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Abstract
Purpose of Review To provide an overview on recent technical development for quantifyingmarrow composition usingmagnetic
resonance imaging (MRI) and spectroscopy (MRS) techniques, as well as a summary on recent findings of interrelationship
between marrow adipose tissue (MAT) and skeletal health in the context of osteoporosis.
Recent Findings There have been significant technical advances in reliable quantification of marrow composition using MR
techniques. Cross-sectional studies have demonstrated a negative correlation between MAT and bone, with trabecular bone
associating more strongly with MAT than cortical bone. However, longitudinal studies of MAT and bone are limited. MAT
contents and composition have been associated with prevalent vertebral fracture. The evidence between MAT and clinical
fracture is more limited, and, to date, no studies have reported on the relationship between MAT and incident fracture.
Summary Increasing evidence suggests a dynamic role of marrow fat in skeletal health. Reliable non-invasive quantification of
marrow composition will facilitate developing novel treatment strategies for osteoporosis.

Keywords Bonemarrow composition .Marrow adipose tissue . Bonemarrow fat . Bone-fat interaction . Osteoporosis . Marrow
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Introduction

Bone marrow, the primary site of hematopoiesis, is one of the
largest organs in the body that accounts for up to 4–5% body
weight. Marrow tissue is composed primarily of hematopoi-
etic cells, adipocytes, and supportive stromal cells surrounded
by vascular sinuses and trabecular bone. Marrow composition
changes dynamically with altered hematopoietic needs,
resulting from aging, pathologies, and other factors. The
well-known conversion from “red” to “yellow” marrow con-
tinues throughout life following a pattern from the peripheral
toward the central skeleton. Historically, marrow fat increas-
ing with age has been viewed as a neutral process, with mar-

row adipose tissue (MAT) serving as a “space filler” in the
bone marrow. Emerging evidence suggests that MAT is a dis-
tinct fat depot with different properties and functions from
other fat depots, and plays a dynamic role affecting both bone
quantity and quality (1, 2). The mechanism of this bone-fat
interaction, however, is not fully understood (3, 4).
Hypotheses include allocation shift of mesenchymal stem
cells from the osteoblast lineage toward the adipocyte lineage
(5, 6) (although the definitive lineage of marrow adipocytes
remains largely unknown and controversial), and potential
direct impact on bone turnover by secreting an array of factors
with autocrine and paracrine effects (7–9).

In parallel of figuring out the underlying mechanism of
bone-fat interaction, there is an increasing interest of quanti-
fying bone marrow composition using non-invasive imaging,
which will enable large-scale human subject studies and facil-
itate development of novel therapeutic strategies for osteopo-
rosis with marrow fat severing as a novel treatment target.
This review will discuss recent developments in quantitative
MRI assessment of bone marrow composition, including
water-fat MR imaging, MR spectroscopy, diffusion and per-
fusion MRI, followed by recent findings of interrelationship
between MAT and skeletal health of human subjects in the
context of osteoporosis.
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MR Techniques for BoneMarrow Composition
Measurement

MR Imaging and Spectroscopy for Quantifying
Marrow Adipose Tissue

Water-Fat MRI

MRI provides high-resolution 3D images with superior con-
trast of soft tissues and without ionizing radiation. Clinically,
T1-weighted images without fat suppression, and fat-
suppressed or fluid-sensitive T2-weighted images, have been
used widely for visualizing bone marrow lesions (10–12). T1-
weighted MRI has also been used to quantify MAT volume
based on thresholdingmethods (13), which however is limited
by potential bias introduced by MR signal variability.
Chemical shift-encoding-based water-fat MRI (Dixon-MRI
or CSE-MRI) has been developed and applied in bonemarrow
to provide superior fat suppression as well as “absolute”
and standardized proton density fat fraction (PDFF) maps
(14, 15).

The initial 2-point Dixon method (16) suffers from assum-
ing perfect B0 homogeneity while Dixon imaging with 3 or
more echoes takes into account field inhomogeneity and other
co-founding factors (17). In Dixon methods, separate water
and fat images are generated based on parameter estimation
using either complex or magnitude signals (normally vendors
also provide in-phase and out-of-phase images). Methods
based on complex images have the advantage of better noise
performance and lower sensitivity to fat signal modeling er-
rors compared with magnitude-based methods. However,
complex-based methods are also more prone to phase errors
induced by hardware imperfections including concomitant
gradients, eddy currents, and gradient delays (18–21). In ad-
dition to phase errors, other co-founding factors that need to
be considered to minimize bias on PDFF estimate include the
presence of multiple peaks in the fat spectrum, presence of
susceptibility-induced fat resonance shifts, T2* effects, and
T1 effects (22–26•).

MAT quantification using Dixon imaging were reported to
significantly correlate with measures from dual source CT
(DECT) (r = 0.88) and histology (r = 0.772) (27), and MR
spectroscopy (26•, 28). A specimen study reported strong cor-
relation between the known fat fraction and PDFF measured
by 6-point Dixon imaging and iterative decomposition of fat
and water with echo asymmetry and least squares estimation
(IDEAL) reconstruction (R2 = 0.97). However, a small sys-
tematic underestimate (− 3.2%) by IDEAL PDFF was ob-
served. The authors suggested that, although difficult, signal
modeling allowing for independent correction of T2* for the
different fat components as well as water might be useful
toward more accurately estimating PDFF in the presence of
trabecular bone (29).

Excellent in vivo reproducibility was reported for MAT
quantification using water-fat MRI: coefficients of variation
(CVs) were 1.7%, 3.0%, and 4.8% for repeated scans on the
same day with repositioning, 6 weeks and 6 months apart,
respectively (30, 31), and intra-class correlation coefficients
(ICC) > 0.97 for repeated scans 2 weeks apart (32, 33•). A
recent study involving both 1.5T and 3T scanners from two
vendors reported high linearity (r2 = 0.972–0.978) and small
mean bias (0.6–1.5%) with 95% limits of agreement within
3.4% of PDFF of lumber vertebral bodies across field
strengths, imaging platforms, and readers (33•).

MR Spectroscopy

MR spectroscopy (MRS) has been considered as the gold
standard for quantifying MAT contents and composition.
MRS studies in bonemarrow have used primarily single voxel
spectroscopy (SVS), which were acquired by either point-
resolved spectroscopy (PRESS) or stimulated echo acquisi-
tion mode (STEAM). STEAM has several advantages over
PRESS. First, STEAM allows shorter minimal TE, hence
leading to less T2 weighting of the signal. Second, by using
90° pulses only (PRESS uses 90° followed by two 180°
pulses), STEAM can provide sharper slice profile, and higher
bandwidth which results in less chemical shift displacement
artifact of the selected volume. Lastly, it was suggested that
STEAM was less affected by J-coupling effects than PRESS,
and consequently less prone to T2 underestimate and fat peak
area overestimation (34). However, the major drawback of
STEAM is that it provides only 50% SNR compared with
PRESS at given TR and TE.

Figure 1 shows a typical MR spectrum collected in the
vertebrae on clinical scanners. Based on peak assignment
from high-resolution NMR spectroscopy in acylglycerol mix-
tures and MAT samples (35–37), lipid peaks I, IV, V, and VI
are assigned to resonances of lipid protons at 0.90 ppm,
2.77 ppm, 4.20 ppm, and 5.31 ppm respectively. Peak II is
assigned to the superposition of resonances at 1.30 ppm and
1.59 ppm, and peak III is assigned to the superposition of
resonances at 2.03 ppm and 2.25 ppm. The water peak is at
4.7 ppm. From these peaks, two parameters can be derived to
characterize the marrow fat:

Fat Content FCð Þ
¼ All lipids= All lipidsþ waterð Þ*100% ð1Þ

Unsaturation Index UIð Þ
¼ Unsaturated Lipids 5:3 ppmð Þ=All Lipids*100% ð2Þ

The in vivo MRS data analysis for accurate fat quantifica-
tion in bone marrow, especially fat composition, is

58 Curr Osteoporos Rep (2020) 18:57–66



challenging due to line broadening caused by susceptibility
differences between bone and marrow, and superposition of
spectral peaks. Peak area integration has been used, which
however has limited capability of quantifying overlapping
peaks (38–40). Peak fitting methods using LC models with
pre-defined base-sets (41, 42) or using line-shape models with
prior information in either frequency-domain (26•, 43, 44) or

time-domain (45, 46) can help to improve the quantification
accuracy. Previous studies with line-shape model fitting most-
ly used Lorentzian or Gaussian models for the fitting. A recent
study showed that using Voigt model reduced the fitting error
by 33.8% and 32.3% compared with using Lorentzian and
Gaussian models respectively (47) (Fig. 1b). Using Voigt
models and time-domain fitting, a fully automatic algorithm

Fig. 1 a Single voxelMRS data in L2 using PRESS sequence at 1.5 Tesla
(female, 92 years old). b Lipid peaks I, IV, V, and VI were assigned to
resonance of lipid protons at 0.90 ppm [–(CH2)n–CH3)], 2.77 ppm [–
CH=CH–CH2–CH=CH–], 4.20 ppm [–CH2–O–CO–], and 5.31 ppm [–
CH=CH–], respectively. Peak II was assigned to the superposition of
resonances at 1.30 ppm [–(CH2)n–] and 1.59 ppm [–CO–CH2–CH2–],
and peak III was assigned to the superposition of resonances at 2.03 ppm

[–CH2–CH=CH–CH2–] and 2.25 ppm [–CO–CH2–CH2–]. The water
peak was at 4.7 ppm. The spectrum was fitted using Voigt model (left
column), pure Lorentzian model (middle column), and pure Gaussian
model (right column). Blue, red, and green curves represent the
experimental spectrum, the fitting spectrum, and the spectra of
separated components, respectively. Fitting residuals are plotted in
black and enlarged in bottom row (adapted from reference (48))
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was developed with high reliability and repeatability of quan-
tifying MATcontents and composition even for data collected
at 1.5 Tesla (47). Other factors affecting fat contents or com-
position evaluation include the different T2 weights of water
and lipids in spectrum acquired with single TE. Acquiring
data with multiple TEs will allow T2 correction (48•).

In vertebral bodies, the CVs of FC were reported to range
from 1.5 to 5.9% for rescans on the same day with reposi-
tioning between scans (43, 47, 49). The ICCs were 0.97 and
0.95 and CVs were 9.9% and 12.3% for repeated scans at
6 weeks and 6 months respectively (50). In femur, the ICCs
were 0.78–0.85 for repeated scan within a week (51), or CVof
5%within 10 days (41). UI normally has inferior repeatability
compared with FC, with CV reported to range from 5.1 to
10.7% for scans on the same day with repositioning between
scans (43, 47). The reliability of UI estimate depends on both
the spectral SNR and spectral resolution (47). High field
strength will help to improve both aspects. Studies reported
that FC increases significantly from L1 to L4 (39, 43, 47),
while UI has no such trend (47).

Compared with MRS, water-fat MRI has the advantages of
higher spatial resolution, which is valuable especially in areas
with heterogeneous marrow distribution. However, it is more
challenging to quantify marrow fat composition accurately
using water-fat MRI. Water-fat MRI or CSE-MRI that can
simultaneously quantify fat contents and composition has
been developed, initially in liver (52, 53•). The feasibility of
applying this technique in bone marrow has been shown re-
cently (54, 55); however, more validation is warranted in the
trabecularized marrow. On the other hand, with recent algo-
rithm developments, in vivoMRS showed excellent reliability
of quantifying different fat components in marrow. However,
SVS has limited coverage and only average measures over the
whole volume are available. MR spectroscopic imaging
(MRSI) can provide spatially resolved assessment (although
normally still at a lower resolution than water-fat MRI). The
feasibility of bone marrowMRSI was shown in the knee (56),
and more work is needed for evaluating osteoporosis in spine
and other sites.

Perfusion and Diffusion MRI in Bone Marrow

Perfusion and diffusion MRI are established quantitative MR
techniques that have been applied in bone marrow for charac-
terizing tumors and metastases, metabolic diseases, osteopo-
rosis, and fractures (15, 57, 58).

Perfusion MRI measures tissue hemodynamics, and perfu-
sion MRI studies in bone marrow have been primarily per-
formed using dynamic contrast-enhanced (DCE) MRI. T1-
weighted MR images are acquired before, during, and after
rapid intravenous injection of Gd-based contrast agents that
shorten T1 when the bolus passes through the tissue. Perfusion
parameters, including maximum enhancement, slope, and

transit time, can be extracted from the perfusion time-signal
curve, using empirical quantitative methods. To obtain more
machine-independent parameters that are physiologically
meaningful, including blood volume, flow, transit time con-
stants, and permeability, tracer kinetic modeling has been ap-
plied with the requirement of an arterial input function (AIF).
In femur, CVs of MR perfusion (scan and rescan at 1 week)
ranged from 0.59 (enhancement slope femoral head) to 0.98
(enhancement maximum acetabulum) (51). Decreased perfu-
sion was observed with decreased BMD in vertebral body (45,
59, 60) and in femur (61, 62). Furthermore, femur perfusion
parameters (and marrow fat) at baseline predicted bone loss in
femoral neck over 4 years (63). However, the effect of fat
signal on perfusion parameter quantification needs to be ad-
dressed (64•, 65). Despite interesting results, the usage of
contrast agent has impeded wide applications of perfusion
MRI for studying osteoporosis.

Diffusion MRI is sensitive to Brownian motion, or “self-
diffusion” of water molecule that is related to tissue micro-
structure and organization by using an additional pair of
diffusion-weighting or dephasing gradient pulses into existing
pulse sequences. Diffusion MRI based on single-shot echo-
planar imaging (ssEPI) is the most commonly used sequences
due to its fast acquisition and robustness to motion. However,
applying ssEPI-diffusion MRI in bone marrow is challenging
due to the susceptibility difference between bone and marrow
and the images are prone to geometric distortions especially at
high resolution. Methods to reduce such distortions include
using reduced-FOV EPI, single-shot turbo-spin-echo or fast-
spin-echo, and steady-state free-precession sequences showed
promising results in bone marrow applications (58). Apparent
diffusion coefficients (ADCs) of normal vertebral bone mar-
rowwere reported to range between 0.2 and 0.6 × 10−3 mm2/s,
which is lower than almost all other tissues except fat in hu-
man body (58). The slow diffusion demands large diffusion
weight which however will result in low SNR. Marrow ADC
were reported to decrease from L1–L5 (66) and decrease with
increasing age (67, 68), which may be explained by increased
marrow fat from L1–L5 and with increasing age thus more
restriction to the water diffusion. However, it should be noted
that, because fat has very low diffusion, data acquisition with-
out fat suppression or with less optimal fat suppression will
result in underestimates of marrow ADC (65).

A number of studies reported decreased ADC with de-
creased BMD (67, 69, 70); other studies reported either no
correlation between ADC and BMD (60), or even a slight
increase of ADC with decreased BMD (71). The different
results between studies may be explained by different diffu-
sion sequences and parameters, post-processing methods, and
study cohorts. In general, to accurately quantify marrowwater
diffusion is technically challenging (susceptibility inhomoge-
neity, low diffusion, requirement for optimal fat suppression).
More technical development and clinical evaluations are
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needed to define the clinical values of diffusion MRI to eval-
uate and monitor marrow composition in osteoporosis.

Marrow Adipose Tissue and Skeletal Health

Marrow Fat and Bone

An early study reported an association between increased
MAT and osteoporosis, using biopsy assessments of marrow
composition (72). The availability of non-invasive measure-
ments of marrow adiposity has allowed an expansion of re-
search into associations with bone. A range of studies have
reported a cross-sectional relationship between higher MAT
and lower bone density, measured with dual x-ray absorpti-
ometry (DXA) (45, 49, 60, 73, 74). For example, studies in
Hong Kong reported that average MATwas 68% versus 59%
in women and 58% versus 50% in men, for those with osteo-
porosis and normal BMD, respectively, based on spine BMD
by DXA (45, 46, 47, 60).

BMDmeasured byDXA is central to clinical assessment of
fracture risk, but QCT measures of bone have important ad-
vantages for research, including a volumetric bone density
(vBMD) measurement, ability to distinguish cortical and tra-
becular bone, and estimates of bone strength parameters. As
with DXA measures of aBMD, lower vBMD by QCT is as-
sociated with increased MAT (49, 75–78). Trabecular bone
appears to bemore strongly associated withMAT than cortical
bone. In a cohort of older adults in Iceland, higher MAT was
associated with lower levels of trabecular vBMD at the spine,
total hip, and femoral neck, but was not significantly associ-
ated with cortical vBMD at total hip or femoral neck in wom-
en (49). For example, for a 1 SD increase in MAT (+ 8%),
older women had 4.0% (95% CI − 7.6 to − 0.1%) lower tra-
becular vBMD and only 0.5% (95% CI − 1.7 to 0.7%) lower
cortical vBMD at the total hip. Negative correlations between
MAT and vBMD have also been reported in obese patients
measured prior to bariatric surgery (76, 77).

A limitation of these studies, which have used single
energy (SE) QCT to assess the association between
vBMD and MAT, is the artifact introduced by partial vol-
ume averaging, resulting in lower vBMD measurement
due to bone voxels that contain fat. Thus, higher MAT
artificially lowers SE QCT measurements of bone
(78–80). The effects appear to be larger for trabecular
versus cortical vBMD. A recent study assessed the effect
of this artifact by comparing results using SE QCT and
dual energy (DE) QCT which is less confounded by mar-
row fat levels. This study of 129 early postmenopausal
women recruited at the Mayo Clinic reported that SE
QCT underestimates bone compared with DE QCT by
17.6% for trabecular spine vBMD but only 3.2% for cor-
t ical femoral neck vBMD (78). In spite of this

underestimation, the correlations between MAT, measured
with DE QCT, and the two different estimates of vBMD,
by SE QCT and by DE QCT, appeared similar. The cor-
relation coefficient for the association between femur
MAT and total vBMD was − 0.33 for both SE QCT and
DE QCT. For trabecular spine vBMD, the correlations
with femur MAT were − 0.28 for SE QCT and − 0.29 for
DE QCT; correlations with spine MAT were − 0.57 for SE
QCT and − 0.56 for DE QCT.

High-resolution peripheral QCT (HR-pQCT) provides
measurements of bone microarchitecture but is currently only
available at distal sites. To date, one study of marrow fat and
HR-pQCT has been published (81). In a study of young adults
with anorexia (N = 47) and healthy controls (N = 55), total
vBMD at the distal radius was negatively correlated with ver-
tebral MAT (r = − 0.35, p = 0.03), measured by MRS. The
negative correlation was limited to trabecular vBMD (r = −
0.30, p = 0.05) and not evident for cortical vBMD (r = − 0.10,
p = 0.51). Stiffness of the distal radius, assessed with finite
element analysis, was also negatively correlated with MAT
(− 0.37, p = 0.02).

Cross-sectional studies have demonstrated a negative
correlation between marrow fat and bone using different
measurement techniques and in different populations.
However, longitudinal studies of marrow fat and bone
are crucial to establish the temporal relationship of chang-
es. Few longitudinal studies are available to date. Griffith
and colleagues reported that in postmenopausal women
(average age 74 years), higher levels of MAT predicted
greater bone loss at the femoral neck over 4 years (63).
Those with MAT levels above the median had mean bone
loss of 4.7% while those below the median had mean loss
of 1.6%, although the comparison was not statistically
significant (p = 0.06). Among older adults in Iceland
followed for an average of 3 years, we found that trabec-
ular spine vBMD, spine compressive strength (derived
from density and cross-sectional area), and trabecular
femoral neck vBMD decreased more rapidly in those with
higher BMAT in women but not in men (82). The differ-
ence in changes in trabecular spine vBMD was − 0.9%
(95% CI − 1.7 to − 0.1%) for each 1 SD (~ 8%) increase
in baseline MAT. In contrast, the Mayo Clinic study did
not find negative correlations between baseline MAT and
changes in vBMD measured with SE QCT or DE QCT
(78). However, this study also reported the correlations
between changes in MAT and changes in vBMD and
found a negative correlation between changes in femur
MAT and trabecular spine vBMD (DE QCT) (r = −
0.19%/year, p < 0.05). Correlations between changes in
MAT and BMD in the setting of bariatric surgery have
also been reported (76). Those with increases in spine
MAT had more BMD loss in spine vBMD (r = − 0.58,
p < 0.01), 6 months after surgery.
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Marrow Fat and Fracture

There is consistent evidence from cross-sectional studies, using
different methods tomeasuremarrow adiposity, that higherMAT
is associated with prevalent vertebral fracture, identified morpho-
metrically (49, 73, 82, 83•, 84). Iliac crest biopsies were used to
assess marrow adiposity in women with prevalent vertebral frac-
ture compared with controls (63% vs 54%, p = 0.02) (83•). An
examination of MAT in the lumbar spine and proximal femur,
using MR imaging, reported higher MAT at both locations in
those with prevalent vertebral fracture (73). The mean MAT at
the spine was 55% and 45% (p < 0.001) in women with and
without prevalent vertebral fracture. Among older adults (mean
age 79 ± 3 years) participating in the Iceland AGES-Reykjavik
study, vertebral MAT, measured by MRS, was 57% versus 54%
(p= 0.01) comparing those with and without vertebral fracture,
adjusted for spine trabecular vBMD (49). Vertebral MAT is also
associated with vertebral fracture among patients with active
Cushing’s syndrome (84). Average vertebral MAT by MRS
was 65% versus 24% (p = 0.03) in patients with (N = 13) and
without (N = 7) vertebral fracture.

The evidence regarding clinical fracture is more limited. In
a cross-sectional study comparing postmenopausal women
with (N = 36) and without (N = 33) history of clinical fracture
(primarily non-vertebral), vertebral MATmeasured withMRS
was similar between groups (44). In contrast, a recent cross-
sectional study in women aged 40–70 comparing cases (N =
77) with a recent non-vertebral fracture and controls (N = 226)
without fracture history reported increased odds of fracture
with higher marrow adiposity index (MAI) (85). MAI was
estimated from high-resolution pQCT (HR-pQCT) scans with
MAI = adipose volume (AV)/ total marrow volume (TV) ×
relative medullary density. For each 1SD increase in MAI, the
odds of fracture history increased by 3.6 (95% CI 2.2–5.9) for
distal tibia MAI and 4.2 (95% CI 2.5–7.2) for distal radius
MAI. To date, there are no longitudinal studies reporting the
relationship between MAT and incident fracture. Such an as-
sessment is a critical component of research efforts to deter-
mine the effects of MAT on skeletal health.

Composition of Marrow Fat and Skeletal Health

Marrow fat is composed of differing proportions of saturated and
unsaturated lipids, which may be important for skeletal health.
As discussed above, MRS can distinguish the relative proportion
of different carbon-carbon bonds within the marrow fat. These
bonds do not correspond directly to specific lipids but do provide
a non-invasive estimate of the proportion of saturated versus
unsaturated lipids present. Methylene protons at 1.3 ppm are
considered a marker for saturated bonds while olefinic protons
at 5.3 ppm are a marker for unsaturated bonds. Results are gen-
erally reported as an “unsaturation index (UI),” calculated as the
ratio of the 5.3 ppm peak to all lipid peaks, as shown in Eq. (2).

The UI differs by skeletal site, with higher UI at the more distal
sites (86). In young adults, UI is reported to increase with age
(87). However, a comparison of younger (mean age 28 years)
and older (mean age 70 years) women found lower UI levels in
vertebral marrow fat with older age (46). Similarly, in a study of
marrow fat in the femoral head, measured with CSE-MRI, post-
menopausal women had lower UI than pre-menopausal women
(54). These studies on age and saturation index need further
confirmation but suggest an increase in UI with skeletal matura-
tion followed by a decrease in older age, at least for women.

A few studies have considered the relationship between
marrow fat lipid composition and skeletal health. A study in
Hong Kong reported that a lower proportion of unsaturated
lipids are associated with lower bone density (46). Older
women with osteoporotic BMD had a mean unsaturation level
of 0.091 compared with 0.114 in those with normal BMD. In a
study of lipid composition of marrow at the calcaneus, the
ratio of saturated to unsaturated lipid was lower in those with
normal BMD comparedwith osteopenic or osteoporotic BMD
(42). In a study that included anorexic and healthy young
women, higher levels of saturated lipids were associated with
lower spine BMD while there was no association between
saturated lipids and BMD (41).

A study using marrow fat specimens (N = 24), obtained by
iliac crest aspiration during hip surgery, also found lower
unsaturation, measured with 11.7T MRS, in the women with
lower BMD (37). In contrast, in a study in Hong Kong using
marrow fat specimens from elective orthopedic surgery at differ-
ent skeletal sites, including the tibia (N = 80), proximal femur
(N = 38), and spine (N = 8), analysis of fatty acid composition
with gas chromatography found similar composition across
levels of BMD (88). One published study has assessed unsatu-
rated lipids and fracture, reporting that the unsaturation indexwas
1.7% lower (95% CI − 2.8 to − 0.5%, p = 0.005), in postmeno-
pausal women with versus without prevalent fracture (44).

Importantly, these initial findings on lipid composition sug-
gest that the different components of marrow fat have divergent
associations with bone health. If these results are confirmed by
further studies, it suggests that our current use of total marrow fat
content in studies of marrow fat and bone, measured by either
PDFF from water-fat MRI or all lipid components from MRS,
may be obscuring relationships. We would predict that the same
MATcontent with different ratios of unsaturated and saturated fat
would have different associations with BMD and with fracture.
Future investigations should include separate assessment of un-
saturated and saturated lipids in order to clearly distinguish the
effects on bone.

Conclusions

Increasing evidence suggests a key role of marrow fat in skeletal
health, affecting bone quantity and quality, although the
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mechanisms of such effects remain to be fully understood. There
have been significant technical advances in reliable quantifica-
tion of total marrow fat content, or PDFF, using MR techniques.
One exciting area with new promising results is to explore the
relationship betweenmarrow fat composition and skeletal health.
However, reliable in vivo quantification of marrow fat composi-
tion remains challenging due to the heterogeneous environment
of marrow with the presence of trabecular bone, compared with
other adipose tissues. Non-invasive imaging techniques need to
be further developed, optimized, and validated in marrow.
Reliable, standardized, and automatic post-processing is also ur-
gently needed, especially for large-scale multi-center studies that
will be needed to assess the relationship between marrow fat and
incident fracture. Accurate and reliable quantification of marrow
fat contents and composition will help to deepen our understand-
ing of bone-fat interaction, provide useful guidance on develop-
ing novel treatment strategy for osteoporosis withmarrow fat as a
treatment target, and serve as potential biomarkers and outcome
measures for trials.
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