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Abstract

Purpose of Review Mechanical loading is an essential stimulus for skeletal tissues. Osteocytes are primarily responsible for
sensing mechanical stimuli in bone and for orchestrating subsequent responses. This is critical for maintaining homeostasis, and
responding to injury/disease. The osteocyte mechanotransduction pathway, and the downstream effects it mediates, is highly
complex. In vivo models have proved invaluable in understanding this process. This review summarizes the commonly used
models, as well as more recently developed ones, and describes how they are used to address emerging questions in the field.
Recent Findings Minimally invasive animal models can be used to determine mechanisms of osteocyte
mechanotransduction, at the cell and molecular level, while simultaneously reducing potentially confounding responses
such as inflammation/wound-healing.

Summary The details of osteocyte mechanotransduction in bone are gradually becoming clearer. In vivo model systems are a key

tool in pursing this question. Advances in this field are explored and discussed in this review.
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Introduction

Mechanical loading is an essential stimulus for musculoskel-
etal tissues. In bone, it is generally accepted that osteocytes are
primarily responsible for sensing mechanical stimuli and for
orchestrating the subsequent tissue responses in the local mi-
croenvironment [ 1, 2¢]. This mechanosensory ability is critical
during development, and throughout life, in maintaining ho-
meostasis and responding to injury/disease. The osteocyte
mechanotransduction pathway, and the downstream effects it
mediates, is a highly complex process. However, the details
are gradually becoming clearer thanks to advances made by
the bone research community. Some of the recent advances in
osteocyte mechanotransduction, particularly those that rely on
in vivo model systems, are summarized and discussed here.
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Osteocytes are terminally differentiated osteoblasts, which
arise from mesenchymal stem cells, and are ubiquitous
throughout healthy bone matrix. Approximately 20% of osteo-
blasts become osteocytes, with the remaining population un-
dergoing either apoptosis, transformation to bone lining cells or
potentially even trans-differentiation [3-5], although the latter
remains controversial. In situ osteocytes comprise approxi-
mately 90% of resident cells in mature bone tissue (with the
remainder being made up of osteoblasts, osteoclasts, and bone
lining cells). They are identifiable by their unique embedded
position in the lacunar-canalicular system. At a cellular level,
osteocytes are characterized morphologically by the multiple
dendritic processes (canaliculi) that project outwards to meet
other canaliculi, nearby blood vessels, and lining cells at the
bone surface. Osteocytes also have a unique molecular signa-
ture including expression of SOST, DMP1, PHEX, and MEPE
which are expressed to varying degrees during the lifetime of
the cell [6]. These cells were once thought to exist merely as
“placeholders” in mineralized matrix [7¢], without any signifi-
cant function, while osteoblasts and osteoclasts were consid-
ered more central to bone physiology. It is now clear that this is
not the case, and that osteocytes play a critical role in regulating
bone adaptation and remodeling processes. Indeed, osteocytes
have important functions even beyond the skeleton [1, 2¢] such
as in the regulation of kidney function [7, 8].
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Since the mineralized microenvironment is so central to the
function and nature of osteocytes, removing them for study
under standard in vitro conditions was traditionally a chal-
lenge. Important advances were made in this area of osteocyte
biology by Bonewald et al. [7¢, 9, 10+] and others who created
the first osteocyte immortalized cell line. This led to the de-
velopment of a rich new area of osteocyte research (reviewed
in [10]). In parallel with this, much of the early work on the
osteocyte, and its mechanosensory role, was carried out using
in vivo animal models. Most of the early studies examined the
effects of extrinsic mechanical loading on osteocytes in situ,
using surgical methods [11, 12]. The details of these models
are discussed below, but in general, they proved useful in
establishing some of the basic underlying principles of bone
mechanotransduction. However, it also became clear that the
surgical approach was somewhat hindered by injury/
inflammatory effects on surrounding tissues, making mecha-
nistic interpretation of the localized bone response challeng-
ing. To address these difficulties, non-surgical/non-invasive
methods were developed, which centered on the application
of controlled extrinsic loads using standardized laboratory-
based mechanical systems. These methods allow forces to
be applied and modulated in a controlled way, and thus can
titrate the extent of injury/inflammation induced. This ability
to carefully control loading conditions means that most non-
invasive models can be successfully used without generating
any appreciable inflammation, if required. These methods
proved very successful and quickly gained widespread
popularity in the field. In comparison to surgical methods,
non-invasive loading seemed better able to replicate the
mechanical signals generated during physiological (and
pathological) loading of the skeleton. Importantly these
methods also avoided complications of wound-healing/in-
fection [7e, 8, 13, 14]. Furthermore, these models were
cost-effective, reproducible, and relatively easy to conduct
using the sensitive control systems that are available on
most commercial mechanical testing systems [6, 15].

This review will briefly cover the background of in vivo
mechanical loading as an experimental approach in the field of
osteocyte biology, from its initial applications to the more
recent developments and will largely focus on advances made
during the past 5 years.

Early Models

Surgical Models Mechanical loading models to study the bone
response to external forces were first examined in the mid-
1800s by Charles Sedillot [16]. Later, Jiri Hert [17, 18] devel-
oped a more controlled system where an external loading de-
vice, acting through transfixing pins, was used to alter the
mechanical loads across rabbit tibiae. In those studies, adap-
tive bone remodeling in the region around the pins was

observed. However, it was not possible to define the connec-
tion between externally applied loads and localized tissue lev-
el stress/strain fields [19]. To address this, Lanyon et al. [20,
21¢] used strain gauges at the bone surface in the area of
interest, thus bringing an extra level of control. This was a
particularly important refinement and led to a greater under-
standing of how extrinsic loads in one place, can change the
localized strain field at another. A particular advantage of
these models was that the section of loaded bone was func-
tionally isolated after surgery, preventing any confounding
strain stimulus from normal activity. Unfortunately, however,
the surgically placed pins caused local periosteal woven bone
responses, which complicated subsequent analyses. This mod-
el was also somewhat limited by the time required for post-
operative healing, which was necessary to allow full integra-
tion of the pins [20, 21¢]. The development of a surgical
vertebra-loading model in the rat overcame some of these
challenges [22, 23]. As before, surgically placed pins were
used to transmit extrinsically controlled loads. However, in
this case, pins were placed through the vertebrae in the tail
cranial and caudal to the vertebra of interest. This approach
has an advantage in that the injury-induced woven bone re-
sponse occurs only in the pinned vertebra, i.e., adjacent to the
vertebra under study, therefore avoiding some of the difficul-
ties discussed above. However, a time lag between surgery
and load application remained in this model. A subsequent
approach, which did not require placement of surgical pins,
was the ulnar osteotomy model. In that model, the concept
was to take advantage of the natural load-sharing relation-
ship between the ulna and radius in the animal forelimb. The
surgical removal of a central segment of the ulna increases
the loading on the radius, under regular bodyweight. This
provides the opportunity to examine the response of the
tissue in the radius to increased loading, without the need
for surgical pins [11, 12, 24]. Nonetheless, inflammatory
and wound-healing responses still occurred, and in order
to overcome some of these limitations, non-invasive me-
chanical methods were developed.

Non-invasive Models Some of the earliest non-invasive extrin-
sic mechanical loading models were carried out in order to
interrogate the mechanosensory role of osteocytes, and to un-
derstand the underlying mechanism—without the complicat-
ing factors of surgery, wound-healing, and inflammation [25,
26+, 27]. One of the initial concepts used a 4-point bending
system (a common technique used to characterize structural
properties in mechanical engineering), to apply external forces
at the surfaces of long bones, through the soft tissues, and
generate a bending moment (Fig. 1a). This proved very use-
ful for studying endocortical adaptation, but the periosteal
reaction at the point of application of load, again involving
inflammation and woven bone formation, was difficult to
interpret [11, 24]. In an attempt to overcome these issues,
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Fig. 1 Schematic illustrations of non-invasive mechanical loading
models. (a) Four-point bending model of rat tibia where a bending
moment is generated in the medio-lateral direction (adapted from [28,
82]). (b) Rat ulnar loading model where forelimb is fixed and a force is

a cantilever model was developed whereby the knee joint
was secured and the ankle was used as the point of applica-
tion of load, to induce mediolateral bending in the longitu-
dinal plane of the tibia, without direct force applied to the
periosteum [28]. This model was successful in eliminating
the woven bone formation response in the periosteum—but
was slightly more challenging to carry out experimentally
[29, 30].

The next model that was developed has become possibly
the most widely used in vivo bone loading system in the field.
The premise of the ulnar axial loading system [31-33] is that
the flexed wrist and elbow of an animal (usually a rodent) are
secured into a testing machine (Fig. 1b). Compressive loads
are then applied and transmitted along the length of the fore-
limb. Its natural curved shape allows the linear force to be
translated into a bending moment. Importantly, this is
achieved without direct force application to the periosteum.
One of the important early discoveries using this approach
was that loads, above a certain magnitude, must be applied
cyclically (rather than monotonically) to achieve an osteogen-
ic, or bone forming, response. This model has been widely
used by many researchers to advance our understanding of
how osteocytes orchestrate an osteogenic response to mechan-
ical stimulus [13, 34-37]. A modified version of this system
has also become the gold standard for the controlled introduc-
tion of microdamage to diaphyseal cortical bone and to
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applied along the diaphysis (adapted from [33, 34]). (¢) Rat knee injury
model shows the hind limb positioned and fixed such that torsional and
valgus forces are induced across the knee joint (adapted from [54])

determine the role of osteocytes in microdamage repair.
Once again, cyclical loading at a specific magnitude was
found to be necessary to initiate and propagate linear
microcracks. Some of the principles of this model were also
derived initially from the engineering/material science fields,
in particular, fracture mechanics. Using this approach, it be-
came possible to introduce controlled levels of microdamage
to a defined area of bone tissue. Within that defined area the
resident osteocyte response to damage could be characterized
at a cellular and molecular level [2, 6, 38-43]. This method
was recently used to determine that osteocyte apoptosis, in
response to microdamage generated by ulnar loading, was
an obligate step in the initiation of the targeted remodeling
response [38]. In this scenario, one population of osteocytes
undergo apoptosis, while a neighboring population upregulate
osteoclastogenic factors such as RANKL, and thus orchestrate
the reparative targeted remodeling response to linear
microcracks.

The concept of in vivo axial loading of rodent long bones
was then adapted for use in the lower limb [44., 45, 46—49]. In
this system, controlled forces are applied to the distal femur of
the flexed knee, and the calcaneus of the dorsiflexed ankle—
thus creating compressive forces in the tibia. Like the ulnar
loading model, the curved bone shape allows for the transfor-
mation of linear compressive forces into a bending moment.
However, in contrast to the ulnar model, forces are not applied
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directly to the bone under study—which has advantages and
disadvantages. It is advantageous in terms of understanding
the resultant stress-state in the tibia. However, there are limi-
tations in how much force can be passed through a mobile
joint (in particular the knee) without causing damage/
dislocation to that joint. Another particularly useful attribute
of this model is that it can target the trabecular bone compart-
ment, specifically in the proximal tibia, whereas the ulnar
loading model largely targets mid-diaphyseal cortical bone.

Recent developments of each of these systems have ex-
panded their utility and broadened their application base.
The ulnar damage induction protocol described above was
modified to create a different type of microdamage. While it
was known that cyclical loading generated linear microcracks
on the order of 10-100 um—it was also apparent that clusters
of smaller < 1 mm cracks were generated simultaneously [39,
50]. These clusters are known as areas of “diffuse damage,”
but little was known about their functional significance. By
applying a constant load (instead of cyclical) to the ulna,
Seref-Ferlengez et al. [24] were able to reproducibly generate
diffuse damage, without introducing linear microdamage. By
studying this in isolation, they determined that this damage
occurs at physiological load levels and that it also is repaired
over time. However, intriguingly, this seemed to occur in an
osteocyte independent manner. This suggests that there may
be an entirely different bone repair mechanism, distinct from
osteonal remodeling, which has remained undiscovered until
now. Whether this is an entirely cell-independent process (i.e.,
purely physico-chemical) is not known.

The tibial loading model has also been adapted recently
to address questions relating to joint injury and disease. In
most cases, the concept is to increase/alter the loading
mechanism to introduce some amount of controlled dam-
age to the knee joint, and then to observe the pathophys-
iological response. These models ultimately focus on os-
teoarthritis and are thus outside the remit of this review.
Nonetheless, in most cases, the subchondral bone com-
partment plays a role, to a greater or lesser extent, and
so are worth mentioning briefly. Various different models
have been described to study different aspects of joint
injury and disease. Olsen et al. described an intra-
articular tibial plateau fracture model in mice. This model
captures the aspect of a high-impact, high-energy joint
injury which induces degenerative joint changes over an
expected time period post-injury [51]. Christiansen et al.
[52] used single compressive overload to rupture the an-
terior cruciate ligament in a model of post-traumatic oste-
oarthritis (PTOA). This model also nicely replicates hu-
man injury and subsequent OA develops due to a known
etiology—and also evaluates bony responses [29, 46, 52,
53]. Ramme et al. also described a PTOA model, this time
using the rat, whereby anterior cruciate ligament (ACL)
rupture and subchondral bone microdamage was

generated (Fig. 1c). Subchondral bone microdamage was
quantified as was its relationship with subchondral bone
remodeling response. This model also results in cartilage
degradation over the expected timeframe for these models
[54]. Single tibial compression models have also been
described [55], whereby a single bout of loading was
shown to damage articular cartilage, but not induce pro-
gressive joint changes. Whereas proteoglycan loss and
cartilage lesions were observed after 2 weeks of cyclical
loading. A similar model has also been used with a range
of different load magnitudes to study a spectrum of joint
responses including chondrocyte apoptosis, matrix degra-
dation, synovitis as well and pathological bony responses
[56-58]. Most recently, a novel model for trans-cortical
induction of subchondral microdamage showed that such
subchondral microdamage overlaps spatially with bone
marrow lesions (BMLs) [59]. BMLs are a common fea-
ture of clinical joint injury that may be involved in joint
changes via some form of bone-cartilage crosstalk.

Lewis et al. [60+¢] recently developed an entirely new
in vivo extrinsic bone loading system for real-time visualiza-
tion of the osteocyte response to mechanical stimulus in
mouse metatarsals. Using a miniature 3-point bending system,
in conjunction with multiphoton microscopy, their work eval-
uated the Ca”* response in osteocytes to physiological strains
between 250 and 3000 pe and frequencies from 0.5 to 2 Hz.
This study showed that, at all frequencies examined, the size
of the responding osteocyte population increased strongly
with applied strain, while Ca®* intensity remained unchanged
[60+¢]. This suggests that osteocytes respond to this stimulus
in a binary manner, either “on” or “off” and with increased
load magnitude, the number of respond cells changes rather
than response/activity level of any given cell. This Ca”* re-
sponse profile is common in other cell types and systems
including glia and cardiac muscle [61]. The high correlation
between applied strain and size of the Ca**-responding oste-
ocyte population suggests this cell network is remarkably sen-
sitive in how it encodes the mechanical frequency input. This
work fits well with a computational model that was recent-
ly reported to predict the response of mouse bone to ana-
bolic loading using the tibial loading model described
above [62]. The model was based on established osteo-
cytes characteristics and predicted that the commonly ob-
served load-induced bone adaptation could only result
from osteocytes responding in a binary manner.
Furthermore, the model predicted that osteocyte recruit-
ment number would vary with load. Taken together, these
studies are consistent with the “set-point” hypothesis that
was originally described by Frost [63].

All of the models described here are used to examine the
effect of extrinsic loading on the skeleton and the role of
osteocytes in the subsequent response. However, it is also
clear that underloading, or lack of mechanical stimulus, has
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a significant effect on the skeleton. This is traditionally
discussed in terms of spaceflight or microgravity, which is a
well-known cause of bone loss in astronauts—but is also im-
portant for long-term bed rest and spinal cord injury patients.
Due to the obvious difficulties in mimicking a microgravity
environment in a laboratory setting, the rodent hind limb sus-
pension (HLS) model has been used to study the effects of
unloading on the skeleton [64, 65] In the HLS model, body
weight is removed from the hind limbs by suspending the
animal by its tail from an overhead wire system. This stimulus
generates a robust osteoclast-mediated bone loss response.
Until recently, the role of osteocytes in this process was un-
known. Osteocyte apoptosis is known to be essential in acti-
vating bone remodeling in response to a mechanical stimulus,
such as cyclical fatigue loading (as discussed above).
Although it had been spatially linked to bone resorption activ-
ity following disuse, whether osteocyte apoptosis played an
active controlling role was unclear. Studies using the HLS
model showed that osteocyte apoptosis was increased signif-
icantly in both cortical and trabecular bone, after just 5 days
[66]. Increases in osteocyte apoptosis and RANKL production
were found to precede bone resorption. Furthermore, pharma-
cological inhibition of apoptosis completely abrogated the re-
modeling response.

In summary, it is clear that the use of extrinsic mechan-
ical models that alter skeletal loading have contributed
greatly to understanding the way in which osteocytes re-
spond to changes in their mechanical/physical environ-
ment. It is still unclear exactly how this is achieved—
defining the mechanosensor in osteocytes remains one of
the most exciting challenges in the field.

Mechanotransduction

The process of translating mechanical forces into cellular
biochemical signals is complex. The real-time load-in-
duced osteocyte Ca”* signaling discussed above clearly
demonstrates that the bone response to loading occurs very
rapidly after the stimulus is applied. Cell culture studies
have shown that adenosine triphosphate (ATP) is also re-
leased on a similarly short timescale from stimulated bone
cells [67]. Subsequent to this, second messengers prosta-
glandin E2 (PGE2) and nitric oxide (NO), are also released
quickly from mechanically activated cells [68, 69].

The extremely short timescale over which these events occur
is partly why identification of the primary mechanosensor has
been so challenging [70+¢]. There are several general signaling
pathways that seem to play a role in the process, but none
among them has yet been identified as the mechanosensor.
Primary cilia, ion channels, integrin/cytoskeletal complexes,
and G protein-coupled receptors are found in many cell types
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and seem to contribute, at least to some extent, to osteocyte
mechanotransduction [71].

Primary cilia are rigid multifunctional organelles that
extend out from the cell body and have the ability to
contribute to mechanotransduction via direct deflection
under fluid flow and/or pressure [71]. These structures
are extremely important in growth and development and
seem to be involved in osteocytes pericellular mechanics
as well as in mechanotransduction in other tissues in-
cluding liver and kidney [72, 73]. lon channels are
pore-forming structures at the cell membrane that permit
passage of charged ions in and out of the cell through
the otherwise impermeable lipid bilayer cell membrane.
Ions flow passively through channels towards equilibri-
um in response to an electrochemical stimulus or to a
physical stimulus (such as stretch-activated channels). A
particular type of channel protein that is highly expressed
in bone cells is connexin-43 [74]. These gap-junction
proteins are normally found in opposition to an identical
structure in adjacent cells and thus facilitate direct cell-
cell communication. However, they can also exist unop-
posed in one cell membrane, and in this scenario, are
called “hemi-channels.” Such channels allow egress of
PGE2 from osteocytes via physical perturbation of their
associated integrin network that serves to anchor the
cells to their substrate. The integrin/cytoskeletal complex
likely plays a central role in mechanotransduction in var-
ious cell types. In osteocytes, the cell processes are phys-
ically linked to the lacunar-canalicular system by tether-
ing structures including av33 integrins and the glycoca-
lyx. In vivo, fluid movement through the lacunar-
canalicular system across these structures results in strain
amplification at the cell body, which ultimately mediates
the osteocyte response. Intriguingly, given the discussion
above, in osteocytes, these sites lack the typical integrin
transduction mechanism but are known to respond by
altering Ca®* signaling [66, 75]. G protein-coupled re-
ceptors (GPCR) are the largest family of plasma mem-
brane receptors at the cell surface. GPCRs can be acti-
vated by a variety of factors including hormones, pep-
tides, and amino acids. Thus, perhaps unsurprisingly,
these proteins are involved in the process of
mechanotransduction. However, and again unsurprising-
ly, their role is not straightforward. Purified G proteins in
empty phospholipid vesicles can be activated (GTP hy-
drolysis) through application of fluid shear alone [76],
independent of their receptor (GPCR). Their behavior
also appears to be modulated by membrane or substrate
stiffness. GPCRs themselves are also sensitive to ligand-
independent activation, in response to mechanical stimu-
lation. Conformation-sensitive fluorescence resonance
energy transfer (FRET) imaging has been used to dem-
onstrate shear stress-induced changes in parathyroid
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hormone/parathyroid hormone-related peptide receptor in
MC3T3 osteoblast-like cells [77]. The same group re-
ported that similar changes occur in the B2 bradykinin
receptor on endothelial cells [78]. This suggests that the
mechanosensitive role of GPCRs might be highly con-
served among many cell types [70¢¢]. However, this still
does not confirm that this, or the other broad categories
discussed above, is the ultimate mechanosensory mecha-
nism in osteocytes.

As with many highly conserved and ubiquitous signal-
ing pathways (such as those discussed above), using genet-
ic methods to modify their function can be challenging.
However, using a genetic approach to modulate very spe-
cific pathways, related to a system/process of interest, can
be extremely useful. For example, the Wnt signaling path-
way is central to the process of bone formation and is also
implicated in mechanotransduction. The canonical Wnt
signaling cascade is initiated when Wnt proteins form re-
ceptor complexes with co-receptors called “Frizzled,” and
either low-density lipoprotein-related receptor-5 (Lrp5) or
6 (Lrp6). Successful activation of this receptor complex
leads to accumulation of (3-catenin in the cytoplasm and
subsequent transcriptional activity. Heterozygous deletion
of 3-catenin in osteocytes reduces load-induced bone for-
mation [79]. Lrp5 and Lrp6 are closely related, but also
have distinct functional properties. The full extent of their
downstream effects is yet to be fully characterized; the
current state-of-the-art is comprehensively reviewed in
[80]. These studies demonstrate the impact that genetic
manipulations in pre-clinical models can have in parsing
out cell/molecular mechanisms, even in complex systems
such as mechanotransduction in bone and bone formation.

In summary, the use of in vivo animal models in osteocyte
mechanotransduction has undoubtedly been crucial to prog-
ress in the area. It is also likely that their use will be central to
continued progress in the future. This may come via use of
existing, or newly developed, non-invasive mechanical
models and/or through generation of novel transgenic model
systems to probe important signaling pathways. Indeed, it is
likely that some combination of both will provide key future
insights, due to the inherent multi-disciplinary nature of
mechanobiological research.

Conclusion

Our understanding of how osteocytes respond to mechani-
cal loading in vivo has continued to grow in recent years,
due to the development of new techniques and methodolo-
gies. These advances have opened up new areas of research
and can provide a better understanding of how osteocyte
mechanotransduction is integrated into broader skeletal
health. This work is complemented greatly by continuing

advances that are being made on the basic functionality
and physiology of osteocytes [81¢¢]. While there is now a
suite of in vivo extrinsic mechanical models available to
interrogate different aspects of bone mechanotransduction,
such as the ulnar/tibial axial loading models discussed in
this review, it will also be important to continue innovating
and developing new systems [60<¢]. This will allow us to
address limitations of existing techniques and to answer
newer, more challenging, questions as they arise.
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