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Abstract
Purpose of Review Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular
muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke,
or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophys-
iology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS
injury, tissue inflammation, and upcoming NHO therapeutics are discussed.
Recent Findings Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe
CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged
muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and
persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways.
Summary This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic
interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of
traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury.
Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development
in patients.
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Introduction

Neurogenic heterotopic ossifications (NHOs) are abnormal
extra-skeletal bone formations mostly in periarticular muscles
[1] after severe damage to the central nervous system (CNS)

such as spinal cord injury (SCI), traumatic brain injury (TBI),
stroke, or cerebral anoxia [2] and hence their name “neuro-
genic.” NHOs were first identified in spine-injured soldiers
during World War I with the first use of radiography in bat-
tlefield injuries [3–5] and are still very prevalent in defense
personnel with battlefield injuries, with up to 60% of blast and
gunshot victims developing NHO when there is concomitant
spinal damage [6–8]. NHO also occurs in up to 25% of civil-
ians with severe SCI and 5–20% with TBI [9–12]. NHOs
develop within a few months after CNS injury in periarticular
muscles, with decreasing frequencies in the hip, elbow, knee,
and shoulder (Fig. 1). NHO can be very incapacitating, mainly
due to their large size (up to 2 kg), often causing significant
pain and gradual reduction in the range of motion of affected
limbs which often progresses to complete joint ankylosis. This
exacerbates functional disabilities by increasing difficulty in
sitting, eating, and dressing [13]. NHO growth can also cause
nerve and blood vessel compression, further increasing patient
morbidity [14, 15].
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Treatment is still currently limited to surgical resection.
Once NHOs have become troublesome, the orthopedic sur-
geon identifies a cleavage plan on the computed tomography
(CT) scan, and patient’s comorbidities are under control [16].
Surgical resection remains challenging, particularly when os-
sifications entrap the whole joint and adjacent large blood
vessels and nerves. Following surgical resection, NHO can
re-occur in around 6% of patients [2]. Additional treatment
modalities have been investigated, but most provided limited
efficacy. Radiation therapy (RT) has been explored as a treat-
ment for multiple forms of heterotopic ossification (HO) [17,
18] and shown to be beneficial in patients following total hip
arthroplasty [19]. However, similar treatment regimens did
not effectively prevent the recurrence of NHO [20], and there
are concerns that RT could delay repair of skeletal fracture
associated with the initial CNS injury. While some studies
suggested RT limited the progression of NHO around the
hip after SCI [21] and reduced pain and increased mobility
in patients with established NHO [22], other studies have
shown less favorable outcomes [23]. A recent retrospective
study suggests that RT was associated with an increased risk
of postoperative sepsis [24]. Nonsteroidal anti-inflammatory
drugs (NSAIDs) are also used to treat NHO [25, 26], and a
recent retrospective study on 108 SCI patients has shown sig-
nificant reduction of NHO diagnosis following prophylactic
indomethacin or celecoxib for 2 weeks after CNS injury [27•].
The mechanism is believed to be through the systemic

inhibition of prostaglandins, with subsequent changes in mes-
enchymal cell differentiation into osteoblasts [25, 26]. While
studies have shown that NSAIDs can be beneficial for NHO
after SCI [25], with a reduction in NHO diagnosis and volume
as well as reduced inflammatory symptoms, there has been
concerns of long-term NSAID use on gastrointestinal compli-
cations [28], and delayed fracture healing was also reported in
other studies [29, 30]. Bisphosphonates have been investigat-
ed as preventative treatment of NHO in SCI and TBI patients
[31–34] with varying results, and some studies suggested
bisphosphonates potentially increase the risk of developing
heterotopic ossification (HO). However, an additional risk of
delayed fracture healing comes with the additional musculo-
skeletal injuries that often accompany SCI and TBI patients
[35–37]. Overall the development of improved treatments for
NHO has been slow, and trials of pharmacological interven-
tions have continued to show limited effectiveness [10]
reflecting the current limited knowledge on the etiology
and pathophysiology of NHO. This is in part due to
previous studies in SCI/TBI patients being retrospective
with little insight into early initiating cellular and mo-
lecular events which drive NHO pathogenesis .
Therefore, it is essential to establish animal models of
NHO to delineate the mechanisms of NHO pathogenesis
in order to identify new biomarkers to predict NHO
development after SCI/TBI, and new therapeutic treat-
ments that would prevent or reduce NHO development.

Fig. 1 NHOs are periarticular in
CNS injured patients. X-ray radi-
ographies showing NHO of the
knee (a), shoulder (b), and elbow
(c). Three dimensions CT scan
without (d) and with (e) vessels
injection showing NHO of the
right hip

Curr Osteoporos Rep (2020) 18:666–676 667



Animal Models of Heterotopic Ossification

Genetic Models

Beside NHO in patients with severe CNS injuries, rare geneti-
cally driven HOs are also well known in humans and have been
at the forefront of animal model development in the last decade.
This is particularly the case of fibrodysplasia ossificans
progressiva (FOP, Stoneman syndrome). FOP is a very rare
genetic disease (1 case in 2,000,000 humans) caused by domi-
nant activating missense point mutations in the coding sequence
of the ACVR1 gene. ACVR1 encodes the activin A receptor type
I (ACVR1), also called activin receptor-like kinase-2 (ALK2), a
bone morphogenetic protein (BMP) type I receptor [38–41].
Children with FOP develop a progressive ossification of an ex-
tensive portion of their body which is ultimately fatal. FOP an-
imal models include the introduction (by means of mutant allele
knock-in the ACVR1 gene or expression of a mutant transgene)
of causal missense point mutations in ACVR1 such as
ACVR1R206H which changes an arginine residue to a histidine
residue [40, 42, 43]. In mice carrying the ACVR1R206H muta-
tion, HOs develop locally in tissues following an injury or in-
flammation in a similar presentation to FOP patients with HO
“flare-ups.” Additional mouse models were developed based on
alternative ACVR1 mutations such as the constitutively active
ALK2 model (caALK2) or ACVR1Q207D [44]. ACVR1R206H,
which is the most frequent causal ACVR1 mutation in FOP pa-
tients [45], alters the signaling pathways that the ACVR1 recep-
tor elicits upon binding of its physiological ligands. Specifically
while wild-type ACVR1 inhibits bone morphogenetic protein
(BMP) signaling in response to BMP-2 and BMP-4 binding to
the BMP receptor 1A and BMP receptor 1B, the AVCR1R206H

mutant loses this inhibitory function and gains BMP signaling
function following direct binding of activin A [42, 46]. Mouse
models in which recombinant BMPs are locally injected or sur-
gically implanted or an inducible BMP4 transgene is expressed
have also been used to induce HO formation [38, 47–50].
Together, these models have been invaluable to demonstrate
the role of inflammation, mast cells and macrophages in trigger-
ing FOP “flare-ups” [51•], and the over-activation of SMAD1/5/
8-mediated signaling downstream of causal ACVR1 mutations
[52]. These models have been utilized for the development and
pre-clinical testing of treatments for FOP and to identify cell
types responsible for HO in FOP [43, 44, 53–55]. However,
the relevance of these genetic models of FOP to NHO is ques-
tionable as pathological NHOs occur in genetically normal pa-
tients of a broad range of ethnicities, hence the necessity to
develop animal models specific to NHO.

SCI-Induced NHO Models

To fill this knowledge gap, we have developed the first clin-
ically relevant animal model of NHO in genetically non-

modified mice, without artificial implantation of osteogenic
proteins such as BMPs [56•]. In our model, we perform a
transection of the spinal cord between T11 and T13 rendering
mice paraplegic. Without any additional intervention, NHO
never develops in mice with SCI. The prevalence of NHO is
significantly associated with (1) the severity of the CNS injury
[57], (2) the presence of additional injuries or inflammation
[12], and (3) is particularly high in combat-related casualties
which are mostly multi-traumatic [6, 7]. For this reason, we
hypothesized that an associatedmuscle injury was required for
NHO to develop. To test this, we modeled muscle damage via
an intramuscular injection of cardiotoxin (CDTX) purified
from Naja snake venom, a well-accepted model of muscle
damage and repair [58]. Likewise, CDTX-mediated muscle
injury alone never caused HO with CDTX-injured muscles
repairing within 1–3 weeks [56, 58]. However when com-
bined with a SCI, NHOs develop within the CDTX-injured
muscle over 1–3 weeks and recapitulate most clinical features
of NHO in SCI patients [56•]. We also established that SCI
with an intramuscular CDTX injection lead to NHO develop-
ment in multiple mouse strains such as C57BL/6, C3H/He,
and BALB/c (Fig. 2), confirming that this phenomenon is not
restricted to the genetic make-up of any particular inbred
strain. Therefore the development of NHO requires a dual
insult of both the CNS and soft tissue [56•] (Fig. 3). Unlike
genetically altered or BMP-implant models of FOP, our new
model provides a powerful tool for determining the pathogen-
esis of NHO and assessing preventative therapies which is
discussed further in sections below.

TBI-Induced NHO Models

More recently, small animal models of TBI-NHO have also
been developed. A rat model using a polytrauma approach of
TBI, femoral fracture, and muscle crush injury combined [59]
has illustrated ectopic bone development in injured limbs.
Other groups have utilized a combination of TBI with an
Achilles tendon rupture (tenotomy) to establish NHO and il-
lustrated changes in matrix metalloproteinase expression
levels during TBI-NHO development [60]. Others used a
combination of TBI and fracture, which increased serum
calcitonin-related peptide release [61]. All these models have
the potential to further identify mechanisms of TBI-NHO.

Trauma-Induced HO Models

As the development of HO is common in polytrauma patients
[2, 62, 63], numerous models of trauma-associated HO have
been developed, some of which do not have an accompanying
CNS injury [64]. It is well established that HO develops after
severe burns and other forms of soft tissue trauma [65]. A
small animal model of burn-induced HO has been developed
with a combination of burn and tenotomywith HO developing
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in the damaged limb [66]. This model has recently
unraveled numerous pathways involved in burn-induced
HO [67–69] and more recently excluded a role for activin
A in burn-induced HO [70•]. Interestingly, these trauma
models share some similarities with our SCI-NHO model
and illustrate the importance of multiple traumas in the
development of HO, as the incidence of HO was signifi-
cantly higher with burn plus tenotomy compared with

each insult alone [66]. Rat models of polytrauma have
been developed using a combination of blast-related limb
injury, bone fracture, quadriceps crush, amputation, and
infection with methicillin-resistant Staphylococcus aureus
(MRSA), reflective of combat-associated HO [71, 72].
Other models of trauma HO include mouse and rat
tenotomy models [73–75] and a rabbit HO model where
HO develops after hip surgery [76].

Fig. 3 Schematic representation of SCI-NHO pathogenesis deduced from
mousemodels and retrospective studies in patients. Damage to the central
nervous system (CNS) causes release of substance P. High-level SCI can
also cause autonomic dysreflexia (AD). Systemic factors released after
CNS injury and possibly AD causes abnormally high and prolonged
activation of macrophages in injured muscles with persistent release
and accumulation of OSM and TGF-β1. This may induce uncontrolled

proliferation of fibro-adipogenic progenitors (FAPs) within injured mus-
cles, FAP osteogenic differentiation, and formation of NHOs.
Cyclooxygenase (COX) inhibitors such as indomethacin and celecoxib
reduce NHO incidence in CNS-injured patients whereas the selective
JAK1/2 tyrosine kinase inhibitor ruxolitinib reduces NHO volumes in
mice with SCI

Fig. 2 NHOs develop in multiple inbred mouse strains after combined
SCI and muscle injury. C57BL/6, C3H/He, and BALB/c mice (n = 5/
group) all underwent SCI between T12 and T13 together with an intra-
muscular injection of CDTX. NHO volume was quantified at 14 days

post-surgery by micro-CT. Results show that NHOs develop in all mouse
strains confirming that NHO development is not restricted to the genetic
make-up of mouse strains. Data are presented as mean ± SD
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Overall, there has been substantial development of multiple
small animal models for both neurogenic and non-neurogenic
HO in the last decade [64]. These animal models will be vital
to further understand HO pathogenesis and for development
and pre-clinical testing of new therapeutics. Interestingly,
multiple models demonstrate a commonality of multi-level
trauma for the development of HO. The link between the dual
injury process of CNS injury and muscle trauma is further
discussed below.

The Nexus Between CNS Injury and Tissue
Inflammation

We have previously established that a dual insult of SCI and
muscle damage is required for SCI-NHO as NHO usually
does not develop in mice with only SCI or only muscle injury
[56•]. A dual-insult effect is also seen in models of TBI-NHO,
where TBI alone does not induce NHO; however, the combi-
nation of TBI with multiple traumas (fracture or fracture +
muscle crush) increases NHO prevalence accordingly [59].
Therefore, the development of pathological NHO following
CNS injury requires a combined insult from both the CNS and
tissue trauma (Fig. 3). These observations are consistent with
patient data where there is a higher prevalence of NHO (up to
60%) in army personnel victims of combat inflicted blast and
gunshot injuries with concomitant spinal damage [6–8].
Likewise, NHOs are more prevalent in SCI/TBI patients with
concomitant bed sores, tracheostomy, pneumonia, smoking,
systemic, or urinary tract infections, all signs of local or gen-
eral inflammation [11, 12, 57].

An appropriate inflammatory response is also essential for
muscle repair [58, 77, 78].Macrophages are highly plastic and
can direct the regeneration process toward either normal re-
generation or pathological scar formation and fibrosis. In in-
jured muscles without CNS injury, infiltration of monocytes/
macrophages peaks 3–4 days post injury in mice and switches
from a Ly6C+/CX3CR1low to a Ly6C−/CX3CR1hi phenotype
with a change in expression of pro-inflammatory cytokines
such as tumor necrosis factor (TNF) and interleukin-1β
(IL1β) to pro-regenerative transforming growth factor-β
(TGF-β) [79–81]. Macrophages also produce various cyto-
kines that enhance myogenesis such as interleukin-6 (IL6)
and insulin-like growth factor 1 (IGF1) [82]. The recruitment
of macrophages during muscle repair is mediated by CC che-
mokine ligand 2 (CCL2) and its receptor CC chemokine re-
ceptor 2 (CCR2). Inhibition of myeloid cell infiltration by
depleting intramuscular CD11b+ cells or deletion of Ccl2 or
Ccr2 genes significantly reduced intramuscular monocyte/
macrophages and subsequently delayed clearance of necrotic
muscle and muscle regeneration [83–86]. In addition, emerg-
ing evidence suggests macrophages are important in
preventing fibrosis through inducing the apoptosis and

clearance of muscle fibro-adipogenic progenitors (FAPs) via
TNF [87]. Blocking TNF or myeloid-specific knockout of Tnf
gene or Ccr2 gene deficiency all resulted in FAP accumula-
tion and fibrosis in injured muscles [87].

Unlike dystrophic calcification post muscle injury, which is
resolved over time via TNF-mediated mechanisms [88], SCI-
NHOs at 21 days post-surgery contain osteocalcin-expressing
osteoblasts and osterix-expressing osteocytes embedded with-
in NHO foci in injured muscles [56•]. Importantly, we have
illustrated that monocyte/macrophages infiltration into mus-
cles is higher at 4 days post-surgery in mice with a SCI and
CDTX muscle injury compared to mice without SCI, and this
persists up to day 28 when NHO are mature [89•]. This is also
observed in human NHO with CD68+ macrophages accumu-
lating in the muscle at the periphery of the NHO [56•]. The
key role of phagocytic macrophages in NHO, FOP, and trau-
matic HO pathogenesis is highlighted by the fact that their
depletion by intravenous injection of clodronate-loaded lipo-
somes significantly reduces HO formation in various animal
models including NHO, FOP, burn and tenotomy HO model,
and HO induced by exogenous BMP2 plus injury [51, 56, 68,
90]. Importantly we have found that neutrophils, unlike mac-
rophages, do not play an important role in SCI-NHO patho-
genesis. Mice with loss-of-function mutations in the gene
encoding the granulocyte colony-stimulating factor (G-CSF)
receptor are profoundly neutropenic yet still develop NHO in
response to SCI and muscle injury similar to their wild-type
controls with similar density of osterix-expressing osteoblasts
[91•]. Likewise twice-daily administration of recombinant G-
CSF, a treatment suggested to favor neuroregeneration after
SCI or TBI, did not alter the course of NHO development
[91•]. Therefore while G-CSF administration suppresses oste-
oblasts on endosteal surfaces of skeletal bones [92], it has no
effect on osteoblasts forming NHOs inmuscle [91•], similar to
osteoblasts present on periosteal surfaces [92]. This further
illustrates that the suppressive effect of G-CSF on endosteal
osteoblasts is not direct but mediated by the adjacent bone
marrow macrophages [92, 93].

The mechanism by which macrophages promote NHO de-
velopment involves aberrant activation of the oncostatin M
(OSM)/signal transducer and activator of transcription
(STAT)-3 signaling pathway. SCI causes a persistent overex-
pression of OSM in injured muscles whereas in the absence of
SCI, OSM expression normalizes over 3 weeks [94•].
Persistent OSM accumulation is an important driver of NHO
pathogenesis as mice lacking the OSM receptor (OSMR) gene
had a fourfold reduction in NHO volumes compared to wild-
type controls. These results in mice were validated in humans
as patients with NHO have higher OSM plasma concentration.
OSM is also secreted by macrophages isolated from NHO
biopsies, and this OSM promotes osteogenic differentiation
of stromal cells derived from the muscles surrounding
NHOs [94•]. OSM signals by binding to a cell surface receptor
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made of OSMR complexed to GP130. This complex subse-
quently signals by activating Janus tyrosine kinases JAK1 and
JAK2, which then phosphorylate the transcription factor
STAT3 enabling its translocation to the nucleus and activa-
tion. Indeed persistent OSM overexpression in injured mus-
cles after SCI leads to persistent phosphorylation of STAT3.
The functional relevance of STAT3 activation is highlighted
by the fact that treatment with ruxolitinib, a selective JAK1/2
tyrosine-kinase inhibitor used to treat myeloproliferative neo-
plasms, significantly reduced NHO formation in mice [89•].

The Role of the CNS Injury

In mice, SCI exacerbates the inflammatory response to muscle
injury ultimately leading to NHO formation instead of muscle
repair [56, 89, 90, 94]. The question of which mechanisms
initiated by the SCI lead to the sequence of pathological events
driving NHO formation remains unresolved and a subject of
intense investigation. Several risk factors have been identified
in retrospective studies on patients with severe CNS injuries.
The advantage of animal models is that these “risk factors”
can be tested for their potential to promote NHO formation.
For instance, muscle spasticity was identified as a significant
risk factor of developing NHO in patients with TBI, stroke, or
cerebral anoxia [95]. However, in our mouse model of SCI-
NHO, injection of botulinum toxin A in the CDTX-injured
muscle, to block the neuromuscular junctions and prevent
muscular spasticity, did not reduce but instead increased
NHO volumes. This suggests that muscle spasticity is not a
trigger of NHO but rather the consequence of heterotopic
bones growing in the muscle [96, 97].

Another possibility is that the SCI triggers the secretion of
neuromediators at the site of the SCI, which excite neurons that
synapse in the injuredmuscle, and ultimatelymodify the inflam-
matory response in the injuredmuscle. For instance, substance P
has been described to be released in the dorsal horn of the spinal
cord after SCI in humans [98] and rats [99]. However, in the
mouse model of SCI-NHO, NHO volumes were increased in
denervated limbs in which sciatic and femoral nerves were both
excised [100]. This contradicts a direct role of the afferent
nerves in promoting NHO in the injured muscle.

Retrospective case studies in SCI and TBI patients have
also shown that autonomic dysreflexia (AD) is a significant
risk factor associated with enhanced prevalence of NHO [62,
63, 101]. AD is frequent in patients with high-level SCI typ-
ically at and above vertebra T6. It is caused by a loss of the
central control of post-ganglionic sympathetic nerve flow be-
low the SCI. Typically, prolonged stimulation of sympathetic
sensory nerves imposed by visceral stressors, such as overfull
bladder or fecal compaction, stimulates the sympathetic ner-
vous system. These impulses cannot be regulated by pregan-
glionic nerves below the SCI because they have lost central

control. This initiates an uncontrolled sympathetic reflex that
causes very high norepinephrine release which constricts ar-
teries with a sudden elevation of arterial pressure. A parasym-
pathetic negative feedback reflex takes place by which baro-
receptors in the carotid sinus sense the arterial hypertension
and signal back to the brain which responds via the uninjured
parasympathetic vagus nerve to decrease the heart rate. A
parallel sympathetic reflex also takes place to relieve the va-
soconstriction by reducing sympathetic release of norepineph-
rine. However, this sympathetic negative feedback via pregan-
glionic sympathetic nerves is disconnected due to the SCI, and
as a result, the hypertension and norepinephrine release re-
main unopposed while heart rate decreases [102, 103].
Hypertension combined with bradycardia represents the clin-
ical signs of AD. If not managed rapidly, AD can lead to
seizures, stroke, coma, cardiac arrest, and death. Although
the mechanistic link between AD and immunodepression ob-
served in severe CNS injuries has been explored [104, 105],
the potential of AD and more generally systemic complica-
tions of SCI to trigger NHO development remains to be ex-
plored in animals. This is clearly an area of interest.

The concept that systemic complications of CNS injury
could trigger NHO is supported by a remarkable feature of
our SCI-NHO mouse model in which NHOs develop in the
CDTX-injected muscle regardless of whether CDTX is
injected in the mobile non-paralyzed front limb or the para-
lyzed hind limb [56•]. NHO in non-paralyzed limbs are fre-
quent following stroke and TBI but also observed (albeit quite
rarely) in SCI patients with NHO in the non-paralyzed shoul-
der/elbow particularly if fractured [2]. These findings suggest
that systemic factors promoting NHO are released in the circu-
lation in response to SCI [2, 56]. In support of this, we have
shown that plasma from mice that underwent both SCI and
CDTX-mediated muscle injury had a greater osteogenic poten-
tial in vitro when cultured with mesenchymal progenitor cells
and satellite cells isolated from mouse muscles, compared to
plasma from mice that had no SCI [56•]. This is also consistent
with the observation that TBI combined with bone fracture in
rats increased calcitonin gene-related peptide (CGRP) plasma
concentration, as well as CGRP expression in muscles, which
correlated with accelerated fracture repair [61].

Several osteogenic peptides have been found to be in-
creased in the plasma of patients developing NHO such as
substance P [56•] and OSM [94•]. Substance P increases min-
eralization of sortedmuscle mesenchymal progenitor cells and
satellite cells in vitro [56•]. The fact that administration of a
selective inhibitor of the substance P receptor NK1R reduced
NHO volumes following SCI in mice suggests that substance
P plays an important role in NHO pathogenesis [56•]. In sup-
port of this, implantation of a bio-scaffold containing sub-
stance P against the Achilles tendon in mice was sufficient
to induce HO formation whereas scaffolds containing CGRP
had no such effect and even inhibited the promoting effect of
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substance P [106•]. Of note, implantation of the scaffold re-
quired drilling of the calcaneus bone to anchor the implant
where the HO subsequently developed [106•]. Therefore the
inflammatory component necessary for HO formation could
have been elicited from the inflamed calcaneus.

OSM is also increased in the plasma of NHO patients and
stimulates mineralization of sorted muscle mesenchymal pro-
genitor cells and satellite cells in vitro [94•]. Deletion of the
OSM receptor gene significantly reduced NHO volumes after
SCI in mice suggesting an important role in NHO pathogen-
esis [94•]. However OSM is abundantly produced locally by
activated myeloid cells in the injured muscle [89, 94]; thus, its
increase in plasma could be a consequence of exacerbated
unresolved muscular inflammation rather than a direct conse-
quence of the SCI.

Likewise, serum concentrations of TGF-β1 are increased
in NHO patients particularly in the early osteogenesis phase
[107•], and TGF-β1 is well known as an important regulator
of bone formation and coupling with bone resorption [108].
TGF-β1 expression was also increased in percutaneously in-
jured Achilles tendons forming HO in mice despite the ab-
sence of a CNS injury. Administration of a neutralizing anti-
TGF-β1 antibody or conditional deletion of the Tgfbr2 gene
(encoding the main TGF-β receptor) in mesenchymal
cells prevented HO development in this model [107•].
However, the fact that HOs were prevented in mice
with conditional deletion of the Tgfb1 gene specifically
in myeloid cells [107•] suggests that TGF-β1 is not
released in the circulation as a consequence of the SCI
but rather locally by inflammatory myeloid cells infil-
trating the damaged tissue developing HO.

While there is a plethora of reports on the role of BMPs and
activin A in FOP pathogenesis, there is a very few in respect to
their potential role in NHO pathogenesis. There is evidence
that some BMPs such as BMP-2 and BMP-9 can be induced
in non-neurogenic trauma-induced HO particularly when en-
dochondral bone formation is involved [109]. Many BMPs
(e.g., BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9) are
osteoinductive when administered in one form or another in
muscles or tendons in vivo whereas others, such as BMP-3,
inhibit HO induced by osteoinductive BMPs [110]. However,
whether BMPs have any role in NHO pathogenesis remains to
be demonstrated. We could find only one article in which
BMP concentration was measured in the plasma of CNS-
injured patients with and without NHO, however, which
BMP was measured that was not specified [111]. It has been
recently shown that SP7/osterix-expressing cells present in the
endoneurium that surrounds myelinated and non-myelinated
axons can exit the nerve and migrate to the site of HO forma-
tion induced by recombinant adenovirus producing BMP-2
[112]. However, the fact that HOs were induced by adenoviral
BMP-2 questions the relevance of these findings to NHO. In
the same study, osterix-expressing cells were also found in

nerves entrapped in human NHO biopsies together with cells
in which Smad1/5/8 was phosphorylated. This study however
did not assess whether BMPs were produced in the surround-
ing muscle to induce osteogenic differentiation of these cells.
We measured mRNA expression for BMP-2, BMP-4, and
BMP-7 in mouse muscles in our NHO model 4 days after
injury. The mRNA for all these BMPs was downregulated in
CDTX-injured muscles in the presence of a SCI. Furthermore,
daily injection of LDN-193189, a selective inhibitor of
BMPR1a, BMPR1b, and ACVR1 kinase activity that blocks
Smad1/5/8 activation downstream of BMP binding, had sur-
prisingly no effect of SCI-NHO development in our mouse
model (Tseng HW et al., submitted), whereas LDN-193189
treatment inhibits HO in mouse models of FOP driven by
ACVR1Q207D [44]. Overall, a potential of BMPs and their
receptors in NHO pathogenesis is possible but remains to be
established unlike FOP which is clearly caused by modulating
point mutations in the AVCR1 gene, and BMP-type receptor
kinase inhibitors may not be as effective at preventing NHO
development as they are with FOP.

Conclusion

The recent development of animal model of NHO in the past
5 years has enabled the identification of some mechanisms
involved in its pathogenesis. The nexus between the CNS
injury and tissue trauma/inflammation is key in the develop-
ment of NHO and explains why NSAIDs given early follow-
ing CNS trauma have shown some success at reducing NHO
in patients [27•]. Experiments in mice have shown that JAK1/
2 inhibitors may also have this potential in patients by
targeting the GP130/JAK pathway instead of the cyclooxy-
genase pathway. A better understanding of how systemic and
autonomic deregulations following CNS injury cooperate
with muscle inflammation to promote NHO development will
no doubt provide novel targets to prevent NHO development
in patients. These will also be likely to lead to the identifica-
tion of novel biomarkers to predict the onset of NHO and to
develop treatments for patients to prevent this debilitating
condition. Finally this research area has revealed intriguing
interactions between the nervous system and innate immunity
that enables muscle regeneration while when deregulated
leads to bone formation instead.
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