plasma [105•], but further investigation is required to deter-
mine if systemic bioenergetic changes are linked directly to
bone cell activity (Fig. 2). Osteoporosis disproportionally af-
fects postmenopausal women, due to reduced estrogen signal-
ing [103, 106]. The anabolic effects of estrogen could be par-
tially attributed to altered bioenergetic programs of osteo-
clasts; mitochondrial function was reduced during osteoclast
differentiation following in vitro estrogen delivery [107•].
Reactive oxygen species are increased following the decline
of estrogen and negatively impact the survival and differenti-
ation of osteogenic progenitor cells [108]. In mice, osteopo-
rosis can be modeled with ovariectomy surgery. Following
ovariectomy, TNF-α production increased in mesenchymal
stromal cells [109]. MicroRNA-705 expression was increased
downstream of TNF-α, eventually leading to heightened re-
active oxygen species accumulation [109].

Clinical treatment of osteoporosis has been associated with
enhanced bone cell energetics, which may play a role in the
improvement of bone quality (Fig. 3). Several osteoporotic
therapeutic interventions target osteoclasts to reduce bone re-
sorption. Denosumab is a monoclonal antibody that inhibits
bone resorption by reducing RANKL-mediated signaling be-
tween osteoclasts and osteoblasts. Patients treated with
denosumab have increased bone mineral density and reduced
fracture risk [110]. Transcriptional analyses of skeletal tissue
revealed that in both osteoclasts and bone marrow plasma,
denosumab treatment reduced DPP4 expression, a gene
whose protein product is involved in systemic glucose homeo-
stasis [111••]. Although denosumab-treated patients also had
decreased circulating DPP4, their glucose levels were similar
to the control group. Further studies will be required to deter-
mine the potential contributions of altered bone cell energetics
to the clinical success of denosumab.

Anabolic, bone-forming therapeutics for osteoporosis treat-
ment are limited. Parathyroid hormone increases both cortical
and cancellous bone in patients by stimulating the bone remod-
eling unit [112]. In bone, both aerobic glycolysis and glutamine
uptake increase with PTH treatment [113, 114•]. Further
supporting the glycolytic effects of PTH, the mitochondrial
membrane potential in osteoblasts is diminished following PTH
treatment [115]. Overall, energetic output of osteocytes may be
improvedwith PTH; respiration and glucose utilization increased
in PTH-treated osteocyte-like OCY454 cells [116].

Resveratrol, a dietary supplement with some evidence for
improving bone health [117], is an antioxidant that upregulates
Sirt1 to improve mitochondrial activity [118]. Haplo-insufficient
Sirt1 female mice have reduced bone mass and decreased bone
formation [119]. In situ delivery of resveratrol increased Sirt1
expression and improved bone morphology in the tibia, follow-
ing in vivo caloric restriction [76]. In vitro delivery of resveratrol
to mesenchymal stromal cells increased osteogenic differentia-
tion and decreased adipogenesis [120]. The energetic changes in
bone cells following denosumab, PTH, and resveratrol treat-
ments suggest a direct role of bioenergetic processes in the im-
provement of bone quality.

Conclusion

Bioenergetic pathways are critical to the maintenance of bone
health and the treatment of bone diseases. Substrate availabil-
ity influences bone quality and should be considered in patient
settings; diet history and prescribed medications may influ-
ence bone health. Many established therapeutics and osteo-
genic processes are interconnected with bioenergetic path-
ways, highlighting the role of energetics in bone. Further, this
connection underscores the potential for energetic pathways
as therapeutic targets. Future work should examine the

Fig. 3 Bone cell energetics likely play a key role in the development and treatment of osteoporosis. Created with Biorender.com
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potential of bioenergetics as direct therapeutic targets to im-
prove bone quality.
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