
SKELETAL BIOLOGY AND REGULATION (M FORWOOD AND A ROBLING, SECTION EDITORS)

RNA-seq in Skeletal Biology

Ugur Ayturk1

Published online: 15 May 2019
# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Purpose of Review The goal of this paper is to review state-of-the-art transcriptome profiling methods and their recent applica-
tions in the field of skeletal biology.
Recent Findings Next-generation sequencing of mRNA (RNA-seq) methods have been established and routinely used in skeletal
biology research. RNA-seq has led to the identification of novel genes and transcription factors involved in skeletal development
and disease, through its application in small and large animal models, as well as human tissue and cells. With the availability of
advanced techniques such as single-cell RNA-seq, novel cell types in skeletal tissues are being identified.
Summary As the sequencing technologies are rapidly evolving, the exciting discoveries supported by transcriptomics will
continue to emerge and improve our understanding of the biology of the skeleton.
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Introduction

Over the last two decades, transcriptional profiling methods
have evolved from targeted quantification of one or few tran-
scripts (e.g., qRT-PCR) to unbiased, simultaneous profiling of
thousands of transcripts (e.g., microarrays and RNA-seq). The
targeted approaches such as qRT-PCR are still commonly
used, as they are rapid, affordable, and do not require bioin-
formatics expertise. However, next-generation sequencing–
based techniques, mainly RNA-seq, have quickly become a
powerful alternative to the conventional techniques. RNA-seq
allows profiling of the whole transcriptome and can therefore
reveal alterations in the entire signaling networks, and poten-
tially lead to the identification of novel genes of significance
that could not be predicted a priori. With the availability of a
large array of wet-lab and dry-lab tools, RNA-seq has become
one of the standard techniques in molecular biology research.

Since the initial application of next-generation sequencing
technology to complementary DNA (cDNA) [1–3], RNA-seq

has been widely used in skeletal biology research. Today,
RNA-seq continues to hold significant potential to answer
some of the pressing questions regarding skeletal develop-
ment and disease. The origin of skeletal tissues, such as bone,
cartilage, ligament, and tendon, remains incompletely under-
stood with respect to the mesenchymal cell populations in-
volved in their development. At the same time, our under-
standing of prevalent skeletal disorders, such as osteoporosis
and osteoarthritis, is limited in terms of the molecular events
underlying disease initiation, progression, and treatment with
existing therapies. RNA-seq has provided insight into some of
the aforementioned issues in studies evaluating clinically
available and experimental therapies in animal models, and
will continue to do so with the emergence of advanced tech-
niques such as single-cell RNA-seq (scRNA-seq) and spatial
transcriptomics.

In this paper, I will review the typical RNA-seq
workflow commonly used to evaluate messenger RNA
(mRNA) expression, while highlighting the specific chal-
lenges associated with studying skeletal tissues and the
solutions that have been proposed in the literature. I will
provide a brief overview of recent studies on bone, carti-
lage, ligament, and tendon tissues that benefited from
RNA-seq analyses. I will also review more recently devel-
oped technologies such as scRNA-seq, whose application
have so far been limited but holds potential to provide
deeper insight into the biology of the skeleton.
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Generation and Analysis of RNA-seq Data

A typical RNA-seq experiment has two components: Library
preparation (wet-lab) and computational data analysis (dry-
lab). For the preparation of high-quality RNA-seq libraries,
high-quality RNA samples are required. The use of degraded
RNA results in uneven coverage of transcript sequences with
a bias towards the 3′ untranslated region (UTR), and the com-
plexity of the transcriptome is reduced when the degradation
is severe [4]. A standard method for determining RNA quality
is to calculate the RNA integrity number (RIN, within a range
of 0 to 10), based on the length distribution of RNA transcripts
and the relative abundances of 18S and 28S ribosomal RNA in
each specimen. However, isolation of RNA with sufficient
quality (i.e., high RIN) and quantity can be challenging when
dealing with matrix-rich skeletal tissues, especially those from
small animal models. Post-mortem RNA preservation tech-
niques (e.g., RNAlater) that can chemically stabilize highly
cellular tissues such as brain, liver, or kidney are not necessar-
ily compatible with skeletal tissues [5]; these solutions are not
capable of fully penetrating the extracellular matrix to reach
the cells, especially in the case of mineralized tissues.
Alternatively, de-activation of RNA-degrading enzymes by
rapidly cooling tissue specimens following harvest can be a
viable approach [6, 7]. This problem has been recognized in
the field of skeletal biology, and multiple tissue-specific RNA
isolation protocols have been described for bone, cartilage,
ligament, and tendon [8–10, 11•, 12, 13•, 14•,15–17]. Laser
capture microdissection (LCM), which allows extraction of
cells from precise anatomic locations, typically yields degrad-
ed RNA. However, specialized approaches for sequencing
LCM-derived RNA have also been described [18–20]. A typ-
ical library preparation pipeline involves enrichment of
mRNA (or conversely, depletion of ribosomal RNA), frag-
mentation, reverse transcription of mRNA, double-stranded
cDNA generation, blunting of 5′ and 3′ regions of the cDNA
molecules, barcoded adapter ligation (which allow combining
multiple samples in downstream sequencing steps), amplifi-
cation, and purification of the cDNA libraries (Fig. 1). Pooled
libraries can then be sequenced with single- or paired-end
settings; in other words, one or two-paired reads can be gen-
erated by sequencing the transcripts, each with typically 50–
100 bp length.

The appropriate number of reads per library depends on the
desired downstream application; however, for standard
mRNA expression analyses, 10–25 million reads per library
have been reported to be sufficient to detect significant differ-
ences between treatment and control groups in skeletal biolo-
gy studies on animal models [21••, 22]. Importantly, the num-
ber of genes whose expression could be reliably detected with
RNA-seq depends on the transcriptional complexity of the
source tissue. While evaluating multiple mouse tissues with
RNA-seq, we have previously shown that less than 5000

transcripts can be detected above the detectability threshold
(RPKM> 5) for skeletal muscle and whole blood, whereas >
8000 transcripts can be detected above the same threshold in
bonemarrow and > 9000 transcripts in long bone tissue [21••].
Furthermore, increasing the number of sequencing reads does
not necessarily lead to a meaningful increase in the number of
genes whose expressions are detected. Conversely, when gene
expression differences between two or more groups are
sought, increasing the number of replicates in each group
can substantially enhance the statistical power of the experi-
ment, and might help detect subtler changes in transcriptional
activity [23, 24]. So how many biologic replicates does one
need in an experiment? The answer depends on the expected
variability in each group (which can be lower when testing a
cell line vs fresh frozen tissue) and the desired power (e.g.,
detecting threefold changes in expression vs 1.5-fold). Power
analysis tools for RNA-seq experiments have been developed
([25–28]). Furthermore, whole tissue RNA-seq experiments
on long bone and ligament tissue have reported the detection
of gene expression changes as low as twofold with n = 6–8
biologic replicates [21••, 22, 29]. With cultured cells, where
the variability within each biologic group might be limited
relative to fresh frozen tissue, it could be possible to attain a
similar level of statistical power with less replicates.

Following quality control of sequencing reads (FastQC is a
commonly employed tool for this [30]), the first step of bio-
informatics analysis is the alignment of the reads to a reference
genome. Using paired and long reads can increase the speci-
ficity of alignment, but even with 50 bp single-end reads,
high-quality RNA-seq libraries can generate reads ~ 99% of
which can be successfully aligned (~ 80–85% uniquely) to a
position in the well-defined mouse or human genomes [19,
31, 32]. Then, the mapped reads are annotated; in other words,
reads that correspond to the exonic sequences of each gene are
identified and gene-specific read counts are calculated (Fig.
1). In experiments where unconventional model organisms are
utilized, familiarity with the genetics of the model organism
might be helpful, as available sequence and gene annotation
data may be limited. This problem could be circumvented
with de novo transcriptome assembly tools, which do not re-
quire the existence of a reference genome, but come at the cost
of additional computational effort [33]. Once total read counts
per gene are calculated, these values can be normalized for
downstream analyses in a number of ways. In order to rank
genes based on their expression levels, reads/fragments per
kilobasemillion (RPKM/FPKM) values are calculated by nor-
malizing the read counts with respect to (1) the total number of
reads in each library and (2) the length of the exonic sequence
in each gene.

For statistical evaluations where two or more groups of
libraries are compared, more sophisticated approaches are re-
quired, which take the transcriptional complexity of libraries
into account. edgeR and DESeq are two very commonly used
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R subroutine packages that offer advanced normalization and
differential expression algorithms [34, 35]. In addition to
these, an important consideration in RNA-seq data analysis
is the utilization of algorithms for multiple hypothesis testing
correction. Performing thousands of simultaneous statistical
tests on gene expression leads to an increased number of in-
correct significance calls (i.e., type I error). In order to address
this problem, the concept of false discovery rate (FDR) [36] is
incorporated into differential expression analysis packages
(including edgeR and DESeq) and can be controlled through
conservative adjustment of p values, which results in a reduc-
tion in the aforementioned error. More “user friendly” soft-
ware with a graphic user interface, such as Galaxy, are also
available [37]. Finally, gene set enrichment analysis software
can assist in evaluating differences between multiple groups
of samples, especially when a large number of genes are found
to be differentially expressed.

Applications of RNA-seq on Skeletal Tissues

As an unbiased molecular profiling method, RNA-seq has
been applied to a very diverse set of problems in the field of
skeletal biology. The broad scope of the studies reviewed
herein demonstrates the power and range of RNA-seq, and
that it is widely utilized as a molecular analysis tool by skeletal
researchers.

Recent studies utilizing RNA-seq have revealed specific
transcriptional changes in osteoblasts during differentiation
towards an osteocyte-like phenotype. These studies highlight-
ed the role of epigenetic events in osteocytogenesis, such as

alterations in vitamin D receptor binding [38•, 39•], and de-
termined the stage-specific transcriptomes of differentiating
calvarial osteoblasts in vitro [40]. Further work on the epige-
nome of differentiating osteoblasts through combined CHIP-
seq and RNA-seq analyses identified Ezh2 as a negative reg-
ulator of osteoblast maturation and skeletal development [41,
42]. RNA-seq–based transcriptional profiling also led to iden-
tification of novel molecules involved in PTH signaling such
as Cdc73 [43], and verified the similarity of molecular chang-
es induced by intermittent PTH treatment and salt inducible
kinase (SIK) inhibition in osteocyte-like Ocy454 cells [44].
Studies on mice with altered Lrp5-mediated Wnt signaling
have also identified novel transcripts (in addition to Col1a1
and Bglap), whose abundance in long bone tissue correlates
with Wnt signaling activity in mice [45]. Altogether, these
findings indicate that transcriptome profiling with RNA-seq
has the power to identify novel molecules involved in bone
cell differentiation, as well as anabolic bone formation in-
duced by PTH and Wnt signaling.

One particular area of bone biology where RNA-seq has
been used in pursuit of novel genes and mechanisms is bone
mechanotransduction. That bone tissue remodels itself and
positively responds to mechanical loading has been known
for a long time [46], and canonical Wnt signaling has been
identified as a key molecular event in bone tissue’s ability to
respond to mechanical loads [47, 48]. With the ability to
screen the entire transcriptome in an unbiased manner, a num-
ber of studies evaluated mechanically loaded long bones
[49••, 50], osteocyte-like MLO-Y4 cells stimulated with fluid
flow [51] and bone marrow stem cells subjected to

Fig. 1 The typical RNA-seq workflow entails mRNA isolation from cells
or tissues, fragmentation, reverse transcription, barcoding, and
amplification of cDNA. The short reads generated using the cDNA
libraries are mapped to a reference genome, counted, and normalized to

gene-specific expression data. These data can then be utilized in
differential expression analyses comparing two or more groups of
libraries, or identification of novel genes or pathways of interest
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microgravity [52], in order to determine transcriptome-wide
changes in gene expression in response to alterations in me-
chanical environment. These studies identified time- and
compartment-dependent changes in tissue-level gene expres-
sion in bone, while verifying the involvement of Wnt signal-
ing through changes in the expression of canonical and non-
canonical Wnt ligands. Yet, novel genes and signaling events
outside the Wnt pathway are yet to be definitively associated
with mechanotransduction in bone cells. Further validation
experiments will be necessary to demonstrate the mechano-
responsiveness of any gene that is identified in future RNA-
seq experiments, such as those performed on mice with Lrp5
mutations [53, 54] that demonstrate inhibited or enhanced
bone formation following mechanical stimulation.

Unlike bone tissue, the cellular and genetic make-up of
tendons and ligaments remain largely uncharacterized.
Transcriptional profiling has therefore been utilized in order
to better understand the development of connective tissues, as
well disease- or trauma-induced changes. Specifically, the in-
volvement of mTORC1 signaling [55] and transcription factor
Foxf2 [56] in regulating mouse tendon development has been
shown with RNA-seq. A large body of literature in ligament
research focuses on anterior cruciate ligament (ACL) injuries,
as they tend to trigger post-traumatic osteoarthritis (PTOA).
RNA-seq experiments on torn ACL tissue from patients have
revealed that the extent of injury to the joint, specifically the
presence of meniscal tears, significantly influence the tran-
scriptome of damaged ACL cells [57]. Further, work on
mouse models shows that genetic background has a signifi-
cant effect on the severity of PTOA phenotype which appears
to be correlated with inflammatory cytokine expression in
damaged ACL tissue [58, 59]. Experiments on large animal
models of ACL transection also show that dramatic transcrip-
tional changes occur in several joint tissues, including the
synovium, ACL, and articular cartilage, in a time-dependent
manner [22, 29, 60]. Consistent with studies on mouse and
human patient-derived tissues, the aforementioned experi-
ments identified transcriptional changes in inflammation and
cell cycle–related genes in multiple joint tissues.

RNA-seq has revealed novel aspects of transcriptional reg-
ulation of growth plate cartilage development as well.
Specifically, in the growth plate, RNA-seq experiments sug-
gested that PTPN11/SHP2 loss results in disorganization of
the hierarchy of growth plate chondrocytes [61]. Disruption of
epigenetic regulators alter the transcriptome of chondrocytes,
leading to an osteogenic gene expression repertoire with the
loss of Ezh2 [42] and reduced expression chondrogenic genes
(including Acan and Sox9) with the loss of Kdm6b [62].
Multiple studies identified novel targets of transcription fac-
tors Sox9 and Pitx1 in chondrocytes [63–65]. RNA-seq has
also identified disease-related changes in articular cartilage,
specifically within the context of osteoarthritis. Comparative
evaluation of damaged and intact cartilage specimens from

patients going under total joint replacement surgery, as well
as assessment of post-mortem tissue and primary
chondrocytes, has revealed alterations in cartilage tran-
scriptome, specifically in the expression of cartilage-
associated genes Sox9, Col11a2, Acan, and other novel tran-
scription factors [66]. A recent study by Ji et al. utilized a
scRNA-seq approach, and identifiedmultiple transcriptionally
distinct chondrocyte populations in diseased cartilage tissue
[67].

Regardless of the tissue of interest, a common challenge in
most RNA-seq studies in skeletal biology is the inherent cel-
lular heterogeneity. When a transcriptional change is identi-
fied between two biologic groups, is it due to changes in the
relative quantity of a specific cell type, or changes in the
transcriptomes of all cells? If specific markers for cells of
interest are available, flow cytometry might offer a potential
solution to this problem, provided that cells will have to go
under additional processing such as enzymatic and/or me-
chanical dissociation from the source tissue. scRNA-seq,
which allows transcriptional profiling of individual cells, will
likely offer solutions to this persisting problem of cellular
complexity. A better understanding of the cellular complexity
of skeletal tissues will likely be possible in the near future,
through the combined use of complimentary methods such as
scRNA-seq, flow cytometry, and immunohistochemistry-
based lineage tracing.

Single-Cell RNA-seq and New Possibilities in Skeletal
Biology

scRNA-seq offers the ability to profile the transcriptomes of
individual cells, and thereforemakes it possible to evaluate the
cellular diversity of complex tissues such as bone and bone
marrow. The advances in the field of scRNA-seq have been
accelerated by the advent of droplet-based single cell capture
technologies [68••], followed by the rapid emergence of sev-
eral platforms that facilitate cell capture and single cell mRNA
library preparation. The commercially available technologies
can be classified into two categories: droplet-based cell cap-
ture techniques (originally termed “Drop-seq” by the inven-
tors of the technique [68••]) and plate-based capture and se-
quencing techniques [69, 70]. While the former technology
allows processing of tens of thousands of cells from a single
specimen, the number of transcripts detected per cell and the
sequence coverage of each transcript (heavily enriched at 3′
UTR) are limited. The plate-based techniques on the other
hand rely on the separation of individual cells into wells of
96- or 384-well plates, and are therefore limited in terms of the
cells that can be processed to a few hundred cells at one time.
However, with plate-based techniques, it is possible to se-
quence the transcriptome of each cell in greater depth, and
potentially evaluate the whole sequence of each transcript,
rather than solely the 3′ UTR.
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The applications of scRNA-seq have been relatively
limited in the field of skeletal biology so far; however,
this is likely to change thanks to the availability of the
technique through various commercial platforms that uti-
lize the aforementioned approaches. One of the biggest
challenges associated with scRNA-seq remains its cost,
which can easily surpass $1000 per specimen only to cap-
ture cells and prepare libraries. However, with the advent
of novel multiplexing technologies such as CITE-seq
(which allows antibody-mediated labeling of cells, and
therefore multiplexing cells with distinct origin prior to
processing [71••]), scRNA-seq will likely become afford-
able and accessible to a growing community of scientists.

Earliest studies in the field of scRNA-seq focused on
the biology of developing organisms and tissues, in an
effort to better characterize the biology of actively differ-
entiating cell populations [72]. Starting with Drop-seq, it
became apparent that novel cell types could be transcrip-
tionally defined in tissues with high cellular diversity,
such as the retina [68••, 73]. Debnath et al. have shown
that multiple mesenchymal cell populations in the long
bone periosteum are labeled with Ctsk expression, which
until recently was thought to be unique to osteoclasts
[74••]. scRNA-seq experiments have identified n = 4 dis-
tinct populations within the aforementioned cell pool, one
of which exhibits characteristics of stem cells. Going for-
ward, scRNA-seq will likely improve our understanding
of the biology of the developing skeleton (as the mesen-
chymal origins of osteoblasts remain incompletely char-
acterized, and the same is true for connective tissue ten-
dons and ligaments and their interfaces with bone and
muscle), and also the changes that an injured tissue goes
under during repair (such as a bone fracture callus, a torn
ligament, or articular cartilage at the onset of post-
traumatic osteoarthritis). scRNA-seq could be utilized in
multiple different ways to gain further insight into these
problems. It remains to be seen if scRNA-seq can identify
gene expression changes in individual skeletal cell popu-
lations following perturbation. The number of genes de-
tected per cell is typically limited compared to conven-
tional RNA-seq, which may limit the statistical power of
the assay. However, scRNA-seq has been utilized in iden-
tifying novel cell types that only arise in disease state (for
example, during cystic fibrosis in the lung [75, 76]). A
recent study by Ji et al. has reported the presence of mul-
tiple transcriptionally distinct chondrocyte populations in
diseased human articular cartilage [63]; however, it is un-
clear if any of these populations are unique to the osteo-
arthritic phenotype. One potential approach to delineating
the origin and fate of cell populations of interest could be
to utilize classic lineage tracing approaches, in combina-
tion with flow cytometry and scRNA-seq. Specific cell
populations could be marked in a mouse model using

the inducible Cre-recombinase system, after which the
labeled cells and their descendants are harvested, sorted,
and finally evaluated with scRNA-seq. Takahashi et al.
[77•] and Mizuhashi et al. [78•] have recently utilized this
strategy to label and describe mesenchymal cell popula-
tions in the dental follicle and long bone growth plate,
respectively. Whatever the approach might be, scRNA-
seq will surely enhance the molecular biology toolset of
skeletal researchers and help characterize the complexity
of tissues at a resolution that was not possible until
recently.

Conclusions

RNA-seq has facilitated new discoveries in skeletal biol-
ogy and will likely lead to more in the future. Availability
of single-cell RNA-seq will accelerate these discoveries,
especially as it becomes more affordable and accessible.
As transcriptome profiling methods rapidly advance, the
challenges remain in interpretation, rather than generation
of data. In bulk RNA-seq studies, wherein thousands of
genes are simultaneously evaluated, multiple results may
be generated that fit the predicted paradigm just by
chance. For this reason, follow-up validation experiments
that use orthogonal techniques are crucial. Rather than
reaching definitive conclusions, the objective of a good
RNA-seq experiment is to generate new, testable hypoth-
eses. Therefore, one design criteria when planning a tran-
scriptome profiling experiment might be to ensure the
availability of in vivo or in vitro platforms, wherein genes
and pathways could be conveniently manipulated within
the context of the biologic question of interest. More ad-
vanced techniques, such as scRNA-seq, still pose a num-
ber of technical challenges, such as isolation of a suffi-
cient number of viable cells that are accurately represen-
tative of the cellular diversity of tissues in vivo.
Furthermore, while multiple data analysis tools are avail-
able, the analysis pipelines are yet to be standardized,
especially towards identifying novel cell populations and
cell type–specific gene expression changes. Yet, the initial
examples of scRNA-seq have shown that it can signifi-
cantly contribute to exploratory efforts in skeletal devel-
opment and disease. More studies will surely follow that
will unravel the cellular complexity of the skeleton.
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