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Abstract
Purpose of Review The failure of bony union following a fracture, termed a fracture nonunion, has severe patient morbidity and
economic consequences. This review describes current consensuses and future directions of investigation for determining why,
detecting when, and effective treatment if this complication occurs.
Recent Findings Current nonunion investigation is emphasizing an expanded understanding of the biology of healing. This has led to
assessments of the immune environment, multiple cytokines and morphogenetic factors, and the role of skeletogenic stem cells in the
development of nonunion. Detecting biological markers and other objective diagnostic criteria is also a current objective of nonunion
research. Treatment approaches in the near future will likely be dominated by the development of specific adjunct therapies to the
nonunion surgical management, which will be informed by an expanded mechanistic understanding of nonunion biology.
Summary Current consensus among orthopedists is that improved diagnosis and treatment of nonunion hinges first on discov-
eries at the bench side with later translation to the clinic.

Keywords Nonunion . Fracture healing . Serum analysis . Bone graft . Bone morphogenic protein . Bone marrow aspirate
concentrate

Introduction

When a fracture fails to heal, the patient, healthcare system,
and economy all suffer. Fracture nonunion is associated with
significant morbidity and pain for the patient as well as addi-
tional costs averaging close to $12,000 per complication in the
USA, largely due to the loss of productivity that accompanies
the lengthy healing course [1, 2]. Traditionally, fracture non-
union was believed to occur in 5–10% of all fractures; how-
ever, two large, recent analyses in the USA and Scotland es-
timate the rate more in the 2–5% range [3, 4]. The incidence of
nonunion varies significantly between bones. Zura et al.

analyzed 309,330 fractures at various sites and reported the
highest rates of nonunion observed were in the scaphoid
(15.5%), tibia and fibula (14%), and femur (13.9%). The
metacarpal and radius demonstrated the lowest rates of non-
union at 1.5% and 2.1%, respectively [4].

The FDA currently defines fracture nonunion as a fracture
that has failed to heal within 9 months from injury with 3
consecutive months of healing stagnation [5]. Recent evi-
dence, however, supports shortening the failure to heal period
to 6 months for a more rapid diagnosis [6]. Many clinicians
disagree on when a fracture is determined a nonunion, and,
therefore, the exact time point for which to distinguish delayed
and arrested healing [7]. Identifying an objective way to de-
fine the transition point remains a topic of ongoing research
such that nonunion can be diagnosed and treated as early as
possible.

Types of Nonunion

Fracture nonunions are primarily categorized as hypertrophic
or atrophic based on biological viability at the fracture site
determined by radiographic analysis. Hypertrophic nonunions
are described as those in which biological potential has been
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maintained and, therefore, callus is observable radiographical-
ly. These fractures are believed to fail in the healing process
because of mechanical failure at the fracture site from such
stressors as inadequate stability or premature weight-bearing.
Radiographically, hypertrophic nonunions can be further
subdivided into elephant’s foot, horse’s hoof, or oligotrophic
based on the callus pattern. Conversely, atrophic nonunions
are believed to be void of biological potential as determined
by a lack of callus development. In these cases, mechanical
stability is not believed to be the chief causative factor [8•].
Figure 1 depicts three separate tibial fractures of which one
has healed without complication, one has gone on to hyper-
trophic nonunion, and the last has gone on to atrophic
nonunion.

The presence of vascularity at the fracture site has
traditionally been used as a marker of biologic capacity
and, thus, a factor distinguishing hypertrophic from
atrophic nonunions. Recent experimental evidence con-
tradicts this, however, suggesting that adequate vascular-
ity can persist in a believed atrophic environment [8•,
9]. Interestingly, Panteli et al. have also demonstrated
that biological activity at the cellular level persists in
human samples taken from nonunions that had been
classified as atrophic based on classical schema [10].
These results call for revision of traditional hypertrophic
vs. atrophic designation schema, or implementation of a
modernized non-binary classification system such as the
Non-Union Scoring System (NUSS) proposed and vali-
dated by Calori et al. [11–13]. These results also point
to the deficiency of biological determinants for the pro-
gression of bone healing and primary reliance on radio-
logical assessments.

Nonunion Etiology and Associated Factors

A Closer Look at the Fracture Site

The pathogenesis of fracture nonunion remains heavily
researched but largely unexplained. Current insight points
to either mechanical failure or disruption of the “bone-
healing unit” as the chief causative factors [8•]. The con-
cept of mechanical failure hinges on long-standing theo-
ries of bone tissue response to mechanical forces [8•]. In
these cases, nonunions are preceded by a fracture site that
is under either too much or too little, strain precipitated by
such factors as inadequate implant use or application, in-
sufficient anatomical reduction, large cortical defects,
periosteal stripping, and erroneous load bearing [8•,
14–21]. Mechanical failure contributes to nonunion in
the majority of cases [8•, 11].

Disruption of the bone-healing unit is believed to involve
interruption of critical molecular and cellular regulators of
fracture repair. At the molecular level, interruption of the sig-
naling pathway of three specific classes of cytokines is be-
lieved to impact fracture healing [22, 23]. The first class is
proinflammatory cytokines, which includes tumor necrosis
factor-α (TNF-α) and interleukin-6 (IL-6). TNF-α has been
shown in animal studies to play a role in cartilage resorption
during remodeling and to regulate mesenchymal stem cell
(MSC) differentiation in a concentration-dependent fashion
[14, 24, 25]. IL-6 in the early posttraumatic period was recent-
ly determined to regulate a balanced immune response and
subsequent bone repair in a mouse model, and has demon-
strated a positive effect on callus strength and mineralization
in earlier studies [26, 27]. However, contradictory results,

Fig. 1 Three different healing outcomes following fracture of the tibia.
All images are lateral radiographs. The left image displays a distal 1/3rd
tibia fracture with successful healing. The center image displays a tibial
shaft fracture in which both evidence of callus as well as mechanical

instability are noted. This indicates a hypertrophic nonunion. Lastly, the
right image displays a distal tibial plafond fracture in which no callus is
evident, indicating biologically inert boney ends and therefore atrophic
nonunion
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including higher IL-6 and lower IL-6 receptor serum levels in
nonunion patients, convey much is still to be known about the
relationship between IL-6 signaling and nonunion [28, 29].

The second class of notable bone-healing cytokines is the
transforming growth factor-β (TGF-β) superfamily that in-
cludes bone morphogenic proteins (BMPs). Although the mo-
lecular mechanisms remain unknown, BMPs have a well-
established role as regulators of all four phases of fracture
healing as chemotactic regulators of MSC differentiation and
angiogenesis [14, 30, 31]. BMP-2 and BMP-7 specifically
have garnered the most research attention since they are cur-
rently on-market as biologic adjuvant therapies. Their thera-
peutic efficacy will be discussed in a later section of this
review.

The third and final notable class of bone-healing cytokines
are the metalloproteinases and angiogenic factors. These cy-
tokines coordinate the congruous matrix degradation and an-
giogenesis processes of fracture healing, regulated by matrix
metalloproteinase (MMP) and vascular endothelial growth
factor (VEGF), respectively [23]. MMP-13 and MMP-9 in
particular have been shown to be critical regulators of carti-
lage breakdown and may even be detectable in urine as a non-
invasive marker of nonunion [32, 33]. The role of VEGF in
nonunion is more nuanced; it is suspected that althoughVEGF
is important for angiogenesis at the fracture site and for union,
hypervascularization in the initial healing period can be harm-
ful [32, 34]. Continuing investigation is required to better
elucidate the mechanisms by which all discussed cytokines
affect healing in vivo, as well as their exact timing and at what
concentration they act.

At a cellular level, the availability and adequate differenti-
ation capacity of osteogenic cells, specifically skeletogenic
stem cells (also known as MSCs), is a key component of the
bone-healing unit [8•, 14]. MSCs are provided to the fracture
site from a combination of periosteal, endosteal, bone marrow,
and soft tissue origins and are critical progenitors for all but
one cell type (osteoclasts) involved in the fracture repair pro-
cess [14, 35, 36]. The significant soft tissue injury and perios-
teal stripping that can occur in high-energy fractures or from
excessive surgical dissection can disrupt the availability of
these MSCs and contribute to an inadequate supply of repair
cells. These conditions can also disrupt vascular supply to the
fracture site with detrimental consequences for healing [14,
37]. When applicable, the use of minimally invasive implants
and implanting techniques may mitigate these disruptions and
preserve the bone-healing unit.

Another factor that can disrupt the bone-healing unit is the
presence of infection. Infection has demonstrated a significant
association with nonunion since it can create osteolysis, a
prolonged inflammatory response, and necrotic soft tissue be-
tween bone fragments [11, 14, 38–40]. Infection does not
always present with classical symptoms and has been reported
to be present in as low as 5% and as high as 20% of perceived

aseptic nonunions [11, 41•]. Therefore, special effort should
be taken to rule out infection in all cases of nonunion, espe-
cially recalcitrant ones.

Clinical Risk Factors

Nonunion development is dependent on injury factors such as
fracture severity and location as well as systemic illness and
medication use in the patient. These risk factors and others
were examined recently in a large cohort of patients across
multiple centers by Zura et al. [4]. Regarding injury risk fac-
tors, this review demonstrated that severe fractures caused by
a high-energy mechanism, that were open, and that were ac-
companied by multiple concomitant fractures were at the
highest risk for nonunion [4]. This agrees with a recent review
supporting the association between higher Gustilo-Anderson
classification and nonunion development in the tibia [42]. The
most notable systemic illness associated with nonunion is di-
abetes, showing association in both clinical reviews and ani-
mal studies [4, 43]. Smoking is likely the most long-standing
modifiable risk factor associated with nonunion, which has
been corroborated by numerous bed and bench-side investi-
gations [44–47]. Nicotine’s vasoconstrictive effect and role as
a disruptor of TNF-α signaling gives pathophysiological in-
sight into the association [44, 48]. Interestingly, the review by
Zura et al. did not find smoking to be a major risk factor in
their analysis; however, this is likely a false negative due to
underreporting [4].

The uses of certain antibiotics, anticoagulants, anticonvul-
sants, and bisphosphonates acutely have all demonstrated as-
sociations with nonunion [4, 49, 50•, 51, 52]. Regarding an-
algesics, acute as well as chronic use of opioids have been
found to contribute to nonunion [4, 50•]. Given the trauma
population’s susceptibility to nonunion risk factors, a con-
founder(s) could explain this association; however, results
thus far are a cause for concern and warrant immediate further
investigation. Nonsteroidal anti-inflammatory drugs
(NSAIDs) have a conflicting experimental association with
nonunion despite existing dogma prohibiting their use during
the fracture recovery period in the USA [45, 50•, 53, 54•].
Given the recent association between opioids and nonunion,
and evidence that NSAID supplementation can decrease opi-
oid use postoperatively, more research is called for regarding
NSAID safety in the acute period [54•]. The Pain Study, a
large prospective multi-center randomized controlled trial, is
currently investigating this question and will provide level 1
evidence in the near future [55].

It is wise not to consider any of these risk factors in a
bubble. The review by Zura et al. demonstrated that the ma-
jority of significant risk factors were much less impactful as
singular actors in nonunion through a comparison of univari-
ate and multivariate odds ratios [4]. Recent work by Mills
et al. supports this idea, finding that two thirds of patients with
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nonunion had more than one attributable cause [11].
Surgeons, therefore, should be sure to consider the interplay
of all aforementioned risk factors when risk stratifying for
nonunion.

Role of Genetics

With the increasing accessibility of genetic testing, identifying
genetic predispositions for fracture nonunion has become a
topic of hot research. Results thus far point to single nucleo-
tide polymorphisms in inhibitors of BMP, as well as haplo-
types of BMP-4, fibroblast growth factor receptor-1, and
platelet-derived growth factor (PDGF), as potential causative
agents of aseptic nonunion [15, 56–58]. Complimentary de-
oxyribonucleic acid array analysis has also elucidated 8 genes
expressed locally at significantly higher levels in nonunion
tissue when compared to fresh callus [59]. Most recently, 3
studies have also identified multiple micro-ribonucleic acids
linked to both impaired and augmented fracture healing
[60–62]. Although application of these results is limited by
study design and current understanding of nonunion patho-
genesis, it is reasonable to envision a future supplementary
role of genetic testing in individualized nonunion risk
determination.

Table 1 provides a summary of these factors as well as
other biologic, injury associated, and patient comorbidity fac-
tors affecting the progression of bone healing.

Clinical Assessments

History and Physical Exam

Diagnosis of fracture nonunion first involves a careful history
taking and physical exam. Pain/tenderness with palpation at
the fracture site, pain/tenderness with weight-bearing, and/or
an inability to bear weight altogether can be expected in cases
of nonunion, extrapolated from the 3 accepted physical exam
criteria by which a healed fracture is defined [64]. The clinical
assessment also includes evaluation of movement at the frac-
ture site, inspection for signs of infection, and assessment of
lengthening of shortening of the fracture segment as well as
alignment. Assessment of the patient’s weight-bearing status
and compliance is also important since delayed weight-
bearing was recently demonstrated to be associated with de-
layed healing [65]. This association is likely explained by the
need for an optimal stress environment to induce bone healing
in accordance with Perren’s strain theory [66].

Imaging

Although the physical exam can offer clues that a fracture is
failing to heal, radiologic assessment is the essential element

of formal nonunion diagnosis. Plain radiographs allow for
assessments of callus bridging, displacement, and angulation
at the fracture site, as well as implant loosening or failure
hinting at a present or impending nonunion. Traditionally,
radiographic determination of nonunion has been largely sub-
jective, leading to poor reliability in determining the stage of
union [67, 68]. In an effort to create more objective radio-
graphic parameters, standardized criteria in the form of radio-
graphic union scores for the tibia (RUST), hip (RUSH), hu-
merus (RUSHU), and radius (RUSS) have been developed
with interobserver reliability demonstrated in all scoring sys-
tems [69–73]. All four scoring systems utilize a modified ver-
sion of the same base scoring system, in which the presence of
callus and visible fracture line at anterior, posterior, medial,
and lateral cortices is rated on a 3-point scale with higher
scores correlating to union [70–73]. The RUSHU systemmost
modifies this base criteria, applying separate scores for corti-
cal bridging and fracture line visibility to each cortex in addi-
tion to two scores for trabecular consolidation [70]. A modi-
fied RUST (mRUST) score with a higher interobserver agree-
ment than the traditional RUST has also been developed. The
mRUST differs from RUST in that it further subdivides the
middle “present callus” score of 2 in the RUST for more
descriptive staging, making each cortical score out of four
instead of three [74]. Figure 2 shows the mRUST system
applied (Fig. 2). Validation work in animal models show that
RUST and mRUST scoring systems are significantly correlat-
ed with healing time, bonemineral density, and biomechanical
parameters [75–77]. The next step in widespread applica-
tion of RUST, mRUST, and other union scores for non-
union involves identifying a reliable threshold score at a
well-defined time point that can diagnose or even predict
the complication in each bone. Recent attempts have iden-
tified a RUSH score of < 18 at 6 months after injury in the
femoral neck, and a RUST score of roughly < 8 in the
range of 11 to 14 weeks after injury in either the tibia or
femur to distinguish a fracture that will heal from one that
will progress to nonunion [78, 79]. Further research in
this area is called for since identification of such a thresh-
old score would provide an objective diagnostic and pred-
icable value for earlier nonunion detection.

Other imaging options available for judging bone-healing
progression are computed tomography (CT) scanning and ul-
trasound. CT scans have been posited as a more sensitive
imaging study than plain radiographs for diagnosing non-
union; however, the demonstrated lack of specificity and arti-
fact caused by implants adjacent to the fracture site limits
clinical applicability [80, 81]. Alternatively, ultrasound is be-
ing considered an easily accessible, non-ionizing, and sensi-
tive imaging technology for diagnosing nonunion. Early work
by Craig et al. and Moed et al. first demonstrated ultrasound’s
ability to detect developing callus before it could be visualized
radiographically, implying it could be used to determine the
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osteogenic activity of a suspected nonunion [82, 83]. More
recent results by Nicholson et al. demonstrated that at 6 weeks
after injury, only 10% of patients had bridging callus on ra-
diograph but 60% had sonographic bridging callus (SBC), of
which all 60% went on to unite. Most importantly, this study
showed that no SBC was present at any time point in the
patients that developed nonunion [84•]. The use of contrast-
enhanced ultrasound has also recently demonstrated predic-
tive value in determining success of nonunion revision sur-
gery in the tibia through its ability to assess perfusion at the
fracture site [85]. These results, in combination with the ac-
cessibility and safety characteristic of ultrasound, suggest that
this technology could be used in daily clinical practice in the
near future.

Predictive Scoring

Using what is known about risk factors associated with non-
union in combination with validated imaging scoring tools,
multiple predictive scoring systems have been developed.
One such system integrates the RUST score, the presence of
infection, and the Nonunion Risk Determination Score created
by O’Halloran et al., utilizing 3 relevant paramters to stratify
nonunion risk in tibia fractures [86, 87]. Another, by Zura et al.,
was created using a database of over 90million participants and
has demonstrated the ability to predict nonunion in 18 different
bones [88••]. Overall, these scoring systems represent non-in-
vasive, objective tools that provide the clinician and patient
valuable information to help guide clinical decision-making.

Table 1 Biological, injury, and patient comorbidity factors affecting bone healing

Biological/molecular factors Injury/fixation factors Patient comorbidity factors

Adequate stem cell availability [8•,14,29,32,35] Adequate reduction/alignment [8•,15,94] Age [4,15,19,37]

Inflammatory state [14,22,25] Compartment syndrome [15,19,38,63] Alcohol use [4,15,19]

Genetic background [14,15,32,56–62] Fracture gap (cortical defect) [15–17,19,20,38] Diabetes [4,15,18,19,37,43]

Cytokine and morphogen expression:
TNF-α [14,23–25,32]
IL-6 [14,23,25–29,32]
BMPs [14,23,30–32]
MMPs [23,32,33]
VEGF [14,23,32,34]

Infection [11,14,15,19,38–40] Pharmaceuticals:
Antibiotics [4,15,19,50,52]
Anticoagulants [4,15,19,50,52]
Anticonvulsants [4,50]
Bisphosphonates [4,49,50,52]
Chemotherapeutics [15,19]
Opioids [4,50]
NSAIDs [4,15,19,45,50,53,54]
Steroids [15,19]

Mechanical instability [8•,11,15,18,19,66]

Open fracture [4,15,16,18,19,38,39,42,44]

Periosteal stripping [14,21]

Vascular compromise [14,15,19,37]

Smoking/tobacco use [15,18,19,37,44–47,49]

Fig. 2 Modified RUSTscoring of
humerus fracture lateral
radiographic series. Weeks after
fracture are denoted. The images
include numeric scoring for each
cortex based on the Modified
Radiological Union Score of
Tibia criteria [74]. Scoring criteria
is outlined below the radiograph
series. For complete mRUST
scoring, both cortices on anterior-
posterior radiographs would also
be scored and added to the scores
as seen above
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Efforts should be taken to validate these scores prospectively
and increase accessibility for real-time use in the clinic.

Serum Analysis

The documented circulation of signaling proteins during all
phases of fracture repair posits that serological differences
may exist between patients with unremarkable healing and
those with nonunion. Importantly, recent proof of concept
work by Hussein et al. demonstrated that changes in expres-
sion levels of various proteins involved in fracture healing
were detectable through serum analysis, and identified 50
candidate proteins of particular interest [89•]. Past work iden-
tifying potential markers has demonstrated differences be-
tween alkaline phosphate, osteocalcin, and various pro-
inflammatory cytokines between normal and nonunion
models; small sample sizes and poor controls in these studies
limit current applicability [90••, 91–93]. Properly controlled,
in vivo research is called for since identification of reliable
serum markers of nonunion would provide an immensely
valuable, objective, and accessible test with decisive clinical
applicability.

Treatment Approaches

Surgical Approaches

Surgery is often indicated for the treatment of an established
nonunion. If mechanical failure is the suspected cause of the
nonunion, revision, replacement, and/or augmentation of the
initial construct is indicated to optimize the strain experienced
within the fracture site environment to induce healing [5, 6, 8•,
49, 94]. Optimizing the mechanical environment can also in-
volve restoring proper limb alignment, helping recover native
on-axis force transmission that can improve patient function
and protect implants [5]. If deep infection is noted, surgical
intervention is required to irrigate and debride necrotic bone
and soft tissue to create clean bony margins capable of growth
(95). These cases may also require delivery of local antibiotics
in the form of antibiotic nails, cement beads, and cement
spacers [94, 96–98]. In the case of large cortical defects, as
can occur in high-grade open injuries or in the aftermath of
osteomyelitis, optimizing the mechanical environment may re-
quire the use of bone transport techniques such as application
of an Ilizarov external frame [99]. The Ilizarov frame in com-
bination with distraction of 1 mm per day following a latency
period may provide adequate stimulus for bone growth in these
complicated cases, preventing the need for amputation [100,
101].

In large cortical defects or nonunions deemed atrophic,
bone grafting may be useful to optimize both the mechanical
and biologic environment. Favorable grafts are osteogenic,

osteoinductive, and osteoconductive in nature. Autograft har-
vested from the iliac crest (ICBG) manifests these three qual-
ities and is the current gold standard in practice. Donor site
morbidity and even associated healthcare costs have prompted
the search for other options [49, 94, 102, 103]. In an effort to
mitigate these drawbacks, the reamer irrigator aspirator sys-
tem (RIA) was developed and has since proven to be an effi-
cacious alternative for harvesting autograft to ICBG with de-
creased cost and morbidity despite questions about its yield of
bone-forming cells [49, 94, 102, 104]. Allograft combined
with recombinant growth factors is also an option without
the drawback of host harvest [105]. Demonstration of de-
creased efficacy compared to autograft and associated disease
transmission risks, however, limits widespread implementa-
tion [94, 103]. Of note, a recent review by Maceroli et al.
found the mechanism of injury, increasing body mass, cortical
defect size, flap size, and insurance status to be significantly
associated with failure of the bone grafting procedure itself
[106].

Current research is investigating the combination of bone
mar row asp i r a t e concen t r a t e (BMAC) wi th an
osteoconductive scaffold as an alternative to ICBG and RIA
autograft. Thus far, BMAC has proven a reliable source of
concentrated MSCs that are not only osteogenic but also
osteoinductive [94, 103, 107, 108]. This is superior to both
autograft and growth factor supplementation, as MSCs from
BMAC are able to engage in coordinated paracrine signaling
at physiological levels [94, 108]. Support for the efficacy of
BMAC was recently provided by Gianakos et al. in their re-
view of animal studies, finding superior outcomes for
osteoconductive scaffolds treated with BMAC compared to
osteoconductive scaffolds with no progenitor cells across all
measurable markers of bone healing in the vast majority of
experiments [109]. An evenmore recent retrospective study in
humans found no difference in union rates between nonunions
treated with BMAC vs. ICBG [110•]. Regarding collection
method, bone marrow centrifuged to BMAC is also taken
from the iliac crest; however, it has demonstrated less donor
site morbidity in comparison to ICBG grafting with a
researched sector rule for directing safe extraction [108,
111]. Thus, BMAC, in combination with one of the many
commercially available osteoconductive scaffolds, appears
to be a promising future treatment option in biologically
non-viable nonunions or those with large cortical defects.
It should be noted, however, that recent work in the cardio-
vascular field demonstrated that the benefit of stem cell–
based therapies was from the acute immune response they
generated rather than from specific properties of the cells
themselves [112]. This consequently calls into question
whether MSCs and therefore BMAC is superior to other
stem cell–based therapies as promoters of healing in bone;
further basic science research comparing MSCs and BMAC
to cell-based controls is called for.
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Commercial Biologic Adjuvants

Multiple adjuvant therapies have been developed for the pur-
pose of augmenting the biologic capacity of an atrophic non-
union. Of these, demineralized bone matrix (DBM), BMPs,
PDGF, and parathyroid hormone (PTH) therapy are the four
with greatest clinical traction. DBM was the first of these ther-
apies to be researched and introduced, building off the land-
mark discovery in 1965 of Marshall Urist [113]. However, a
review of the literature reveals only methodologically weak
studies demonstrating a benefit for DBM in healing fromwhich
clinical decisions cannot be based [94, 114]. Also deriving from
Urist’s experiment was the discovery of BMP’s as critical
osteoinductive cytokines, from which considerable research
and development has led to the commercialization of both re-
combinant human rhBMP-2 and rhBMP-7 [102, 115].
Regarding comparison between the two types, two recent trials
have demonstrated rhBMP-2 to be superior to rhBMP-7 for the
indication of nonunion [116, 117]. Few trials exist, however,
supporting either type’s efficacy in comparison to the standard
of care autologous bone graft [30, 94]. Questions surrounding
dosage and delivery method, high cost, and potential compli-
cations from usage also raise concerns regarding the viability of
BMP for clinical use [30, 94]. Similar to both rhBMP-2 and
rhBMP-7, recombinant human-derived PDGF-BB (PDGF-
BB) is commercially available and FDA approved as an adju-
vant for nonunion. However, in contrast to both rhBMPs,
PDGF-BB is only approved for use in the setting of foot and
ankle arthrodesis nonunion for which it has demonstrated
promising healing results [118]. Further work supporting its
efficacy and safety in comparison to autograft and in nonunion
models of other bones may expand its use. Lastly, PTH injec-
tion, available commercially as Teriparatide, has demonstrated
promise as a healing adjuvant in osteoporosis and acute fracture

but not yet reliably in nonunion and is not currently FDA ap-
proved for this indication [94, 119]. In summary, at current,
each of these adjuvant therapy options hold immense potential
value as local stimulators of fracture nonunion. However, a lack
of strong, consistent level I evidence and questions about the
logistics of their application continues to prevent their whole-
hearted adoption.

Bone Stimulation

Bone growth stimulators are an available, non-invasive, adju-
vant treatment option for nonunion. Stimulator types include
direct current, capacitive coupling, inductive coupling, and
low-intensity pulsed ultrasound (LIPUS). A recent review by
Haglin et al. summarized the research to date on all four types
for the indication of nonunion, finding no consistent level I
evidence to support a clinical recommendation of the use of
any stimulator type [120]. This does not mean, however, that
bone stimulators hold no potential treatment value. In their
review, Haglin et al. acknowledged that inductive and capac-
itive coupling stimulators had “fair evidence” in the form of
multiple level II and level III studies with consistent findings
supporting their efficacy [120]. A randomized controlled trial
by Schofer et al. and meta-analysis by Leighton et al. on the
efficacy of LIPUS also points to LIPUS’s success in the 3- to
6-month period following revision surgery for augmenting
union, with Leighton et al. even going so far as to argue for
their efficacy over surgical intervention [121, 122]. Even in
the absence of substantial level I evidence, the indication may
still exist for the use of LIPUS, inductive coupling, and ca-
pacitive coupling stimulators in light of a risk-benefit analysis.
To date, no evidence links LIPUS, inductive or capacitive
coupling bone stimulators to any harmful side effects; thus,
these devices are low-risk, potentially maximum benefit

Table 2 Treatment approaches for nonunion

Surgical approaches Pharma and biopharma therapies Available devices

Mechanical environment optimization: DBM [94,114] Bone stimulators:
Direct current [97,124]
Capacitive coupling [97]
Inductive coupling [97,123]
LIPUS [120–122]

Original hardware revision, removal, and/or
replacement [5,6,8•,49,94]

Ilizarov frame placement [99–101]

rhBMPs:
rhBMP-2 [94,102,116,117]
rhBMP-7 [94,102,115]

Bone grafting:
Autograft:
ICBG [5,49,94,102]
RIA [5,49,94,102,104]

Allograft [94,105]
BMAC + osteoconductive scaffold [94,103,107–109, 110•]

PDGF* [118]
*only approved for use in foot and ankle

arthrodesis nonunion
PTH** [94,119]
**Not currently FDA approved for use

as nonunion therapy

Local infection management:
Irrigation and debridement [95]
Local antibiotic delivery:
Antibiotic nail [96,98]
Antibiotic cement beads [97]
Antibiotic cement spacers [94]
Bioresorbable antibiotic pellets [97]
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adjuvant therapies that at worst have no effect. Therefore, a
cost-benefit analysis would be a beneficial next step in
addition to aforementioned level I evidence for the pur-
poses of determining the need to elevate bone stimulators
from offered to recommended in the clinic. Table 2 sum-
marizes treatment options currently available to clinicians
for fracture nonunion.

Conclusion

Fracture nonunion remains a debilitating complication char-
acterized by high patient morbidity and economic burden.
Best clinical estimates point to either mechanical failure or
disruption of the “bone-healing unit” at the fracture site as
the chief causative elements, although an understanding of
what this means at a molecular level remains to be seen.
What can be agreed upon is that the healing process involves
a complex interaction of cellular signaling that is difficult to
augment exogenously with commercial biologics such as
rhBMPs or DBM. Zooming out from the cellular level reveals
that progress has been made identifying clinical risk factors
associated with nonunion and objective measures have im-
proved with which to make a timely diagnosis. Clinical im-
plementation of other promising diagnostic and therapeutic
technologies has largely been limited by a lack of convincing
evidence from reproducible and methodologically sound stud-
ies. Based on current trends, studies of this nature are likely in
the near future; with them will hopefully come the evidence to
support adoption of new solutions to what has been a long-
standing clinical challenge.
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