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Abstract
Purpose of the review Bone’s ability to withstand load resisting fracture and adapting to it highly depends on the quality of its
matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic
targets for skeletal fragility in aging and disease.
Recent findings The highly organized, hierarchical composite structure of bone extracellular matrix together with its
(re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect
the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted
therapies are being developed to restore bone’s mechanical integrity. However, their current limitations include low tissue
selectivity and adverse side effects.
Summary Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug
delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-
therapeutics for bone fragility.
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Introduction

Healthy bone is strong (resists inelastic deformations) and
tough (resists crack propagations), and is able to adapt its
architecture in response to the applied loads. Bone’s unique
material properties derive from its highly organized, hierarchi-
cal composite structure. Its components, primarily collagen
and hydroxyapatite, but also non-collagenous proteins
(NCPs) and water, are arranged at multiple length scales,
and together with bone tissue (re)modeling dynamics and
microdamage mechanisms, confer bone its ability to with-
stand loads without deformations and fractures, and to adapt
to its mechanical environment. Aging, disease, and abnormal
loading conditions on bone alter its composition and disrupt
its hierarchical structure, changing the mechanical environ-
ment on it and increasing bone’s vulnerability to fractures

and deformities. Being able to directly target bone defects
with therapies is critical for the development of effective treat-
ments to prevent fractures in skeletal diseases and disorders.
This article focuses on the contribution of bonematrix to resist
fracture and highlights current and possible bone therapeutics
targets.

Hierarchical organization of bone and its
contribution to toughness

Bone dynamically adapts its shape and structure in response to
the applied loads. This mechano-adaptation process is central
in maintaining bone’s mechanical integrity and its ability to
withstand loads, which differ with age and sex [1]. Within
human bone, the matrix is organized in osteons running par-
allel to its longitudinal axis. Each osteon contains a central
blood vessel surrounded by concentric layers of bone, the
lamellae, all enclosed within thin, hypermineralized (1−5
μm) interfaces, the cement lines, generated during remodel-
ing. Osteons orientation makes bone five times tougher to
break than to split [2]. When a crack propagates, cement lines
favor the formation of crack deflections and twists during
bone breaking in the transverse orientation, and of crack

This article is part of the Topical Collection on Biomechanics

* Alessandra Carriero
acarriero@ccny.cuny.edu

1 Department of Biomedical Engineering, The City College of New
York, 160 Convent Avenue, Steinman Bldg. Room 403C, New
York, NY 10031, USA

https://doi.org/10.1007/s11914-021-00696-6
Current Osteoporosis Reports (2021) 19:510–531

/ Published online: 20 August 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s11914-021-00696-6&domain=pdf
http://orcid.org/0000-0001-8103-4795
mailto:acarriero@ccny.cuny.edu


bridging during bone splitting in the longitudinal orientation.
These mechanisms increase the toughness of the bone,
shielding it against the crack propagation. Cement lines fur-
ther increase bone toughness through matrix slippage at their
interfaces with interstitial bone [3].

Centrally in the osteons, vascular channels, known as
Haversian canals, bring blood and nutrients to bone together
with the Volkmann’s canals. Small mammalian bones, such
those in mice, do not have osteons nor cement lines, but they
have blood vessels and concentric lamellar structure around
their medullar cavity. In any case, vascular porosity density
within the bone matrix inversely relates to bone fracture
toughness [4]. Intracortical vascular canals do not influence
crack deflections, but their architecture is critical to bone re-
sistance to fracture [5]. Many closely connected canals, as
those observed, for example, in brittle osteogenesis imperfecta
(OI) bone [6, 7], disrupt the continuity of bone matrix material
and increase strain and stress concentrations in the bone ma-
trix (Fig. 1A–C), thus favoring crack initiation [6] and propa-
gation [5]. In aged human bone, the number of vascular ca-
nals, and with them of osteons and cement lines, are three
times higher than in young bone. This reduces bone fracture
toughness and favors the generation of microdamage accumu-
lation in the cement lines that further facilitates bone failure
[8]. Interestingly, an age-related increase in intracortical po-
rosity has also been observed in C56BL/6 mice [9], but not in
BALB/c mice, where extracellular matrix (ECM) modifica-
tions in collagen and water seem responsible for their skeletal
fragility [10].

At the tissue level, bone is organized in lamellae (Fig. 1D),
considered as a continuous but periodically inhomogeneous
layered material with variable mechanical properties depend-
ing on the orientation of their fibers [11]. Bone tissue is com-
posed of bundles of mineralized collagen fibers arranged in a
plywood-like pattern along with disorganized periods lacking
this consistent distribution of fibers [12, 13•]. By virtue of its
anisotropy, the interfaces between the lamellar structure may
contribute to bone toughness by acting as delamination bar-
riers, causing crack deflections (Fig. 1E, F) and twists that can
double bone fracture toughness during crack growth [5, 14,
15•]. Therefore, a larger osteonal tissue with lots of lamellar
area should favor fracture resistance to crack initiation and
propagation [16]. In OI bone, woven bone and lamellae coex-
ist [17], with the greater amount of woven bone in the most
severe OI variants, and with OI lamellae being shorter, thin-
ner, less organized, and smoother than in healthy bone (Fig.
1D) [17, 18•]. This altered bone structure is accompanied by
reduced fracture toughness [5, 14, 18•]. Within lamellae and
woven bone, osteocyte lacunae and their canaliculi network
generate another level of porosity. Osteocyte density increases
with high bone (re)modeling, and lacunae become more
spherical in diseases [6, 19, 20], thus generating high strains
in the ECM that contribute to bone fragility [21]. Similarly,

strain concentrations around canaliculi promote the initiation
and growth of intra-lamellar circumferential microcracks,
which are associated with the formation of shear bands, and
suggest an ability of bone to develop enhanced inelastic de-
formations by cracking control at the mineralized collagen
fibril bundles level [22].

Indeed, although toughening mechanisms shielding bone
from crack growth occur at its microscale, bone plasticity,
which affects both strength (ductility) and initiation tough-
ness, arises from its nanoscale. Fibrils stretching and deforma-
tion, as well as breaking of sacrificial bonds and enzymatic
cross-links, allow for fibrillar sliding, intrafibrillar dilatational
band formation (i.e., 100 nm long ellipsoidal voids forming
between fused mineral aggregates and two adjacent NCPs),
and microcracking at their interfaces [23]. Mineralized fibrils
are constituted by type I collagen molecules staggered in ar-
rays with a 67-nm offset. Aggregates of hydroxyapatite
nanoplatelets form in the intrafibrillar gaps between the colla-
gen triple helices and in extrafibrillar loci extended along the
long axis of the collagen fibrils [24]. Extrafibrillar mineral
inclusions in bone also exist in the form of elongated plates
tenths of nanometers long and wide, and 5 nm thick, which
can be either flat or curved, wrapping around collagen fibrils
and forming a distinctive visual pattern resembling rosettes
[13•, 24]. Most of the mineral in bone actually lie out of fibrils
in the form of mineral lamellae [13•, 24]. In the presence of
collagen mutations, such as in OI, decreased intrafibrillar min-
eralization contribute to reduced apatite crystal alignment and
thinning of collagen fibrils [25•].

During elastic bone tissue deformation, the extra- and intra-
fibrillar matrix stretches [26]. Damage progression and failure
of the extrafibrillar matrix is responsible for initiation of bone
yielding. At this point, mineralized collagen fibrils would be
more involved in load bearing because the damaged
extrafibrillar matrix loses its ability to carry load [26].
Mineralized collagen fibrils thus distribute the load to the
nearby fibrils [27]. The load is transferred from their weaker
and less mineralized overlap regions to the stronger and highly
mineralized gap regions of neighboring fibrils [27].

Inside the mineralized collagen fibrils, water-mediated hy-
drogen bridges between hydroxyapatite and tropocollagen
limit sliding between molecules and help transfer load, im-
proving energy dissipation [28]. Loosely bound water within
each fibril also contributes to bone ductility acting as a plasti-
cizer at the interface between mineral and collagen phases in
the mineralized fibril [29, 30]. When intrafibrillar water is
removed, the energy dissipation of the bone is one ninth of
that under hydrated conditions [30]. Structural water
contained in apatite crystals has instead been suggested to
boost hydroxyapatite platelets assembly and increase mineral-
ization in bone [31•]. Hydroxyapatite significantly enhances
the tensile modulus of the mineralized fibrils, reaching the
highest stiffness at 2 nm thickness [32]. Thicker minerals

Curr Osteoporos Rep (2021) 19:510–531 511



embrittle the fibril structure [32], while fibrils with smaller
mineral particles, as in type 2 diabetes mellitus (T2DM), OI
and glucocorticoid-induced osteoporosis (GIOP), have a low
elastic modulus [5, 33, 34•]. Increased mineral content in
overlap regions likely improves bone elastic modulus, ulti-
mate strength, and fracture toughness [27]. Fibril deforma-
tions (stretching and sliding) vary with tissue strain and highly
decrease at high strain rates, with fibril deformations being
primarily stretching [35]. Large yield stress triggers fibrils
debonding at their interface and reduces their plastic deforma-
tion [36]. This strain-rate stiffness effect is, however, sup-
pressed in bone with altered mineralized fibrils nanostructure,
due to low shear-transfer and shear-reinforcement of short
mineral plates [34•].

The quality of collagen that constitutes bone fibrils depends
on its post-translational modifications, which involve covalent

and enzymatic processes, and on its relationship with min-
erals, NCPs, and water. Hydroxylation and lysyl oxidase-
mediated modifications are important processes for hydrogen
bonding and cross-linking catalysis to form stable collagen
molecules and fibrils, respectively. Tightly bound water,
trapped inside tropocollagen molecules, participates in their
conformational stability by attaching to hydroxyl groups of
hydroxyproline [29, 37]. As collagen matures, interfibrillar
cross-links predominate over intrafibrillar cross-links, and
loosely bound water in fibrils is substituted by mineral.
Thus, water content in bone decreases with age [10, 38•],
reducing its plasticity [30, 37, 39]. Inhibition of lysyl oxidase
results in cross-link perturbations and decreased fracture
toughness [40]. Enzymatic cross-linking varies throughout
the skeleton as a function of turnover rate and mechanical
environment on bone [41]. Mechanical loading on bone helps

Fig. 1 Micro- and submicron-architecture changes in OI brittle bone
contribute to its fragility. A Mouse bone reconstruction with B a
representative cortical bone volume finite element model loaded in
compression. The yellow area shows the region of interest (ROI). C
The two finite element models of representative healthy and OI cortical
bone samples show the intracortical porosity of healthy and OI cortical
bone. The green sites around canals and at their intersections show the
location of bone within the ROI at high risk of fracture initiation when
loaded at an apparent strain of 0.4%. D Second harmonic generation

microscopy images of collagen fiber organization in healthy and OI
cortical bone in a smaller blue ROI shows lamellar structure in healthy
bone and coexistence of lamellae and woven bone in OI bone tissue. E
Schematic of a bone fracture mechanics testing of a notched mouse
femur. F Scanning electron microscopy of the healthy and OI bone
showing their crack path during fracture. In healthy bone, the crack
takes deflections, while in OI bone the crack follow a straight path,
corresponding to its reduced toughening mechanisms. For more
information, refer to Carriero et al. [5, 6] and Docaj et al. [18•]
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in stabilizing the collagen matrix through divalent cross-links
maturation [41]. In diabetic bone, hyperglycemia impairs the
formation of divalent cross-links because collagen has in-
creased maturity despite a reduced amount of enzymatic
cross-links [42]. A type of enzymatic hydroxylysine glycosyl-
ation, namely glucosylgalactosylhydroxylysine (GGHL), is
overexpressed in OI collagen as a sign of retarded triple helix
formation [43] and may hinder divalent enzymatic cross-links
maturation [44].

Non-enzymatic glycation (NEG) of collagen, involving the
attachment of a free sugar to a collagen amino group, disrupts
bonematrix quality and reduces its crack growth toughness by
35% [45]. Glycation widens intermolecular space, hampering
fibril packing, and depresses lysyl oxidase-driven cross-
linking as glucose carbonyls (advanced glycation end-
products (AGEs) precursors) and telopeptide aldehydes (en-
zymatic cross-link precursors) target the same triple-helical
sites [46•]. Glycated organic matrix has a lower capacity to
sustain deformation and exhibits a lower creep; therefore, the
ability of bone to dissipate energy is reduced and it generates
longer microcracks that coalesce, resulting in longer crack
length [45]. In aging and disease, bone fibril over-cross-
linking by AGEs formation due to glycation, oxidative stress,
or low bone turnover inversely correlates with fracture tough-
ness [5, 8, 47]. In most cases, high AGEs content has been
associated with increased resistance to fibril deformation, re-
duced fibrillar sliding [48], and compromised bone plasticity
and resistance to fractures [8]. However, in OI, the role of
AGEs remains unclear as increased deformations of the min-
eralized fibrils are observed in weak mineralized fibrils and
brittle bone [5]. AGEs breakers, alagebrium [49•] and n-
acetylcysteine [50•], did not improve bone mechanics, al-
though they reduced bone AGEs content and oxidative stress-
es in ra t s wi th chron ic k idney di sease (CKD) .
Aminoguanidine and pyridoxamine tested in glucose treated
cadaveric bone prevented AGEs formation and subsequent
biomechanical bone degradation [51]. These studies assessed
NEG as a measurement of pentosidine or fluorescent AGEs
concentration. However, the amount of pentosidine is very
small in bone, and carboxymethyl-lysine (CML) and
glucosepane, which are not fluorescent, are found in higher
concentrations (>40 timesmore) [52•]. Accumulation of CML
in human bone strongly inversely correlates with crack prop-
agation toughness [52•]. Further investigation is therefore
needed to fully understand the impact of all NEGs on bone
fracture resistance to crack initiation and growth. These stud-
ies may also lead to new diagnostic assays and therapeutic
approaches for bone fragility. An age-dependent reduction in
fracture resistance of cortical bone has been observed in the
presence of deamidation of asparagine and glutamine resi-
dues, which disturb the affinity of collagen triple helices to
bind with each other in favor of water bonds, increasing fibril
diameter, and reducing bone fracture toughness [53•]. More

studies are needed to better understand the contribution of
deamidation to bone fragility, and how it varies in disease.
This may open new avenues for targeted therapies for bone
fragility.

Molecular interactions between mineralized collagen fi-
brils and extra-fibrillar mineral aggregates involving NCPs
play a critical role in bone quality. Particularly, osteopontin
(OPN) and osteocalcin (OC) at the interfibrillar interface con-
stitute less than 2–3% of bone weight but contribute for more
than 30% to its fracture toughness by a synergistic deforma-
tion mechanism of the two NCPs and bone [23, 54•]. Through
strong anchoring and formation of dynamic binding sites on
mineral nanoplatelets, bone nanointerface can achieve large
non-linear deformation and great ductility [54•]. Whereas
the rigid OC binds tightly to hydroxyapatite crystals and re-
mains mostly stationary during deformation due to its high
affinity to the mineral surface, OPN participates in the cleav-
age and reformation of the sacrificial bonds, detaching from
one OC and rolling towards neighboring OCs in the shear
direction [23, 54•, 55]. Additionally, OPN can generate new
binding regions with the hydroxyapatite surface [54•]. The
further stretching and unraveling leading to OPN denaturation
entails dilatational bands formation, dissipating large amounts
of energy [23, 54•, 56]. The one-third reduction in bone tough-
ness in OPN and OC knockout mice has been associated with
the absence of dilatational bands and subsequent diffuse dam-
age formation, along with increased calcium variability [23,
57]. OC function can be affected by collagen glycation,
forfeiting much of its energy dissipation ability [55]. Similar
compromised bone toughness is experienced with loss of pro-
teoglycans (PGs) and glycosaminoglycans, coupled with a
decrease of bound water, such as in aging [38•, 58]. OPN
phosphorylation adds additional negative charge and hydro-
philicity that potentially eases its adhesion to mineral [59•],
while its binding to free calcium ions may prevent unwanted
adsorption to other components and facilitate its deposition on
mineral surface [60]. The absence of NCPs triggers alterations
in mineralization degree, fibrillogenesis, bone formation, and
microdamage accumulation [58, 61, 62]. For example, dele-
tion of decorin and/or biglycan results in highly disorganized
collagen fibrils [63]. Thus, by targeting NCPs, or key regula-
tory pathways controlling their expression and activity, bone
quality can be affected directly by altering its fracture tough-
ness or indirectly by regulating mineralized collagen fibrils
organization or bone cellular activity. For instance, adminis-
tration of chondroitin sulfate (CS) has been shown to have
antioxidant, anticatabolic, hypoglycemic, and antidiabetic ef-
fects [64], and to improve bound water amount and bone
toughness [58].

Table 1 summarizes alterations in collagen and mineral
structure and composition due to aging and diseases, which
affect bone hierarchical structure and mechanical compe-
tences to sustain loads and resist fractures.

Curr Osteoporos Rep (2021) 19:510–531 513



Table 1 Changes in bone matrix quality in aging and bone fragility diseases

Aging/bone
fragility disease

Type Changes in bone quality

Composition Structure Mechanics (Re)modeling

Aging Human ? Mineral-to-matrix ratio [97]
↑ Carbonate-to-phosphate ratio

[65]
↑ Collagen maturity [65]
↑ AGEs [8, 52•, 59•]
↓ PGs and GAGs [38•]
↓ NCP phosphorylation [59•]
↓ Bound water [38•]

Tissue:
↑ Osteonal density [8]
↓ Osteonal spacing [8]
Cellular:
↓ Lacunae density [66]
↑ Lacunae

hypermineralization
[66]

Mineral:
↑ Crystallinity [67]
↓ Thickness [67]
↑ Length [67]

Whole bone:
↓ Stiffness [8]
↓ Strength [8]
↓ Crack initiation toughness

[8]
↓ Crack growth toughness

[8]
Mineralized Fibril:
↑ Stiffness [8]
↓ Plasticity [8]

? Remodeling
[68]

C56BL/6 mouse ↑ Mineral-to-matrix ratio [65]
↑ Carbonate-to-phosphate ratio

[65]
↓ Acid phosphate [69]

Tissue:
↑ Vascular porosity [19]
Cellular:
↓ No. lacunae [19]
↓ Lacunae size [19]
↑ Lacunae sphericity [19]
Mineral:
↑ Crystallinity [65]

Whole bone:
↓ Bending Modulus [19]
↓ Yield stress [19]
↓ Maximum stress [19]
↓ Maximum strain [19]
Tissue:
↑ Peak and average strain [1]
Fibril:
↓ Collagen strain at

maximum tissue strain
[19]

↓ Remodeling
[19]

BALB/cc mouse ↑ Mineral-to-matrix ratio [10]
↑ Carbonate-to-phosphate ratio

[10, 70]
↑ Collagen maturity [10]
↑ AGEs [10]
↑Asn and Gln deamidation [53•]
↓ Bound water [10]

Tissue:
↓ Cross-sectional area of

the cortex [10]
↑ Cortical thickness in

female [10]
↓ Cortical thickness in

male [10]
= Cortical porosity [10]

Whole bone:
↓ Yield stress [10]
↓ Ultimate stress [10]
↓ Initiation toughness [10]
↓ Energy to fracture [10]
↓ Post-yield toughness [10]
↓ Post-yield displacement

[10]

↓ Remodeling
[10]

Osteoporosis Postmenopausal
osteoporosis

Human

↓ Mineral-to-matrix ratio [65]
↓ Mineral heterogeneity [70]
↑ Carbonate-to-phosphate ratio

[65]
↓ Enzymic cross-links [71]
↑ Collagen maturity [65]
↑ AGEs [71]
↑ Hyl [71]

Tissue:
↓ Osteonal size [8]
↑ Cortical porosity [8, 65]
↑ Haversian canal density

[8, 72]
↑Haversian canal size [72]
Cellular:
↑ Mineralized lacunae

density [72]
Mineral:
↑ Crystallinity [65]
Mineralized Fibril:
↓ Thickness [71]

Whole bone:
↓ Bending modulus [72]
↓ Yield stress [72]
↓ Maximum stress [72]
↓ Crack propagation

toughness [8]
Fibril:
↓ Plasticity [72]

↑ Resorption [72]

Estrogen
depletion OVX
rat

↓ Mineral-to-matrix ratio [73]
↓ Collagen maturity [73]
↑ Acid phosphate [74]

Whole bone:
↓ Cortical thickness [75]
Mineral:
↑ Crystal thickness [76]
↓ Crystal maturity [73]

Whole bone:
↓ Elastic modulus [75]
↓ Ultimate stress [75]
↓ Ultimate strain [75]
↓ Energy to fracture [77]

↓ Formation [73]
↑ Resorption [73]

Osteogenesis
imperfecta

Human type I - IV ↑ Mineral-to-matrix ratio [78]
↓ Collagen content [78]

Tissue:
↑ Cortical porosity [79,

80]
↑ Woven bone next to

lamellar bone [17]
Mineral:
↓ Crystal size [78]
↑ Crystal packing [78]
↓Crystal organization [78]

Whole bone:
↓ Young’s modulus [79, 80]
↓ Yield stress [79]
↓ Ultimate stress [79, 80]

↑ Remodeling
[81]

↓ Formation [73]
↑ Resorption [73]

oim/oim mouse ↑ Mineral-to-matrix ratio [5, 82] Whole bone:
↓ Size [82]

Whole bone:
↓ Young’s modulus [5]

↑ Remodeling
[82]
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Table 1 (continued)

Aging/bone
fragility disease

Type Changes in bone quality

Composition Structure Mechanics (Re)modeling

↓ Carbonate-to-phosphate ratio
[5, 82]

↓ Intrafibrillar mineralization
[25•]

↓ Enzymic divalent cross-links
[82]

↑ AGEs [5]

↓ Cortical thickness [82]
↑ Vascular density and

branching [5]
↑ No. Lacunae [6]
↑ Lacunae sphericity [6]
Tissue:
↑ Vascular density [6]
↑ Vascular branching [6]
Mineralized fibril:
↓ Organization [82]
Mineral:
↑ Extrafibrillar crystal size

[67]
↓ Intrafibrillar crystal size

[67]
↓ Crystallinity [82]
↓ Organization [25•]
↓ Alignment [18, 82]

↓ Ultimate stress [25•]
↓ Ultimate strain [5]
↓ Work-to-fracture [25•]
↓ Crack initiation toughness

[5, 6]
↓ Crack growth toughness

[5]
↓ Nanoscratch toughness

[25•]

↓ Osteoblast
maturation
[82]

Vitamin D
deficiency

Human ↑ Osteoid density [83]
↑Highly mineralized and mature

regions [83]
↑ Carbonate-to-phosphate ratio

[83]
↓ Acid phosphate [83]
↑ Ca concentration [83]

Whole bone:
↓ Cortical thickness [83]
Tissue:
↑ Cortical porosity [83]
↑ Haversian canal volume

[83]
↑ Haversian canal

diameter [83]
Cellular:
↑ Osteocyte lacunar

volume [83]
↑ Hypermineralized

lacunae [83]
Mineral:
↑ Crystallinity [83]

Whole bone:
↓ Initiation toughness [83]
↓ Crack growth toughness

[83]

↑ Local tissue
aging [83]

↑ Formation [83]
↓ Local bone

resorption [83]

Paget’s disease Human ↑ Osteoid density [84]
↓ Mineral-to-matrix ratio [84]
↓ Carbonate-to-phosphate ratio

[84]
↑ Collagen maturity [84]
↓ Ca concentration [84]

Tissue:
↑ Cortical porosity [84]
↓ Haversian system

alignment [84]
↑ Mosaic of lamellar and

woven bone [84]
Fiber:
↓ Orientation [84]

Whole bone:
= Crack initiation toughness

[84]
= Crack growth toughness

[84]
= Energy dissipation [84]
Tissue:
↓ Young’s modulus [84]

↑ Formation [85]
↑ Resorption [85]

Type 1 diabetes
mellitus

STZ rat ↓ Mineral-to-matrix ratio [86]
↑ Carbonate-to-phosphate ratio

[86]
↓ Collagen maturity [86]
↑ AGEs [86]

Mineral:
↓ Crystallinity [86]

Whole bone:
↓ Elastic modulus [86]
↓ Yield stress [86]
↓ Ultimate stress [86]
↓ Toughness [86]

↑ Remodeling
[84]

Type 2 diabetes
mellitus

Human ↑ Mineral-to-matrix ratio [86]
↓ Heterogeneity of

mineral-to-matrix ratio [87]
↓ Heterogeneity of acid

phosphatase [87]
↓ Enzymic cross-links [86]
↑ AGEs [86]
↑ OPN [88•]
↑ OPG [88•]

Mineral:
↑ Crystallinity

heterogeneity [87]

Whole bone:
↑ Elastic modulus [86]
↑ Ultimate stress [86]

↓ Remodeling
[86]

KK/Ay mouse ↑ Mineral-to-matrix ratio [42]
↑ Heterogeneity of

carbonate-to-phosphate ratio
[42]

↓ Enzymic cross-links [42]

↓ Remodeling
[86]
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The regulators of bone matrix quality
and targeted therapies for bone fragility

Mechanical loading on bone increases microdamage concen-
tration within its matrix in the form of linear and diffuse
microcracks. Linear microcracks, a micron-scale damage,
boost bone remodeling by inducing osteocyte apoptosis pos-
sibly by directly cutting the osteocyte processes, or indirectly
by changing the lacunar–canalicular fluid flow in the damaged
area [90, 91]. Osteocyte apoptosis triggers surrounding sur-
viving osteocytes to produce RANKL, a cytokine promoting
osteoclastic bone resorption by binding to RANK and regu-
lating osteoclasts fission into osteomorphs, bone cells able to
merge back into new osteoclasts with little energy expenditure
as needed during bone remodeling [92••]. In addition, hydro-
gen ions and cathepsin K aid in bone demineralization and
collagen degradation, respectively. Mesenchymal stem cells
(MSCs) are attracted to the repair site by osteoclast-secreted
transforming growth factor-β (TGF-β), and osteocyte-
produced insulin-like growth factor-1 (IGF-1) triggers their
differentiation into osteoblasts [93••]. At the mineral level,
the tissue-nonspecific alkaline phosphatase (TNAP) enzyme
and the progressive ankylosis protein (ANK) regulate extra-
cellular matrix mineralization by controlling levels of
osteocyte- and osteoblast-secreted inorganic pyrophosphate
(PPi), a potent mineralization inhibitor [94]. The loss of
TNAP and ANK function can cause hypo- and hyper-miner-
alization, respectively [94, 95].

Aging and disease alter bone remodeling (Table 1).
Inhibition of bone remodeling affects its extracellular matrix
quality and resistance to fracture: microcracks accumulate
within their tissues, and mineral, collagen maturity, and
AGEs content within the fibrils increase, thus reducing

fibrillar sliding and bone plasticity [8, 71]. Age- and disease-
related declines in the number of osteocytes and canaliculi
may reduce their mechanosensory ability to detect
microdamage and the release of RANKL to initiate repair,
leading to the accumulation of microcracks [96]. On the other
hand, increased bone remodeling may affect bone mineraliza-
tion and produce a matrix with osteoid layers next to heavily
mineralized regions, as in vitamin-D deficiency [83].
Osteoclasts cannot go through thick osteoid layers, and the
bone underneath continues to age and mineralize although
overall bone mineral content progressively decreases [83]. In
OI bone, tissue hypermineralization with reduced carbonate
content (as a sign of crystals immaturity) may favor the for-
mation of microcracks, further triggering bone turnover [5]
that contributes to bone fragility.

Diffuse damage, made of submicron-sized cracks, does not
cause osteocyte apoptosis nor trigger osteocytic or osteoclastic
activity, but self-repairs [97] spontaneously through a physi-
cochemical remineralization process [98••], similar to that oc-
curring in enamel repair. It is possible that the lacunar–
canalicular system of osteocytes plays a role in the mainte-
nance of bone tissue ionic fluid and in the transport of min-
erals and other adhesive proteins across the matrix to sites of
damage, required for the chemical repair of diffuse damage
[98••]. Further studies are required to understand the actual
mechanisms of this self-healing and if aging and disease alter
this process, and its contribution to bone fracture risk.

Osteocytic osteolysis or perilacunar remodeling (PLR) has
been suggested to have a role in determining and maintaining
bone quality [99]. This process has the potential to not only
regulate mineral homeostasis but also to release calcium from
the matrix, affect osteocyte mechanosensation, and alter bone
remodeling. Osteocyte-mediated proton release demineralizes

Table 1 (continued)

Aging/bone
fragility disease

Type Changes in bone quality

Composition Structure Mechanics (Re)modeling

↑ Collagen maturity [42]
ZDSD rat ↑ Mineral-to-matrix ratio [89] Tissue:

↑ Cortical porosity [89]
Mineral:
↑ Crystallinity [86]

Whole bone:
↓ Elastic modulus [86]
↓ Work-to-fracture [89]
↓ Crack initiation toughness

[89]
↓ Crack growth toughness

[89]
Chronic kidney

disease
HBT Cy/+ rat ↓ Enzymic trivalent cross-links

[47]
↓ Bound water [47]
↑ AGEs [47]

Tissue:
↑ Cortical porosity [47]

Whole bone:
↓ Stiffness [49•]
↓ Ultimate stress [47, 49•]

↑ Remodeling
[47]

LBT Cy/+ rat ↑ Enzymic trivalent cross-links
[47]

↑ Bound water [47]

Tissue:
↑ Cortical porosity [47]

Whole bone:
↓ Toughness [47]

↓ Remodeling
[47]
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the perilacunar matrix and frees calcium ions, and in turn
metalloproteinase-13 (MMP-13), tartrate resistance acid phos-
phate (TRAP), and cathepsin K remove the organic phase.
Disruption of osteocyte-mediated resorption causes bone fra-
gility in MMP-13 knock-out mice, owing to a highly porous,
small cortex with disorganized canaliculi, increased collagen
cross-linking, and smaller crystals with low crystallinity [95].
Compromised bone quality is also present inmice with knock-
out and overexpressed tissue inhibitor of metalloproteinase-3
(TIMP-3) [100, 101], a MMP-13 inhibitor [100]. Particularly,
TIMP-3 deficiency increases cortical porosity, acid phosphate
levels, and heterogeneity of the collagen cross-link profile,
and decreased carbonate-to-phosphate ratio [101].
Interestingly, PLR happening during lactation shows a recov-
erable reduction in bone tissue-level elastic modulus that has
been attributed to changes in lacunar and canalicular space
[102]. The extent and mechanisms of bone repair due to
PLR remain to be revealed.

Microcracks, possibly due to masticatory stresses, also oc-
cur in ear ossicles and the otic capsule, where they accumulate
over time due to downregulated bone remodeling and PLR. It
has been suggested that mechanisms controlling bone remod-
eling and PLR in the otic capsule are different from those in
the long bones, perhaps to preserve auditory function [103].
Increased porosity of the ear bone, as occurs in OI and oto-
sclerosis, can further increase the formation of microcracks
and bone fractures in the ears [104•]. The presence of zinc at
sites of ossification in the ear seems to help prevent cochlear
damage, while its deficiency in aging mice potentiate hearing
loss [105]. Further studies are needed to elucidate the func-
tional implications of biological controllers for bone matrix
quality and their relationship with genetic expression at dif-
ferent body sites and in bone diseases with secondary disabil-
ities, such as hearing loss.

The combination of bone remodeling, PLR, and diffuse
damage healing plays an essential role in maintaining bone
compositional, structural, and mechanical integrity. The inter-
connection between bone cells and matrix is regulated by
intra- and extra-cellular molecular-signaling pathways that ul-
timately control bone quality. When these are disrupted, bone
becomes fragile. Proteins and signaling pathways may either
directly affect the mineral or organic constituents of bone
ECM or have an effect on the cellular activity that regulates
bone repair and (re)modeling, impairing bone mechanical
properties. Endocrine, paracrine, and autocrine pathways are
responsible for the cellular response to signaling in the pro-
cesses regulating bone quality. This signaling may activate
multiple cell populations independently or in a cascade of
events with mutual cell interactions. Several growth factors
regulating bone repair are likewise involved in determining
bone quality. For example, TGF-β is essential for maintaining
bone quality by coupling the activity of osteoblasts and oste-
oclasts, and human mutations in many TGF-β pathway

components have been associated with skeletal dysplasia
and disease [106]. TGF-β couples with other factors playing
pivotal roles in bone homeostasis and cell cycle regulation,
and their regulation offers positive results in terms of
correcting aberrant bone remodeling. Table 2 reports the ma-
jor bone proteins, signaling pathways, and transcription regu-
latory networks known to be implicated in controlling bone
ECM material properties, offering targets for bone therapies.

Despite the advances in the field, there is a critical need to
fully elucidate the effect of bone cells and biology on control-
ling bone quality, and particularly its fragility. This will sug-
gest new targets for the development of therapies to prevent
bone fragility. In this regard, the combination of genetically
modified rodents with investigations of bone fracture tough-
ness offers the opportunity to further understand the molecular
control of bone material properties and quality. Our research
and that of others on bone fracture toughness has disclosed
mechanisms of bone fragility in OI mice, CKD rats, and dia-
betic ZDSD rats [5, 6, 14, 47, 53•, 89, 104•, 166], as well as
the importance of OPN, OC, PHOSPHO1, and TIMP-3 for
bone quality and toughness [23, 57, 100, 101, 162, 163].
However further research is needed in this direction, and stud-
ies must help unveil the complex relationship between bone
biology and mechanics. Studies on cell activity and their sig-
naling can shed a light on their influence on bone quality. For
example, increased bone fragility in OI has recently not only
related to its extracellular matrix impairment but also to al-
tered intracellular homeostasis due to mutant collagen reten-
tion [152, 153]. Endoplasmic reticulum stress modulates the
OI phenotype severity in its Brtl mouse model, and activates
the unfolded protein response, autophagy, and apoptosis in
human fibroblasts in dominant forms of OI as well as in some
recessive OI forms characterized by altered collagen synthesis
[152, 153]. Treatment with 4-phenylbutyrate (4PBA) chemi-
cal chaperone ameliorates OI cells homeostasis in vitro, and
improves the OI bone phenotype in the Chihuahua zebrafish
OI model by reducing intracellular misfolded protein accumu-
lation and promoting protein secretion [152, 153]. However,
more research is needed to investigate the material properties
of the 4PBA-treated OI bone and enhance therapy efficacy by
effectively deliver the drug to bone. Similarly, further studies
on the recently discovered osteomorph genes, controlling
bone structure and function, with their upregulation being as-
sociated with human skeletal diseases and osteopenia [92••],
may further unveil new possibilities for bone fragility treat-
ment. Also, bone has recently been revealed to play an impor-
tant role in regulating glucose metabolism through the release
of osteokines [167], with increased plasma OPN and OPG
levels in prediabetes pathogenesis. While the role of OC in
regulating glucose metabolism is unknown [167], its levels
inversely correlated with circulating free fatty acids concen-
tration [88•]. Future research may consider the development
of novel therapies targeting these biomarkers for aging,
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T2DM, and osteoporosis populations. Table 2 presents
existing and possible targeted therapeutic treatments for the
major known regulators of bone quality, and their effect on
bone remodeling and matrix properties.

Nowadays, bone treatments are essentially still systemic,
requiring mainly oral administration or injections. Their main
challenges are low bone tissue selectivity, with high doses
taken for the drug to reach bone, and safety, due to their
adverse side effects [168]. Moreover, once the treatment
reaches bone, its low permeability and reduced blood flow
may further hinder the drug efficacy. Treatments for bone
fragility have so far mostly relied on bisphosphonates, a group
of antiresorptive drugs, that can induce atypical femur frac-
tures by long-term low bone turnover and/or jaw
osteonecrosis, as well as gastrointestinal adverse effects and
cancer of the esophagus from oral treatments, and/or atrial
fibrillation due to increased blood calcium level [93••].
Similarly, some bone anabolic drugs stimulate its formation
by binding to the parathyroid hormone type I receptor, but
they can cause post-dose hypercalcemia and increase risk of
developing osteosarcoma [169]. Therefore, there is a critical
need to improve drug delivery at the appropriate concentra-
tions directly to bone. Targeted therapy delivered to either
bone matrix components or cell signaling, and activation can
improve efficacy of treatments, while reducing dosage and
systemic toxicity-related side effects. Nanosystems, such as
alendronate conjugated nanodiamonds (ALN-NDs), extend
clinical exposure while reducing side effects, whereas selec-
tive estrogen receptor modulators (SERMs), such as
Raloxifene, have estrogen-like resorptive actions in bone,
but neutral effects in other tissues, e.g., breast and uterus,
overcoming the problem of low tissue selectivity for estro-
gens. As opposed to antiresorptive treatment, anabolic therapy
enhances bone formation rather than reducing bone resorp-
tion. When combined with the collagen-binding domain
(CBD), parathyroid hormone (PTH) treatment exerts a long-
lasting bone anabolic effect while preventing inconvenient
undesirable effects (e.g., hypercalcemia) [93••].

New forms of drug delivery for bone-targeted therapies
have been tested in laboratories that promise to improve ther-
apeutic efficacy, control drug release, and reduce systemic
toxicity. For instance, cell-infiltratable and injectable gelatin
hydrogels encapsulating MSCs successfully fostered bone re-
generation in an animal model of steroid-associated
osteonecrosis [170], while polyurethane nanomicelles can em-
body and release miRNAs to osteoclasts at the bone resorption
surface, improving bone microarchitecture in ovariectomized
osteoporotic mice [171]. However, most non-responsive
nanocarriers cannot accomplish a realistic delivery of their
payload to the target site. In such a case, enzyme-responsive
delivery systems exploit altered expression of specific en-
zymes, such as cathepsin K and certain MMPs, to drive the
liberation of drugs [172].

Conclusions

With a comprehensive understanding of the biological mech-
anisms controlling bone quality, particularly toughness, and
the development of new biotechnology for drug delivery, nov-
el bone-targeted therapies for bone fragility will improve in
the future, holding potential for their use in the clinic. A great-
er understanding of the physiological differences between
humans and animals affecting bone mechanics, as well as
advance in bone cell biology, genetics, and genomics will
accelerate the translation of bone targeted-therapy to clinical
application.
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