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Abstract
Purpose of Review Connecting organ-scale loads to cellular signals in their local in vivo environment is a current challenge in the
field of bone (re)modelling. Understanding this critical missing link would greatly improve our ability to anticipate
mechanotransduction during different modes of stimuli and the resultant cellular responses. This review characterises computa-
tional approaches that could enable coupling links across the multiple scales of bone.
Recent Findings Current approaches using strain and fluid shear stress concepts have begun to link organ-scale loads to cellular
signals; however, these approaches fail to capture localised micro-structural heterogeneities. Furthermore, models that incorpo-
rate downstream communication from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the under-
standing of (re)modelling activities. Incorporating this potentially key information in the local in vivo environment will aid in
developingmultiscale models of mechanotransduction that can predict or help describe resultant biological events related to bone
(re)modelling.
Summary Progress towardsmultiscale determination of the cell mechanical environment from organ-scale loads remains elusive.
Construction of organ-, tissue- and cell-scale computational models that include localised environmental variation, strain ampli-
fication and intercellular communication mechanisms will ultimately help couple the hierarchal levels of bone.

Keywords Mechanical stimulation . Osteocytes . Computational systems biomechanics . Local in vivo environment . Bone
(re)modelling

Introduction

Within the last few decades, significant advances in imaging
and computational technologies have allowed new insights
into biomedical phenomena. However, our ability to utilise
these tools has struggled to keep pace with their rapidly
expanding capabilities. In the field of bone biomechanics,
this is evident in our lack of understanding how organ-
scale loads translate to biochemical responses via cellular
mechanotransduction. Such information would help to gain
deeper insight into how cells respond to loading modalities,
leading to computationally driven understanding of, and

therapies for, skeletal diseases such as osteoporosis [1].
This review discusses how the transmission of in vivo me-
chanical stimuli across multiple scales can be greatly im-
proved by using computational methods, often in conjunc-
tion with other well-established approaches. The aim is to
define a computationally driven framework for translating
organ-scale loads into relevant cell-scale responses, which
would ultimately increase our understanding of the in vivo
mechanosensitive aspects and mechanisms of bone (re)mod-
elling, and its importance in the pathophysiology of bone.

Existing Tools, Techniques and Concepts

The knowledge of bone systems biomechanics is not new,
though translating this into substantial improvements in bone
health is yet to be realised. The theory of load driven bone
(re)modelling was first postulated over a century ago [2, 3];
however, only with the development of powerful in vivo
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imaging techniques, such as micro-computed tomography
(micro-CT), has detailed time-lapsed micro-scale observation
of bone (re)modelling for both formation and resorption been
possible [4, 5••]. Concurrently, advances in computational
power have driven the development of predictive models of
mechanical loading within bone tissue [6••, 7, 8]. Coupling
these technologies has revealed great insights into dynamic
bone (re)modelling via comparisons between mechanical
loading and structural changes in bone tissue [6••, 9–11]. As
these imaging and computational modelling methods have
matured, they have become accurate enough to inform tech-
niques such as laser capture micro-dissection to investigate
individual cells within the bone tissue and to perform
“mechanomic” analysis, reconciling genetic responses to me-
chanical stimuli [12, 13] of the acquired cells [14, 15]. The
extraction of small populations of cells [16] and the assess-
ment of their molecular and genetic profiles [17] has been
combined with computational predictions of mechanical loads
within the local in vivo environment (LivE) of these cells [17],
advancing our understanding of how organ-scale loads influ-
ence individual cells and the resultant (re)modelling behav-
iour. Understanding the mechanical environment in which
these cell populations reside is a key link in the chain towards
understanding the governing mechanisms between mechani-
cal loads and (re)modelling of bone.

Within bone, the organ, tissue and cell scales are linked via
complex macro- and micro-structural geometries. The hierar-
chical structure of bone can be subdivided into four scales: the
organ scale, comprising the whole bone; the tissue scale,
consisting of cortical and trabecular structures; the cell scale,
which also includes micro-structural features such as osteons,
lamellae plates, lacunae and canaliculi [18]; and the molecular
scale, consisting of ions [19] and proteins such as signalling
molecules, receptor and ligands [20]. At the larger scales,
mechanical supporting roles are evident from the flaring of
proximal condyles in bone, to the changing density and thick-
ness of trabecular struts. However, at the cell scale and be-
yond, the functionality is less obvious. These scales and their
respective computational approaches can be seen in Fig. 1.
This environment extends into the bone marrow, where many
of the mechanosensitive cells reside, such as osteoblasts, os-
teoclasts, bone-lining cells and mesenchymal and hemapoetic
stem cells. Accurately imaging and modelling the multiscale
structures of bone is fundamental to predicting multiscale
mechanotransduction. Capturing these features using in vivo
imaging and converting the organ- and tissue-scale geometries
into a computational model is well established [4, 5••].
However, in vivo imaging beyond the cell-scale poses a sig-
nificant challenge. Technologies such as confocal microscopy
[27], synchrotron radiation computed tomography [28] and
ultra-high-resolution computed tomography [29] have been
applied ex vivo to attempt to capture the micro-structural ge-
ometry. With these methods, several authors [28, 30] have

performed comprehensive analyses of osteocyte networks
and individual lacunae, assessing typical densities and distri-
butions [28, 29], as well as studies on strain amplification on
individual lacunae-canaliculi structures [27]. Even with the
multitude of tools and techniques available to gather informa-
tion, they are often single scale focused and seem to struggle
coupling the hierarchies of bone.

Bridging the Multiple Scales
with Computational Models

Organ- and Tissue-Scale Load Determination

Micro-finite element analysis (micro-FE) has become a
standard for organ- and tissue-scale load calculations in
bone. It has been extensively used for in vivo studies to
compare and correlate strain with bone resorption, forma-
tion and quiescence [10, 22, 31–34]. Such models are
created with a mesh generated by direct conversion of
micro-CT voxels into hexahedral elements, and solved
using well-established micro-FE principles [35]. In con-
trast to traditional FE approaches, this micro-FE approach
provides simple meshing, and a unified approach to solv-
ing large-scale problems. The resolution of these models
is governed by the resolution of the scanner settings,
which typically ranges from 10 to 80 μm in vivo [4],
where the very high-resolution images provide voxels in
the same size range as osteocytes and osteoblasts, but
substantially less than osteoclasts. Primarily, these
models are elastic, isotropic and homogenous, omitting
ultrastructural details. Further simplification includes
modelling of cyclic and dynamic organ-scale boundary
conditions as static loads [10, 34], shown still capable
of capturing (re)modelling behaviour [36]. Schulte et al.
[10] and Lambers et al. [22] applied the micro-CT to
micro-FE approach to determine the mechanical environ-
ment and its effect on bone (re)modelling in mouse tail
vertebrae under normal [10, 22], ovarectomised [10] and
ageing conditions [22]. For both studies, strain energy
density (SED) was calculated for each voxel in the ver-
tebrae, with this SED-voxel value representing the me-
chanical stimuli present at the bone surface. This allowed
for correlation of SED values to in vivo formation or
resorption at that same voxel. Cresswell et al. [29, 34]
applied a similar approach to calculate the mechanical in
vivo environment during (re)modelling in rat vertebrae.
Micro-CT images of rat vertebrae were converted to
micro-FE appropriate hexahedral element using custom
software and solved using ABAQUS [34] or a custom
solver [29]. Similarly, the SED, maximum principle strain
and von Mises stress for each element represented the
local mechanical in vivo environment. Using florescent
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markers of bone formation, they correlated high bone
formation with high SED values. In a study in which
young and adult mouse tibia were subjected to extra-
physiological loads, Willie et al. [9] converted micro-
CT images to tetrahedral elements which were then
solved using ABAQUS via conventional finite element
analysis (FEA). Age-related and location-related material
properties were implemented, and maximum and mini-
mum strains were used to assess the local mechanical in
vivo environment. Here, both groups had increased ana-
bolic response, though they observed a delayed and re-
duced response to stimuli in the aged mice versus the
young mice. Such studies demonstrate that these

computational models can provide a mechanical context
for complimentary experimental data.

Another common approach is the use of poroelastic
models, instead of linear elastic models, to calculate the me-
chanical environment. Kameo et al. [6••, 37] applied a voxel-
based micro-FE poroelastic model for a fluid shear stress
based approach to predict (re)modelling of trabeculae under
both bending and uniaxial loads. A uniform and isotropic
poroelastic model was used on a cube of randomly arranged
trabeculae with a bone volume ratio of 0.4. Over a simulation
period of 30 days, an increasing load was used to induce fluid
shear stress, which was used as a measure of the local me-
chanical environment. The initially randomly arranged
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Fig. 1 Capturing the mechanical environment over different scales has
been performed using many approaches. (a) Organ scale, (b) tissue scale,
(c) cell scale, and (d) molecular scale [21] have been captured by (a1–c2).
Micro-FE models such as (a1) Schulte et al. [10] and (b1) Lambers et al.
[22] have been applied at organ level to calculate the tissue level
mechanical environment. Within the tissue level, localised tissue
boundary conditions can be used to calculate a reduced tissue-scale
bone marrow environment, such as (b2) investigated by Metzger et al.
[23]. The RVE (c1) concept can be applied to link organ-scale loads to a
BMU type environment such as that by Lerebours et al. [24•]. Boundary

conditions from the lower end of the tissue scale can be applied to
determine fluid flow stresses on the cell, as seen by Verbruggen et al.
[25••] in (c2). In the molecular scale, stretch, primary cilia deformation
and signalling between osteocytes and other mechanosensitive cells can
be simulated; an example of this is the model by Jahani et al. [26]
studying the osteocyte—bone-lining cell signalling pathways (d1). a1
reproduced in adherence with the CC BY licence applied by PLOS
One, b1, b2, d1 reproduced with permission from Elsevier and c1,c2, d
reproduced with permission from Springer
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trabeculae rearranged in the loading direction, with an in-
crease in mean equivalent stress and SED observed from the
initial state to the end state of the (re)modelling simulation.
However, a significant reduction in the standard deviation of
the SED and mean equivalent stress was also observed,
confirming their hypothesis that (re)modelling leads to ho-
mogenisation of tissue strains. Conventional FEA has also
been used to provide a mechanical environment for (re)mod-
elling. Pereira et al. [38] also applied a poroelastic model to
simulate (re)modelling in a loaded mouse tibia, in which
micro-CT images were acquired from mouse tibia and then
converted to a tetrahedral volume mesh, and solved dynami-
cally using a commercial solver. The bone was modelled as a
poroelastic material, with isotropic elastic parameters and an
anisotropic permeability, where the highest permeability was
assumed to lie in line with the primary direction of the lacuna-
canalicular structures. The combination of both fluid and solid
phases into a single non-poroelastic model was investigated
by Tiwari et al. [39], where a (re)modelling simulation was
driven by a combination of both strain based measures (com-
pressive and tensile strain and tensile shear) as well as fluid
shear stresses. The mechanical environment was calculated
via FEA, and this prediction accuracy of (re)modelling was
assessed based on six variations of mechanical parameters in a
mouse tibia. Strains were calculated with FEA and the tibia
was idealised as a homogeneous, isotropic cantilevered beam.
Their model showed that the highest prediction accuracy oc-
curred upon a combination of all types of strain and fluid shear
stress.

When approaching the mechanical environment outside
the mineralised bone tissue, the bone marrow and the fluid-
structure interface pose a challenge in determining the me-
chanical environment surrounding non-osteocyte cells.
Webster et al. [40] applied voxel-based micro-FE to determine
SED within the bone marrow of a murine vertebrae, illustrat-
ing the importance of the mechanical environment of bone
marrow on osteoblast and osteoclast activity. In this study,
bone marrow was modelled as a linear elastic solid, and they
reported that newly formed bone correlated best with the SED
gradient of the marrow. Metzger et al. [41, 42•] investigated
the mechanical environment of bone marrow using conven-
tional FEA and fluid-structure interaction. Within a region of
3 × 3 × 3 mm cubic regions of human trabecular bone, they
investigated the effect of constitutive model choice on the
mechanical environment within the bone marrow, comparing
linear elastic solid, neo-hookean solid, viscoelastic solid and a
power law fluid constitutive models. They observed differ-
ences of up to 25% in mean shear stress between the consti-
tutive models, indicating the importance of constitutive model
selection. Additionally, significant heterogeneities in spatial
shear stress distributions were noted.

Approaches other than FEA have also been applied to de-
termine the mechanical environment on a tissue scale. In

studies working towards coupling (re)modelling biology with
mechanics, Lerebours et al. [24•] and Scheiner et al. [11, 43]
applied representative volume element (RVE) concepts, beam
theory and continuum micro-mechanics theory, under assump-
tions of pure normal and bending force, to a femur mid-shaft.
Both studies argue that this analytical approach, adopted from
Hellmich et al. [44], provides a preferable alternative to the
conventional micro-FE approach. With this approach,
Lerebours et al. [24•] investigated site-specific bone loss due
to mechanical disuse in a multiscale model combining organ,
tissue and cell-scale simulation. This approach allowed the
combination of tissue and vascular phases into a single model
with an analytical solution and predicted SED for a given RVE,
which was coupled with a bone-(re)modelling algorithm.
Within the beam theory assumptions lies a challenge for this
type of approach. It is assumed that no shear forces or torsional
loads are present, and the material cross-section needs to re-
main plane and un-deflected relative to the bone’s neutral axis.
Lerebours et al. [24•] claim these assumptions hold true primar-
ily at the femur mid-shaft under small deformations; however,
expanding this model to other sections, geometries or anatom-
ical locations would require validation that these assumptions
hold true for each location.

Due to the scale and availability of techniques to gather
information at the organ and tissue scale, bridging of these
levels using fundamental concepts has been demonstrated.
Expanding and integrating this with smaller scales becomes
the next challenge.

Tissue to Cell

One aspect that would help linking these hierarchical scales
is differentiating between the modes of cellular
mechanotransduction. Strain experienced by a cell arises pri-
marily from matrix deformation strain and fluid flow strain
[20]. However, at least with osteocytes, these mechanisms
are coupled to some degree [40]; volumetric tissue deforma-
tion surrounding an osteocyte causes interstitial fluid flow,
inducing a pressure gradient within the lacunar-canalicular
network [45]. Correctly capturing the mechanical environ-
ment at a cellular level requires incorporating ultrastructural
features and their relation to the mechanisms of cell
mechanotransduction. In the immediate cell environment,
the effect of the extracellular matrix (ECM), the pericellular
matrix (PCM) and micro-structural features such as
Volkmann canals and lamellar layers influences strain trans-
mission from tissue level to the cell. This was first shown by
Anderson and Tate [46], who modelled fluid flow on osteo-
cytes processes. Using computational fluid dynamics, local-
ised stress spikes of up to 5× were found on geometries
constructed from transmitted electron micrographs (TEM),
compared with idealised geometries. Investigating localised
structural deformation, Verbruggen et al. [27] constructed
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geometries of osteocytes and their ECM and PCM from
confocal microscopic images, comparing this to FE-based
strain results based on idealised geometries. For simulations
of physiological tissues strains of 500 to 3000 microstrain,
they reported that both the ECM and PCM increased strain
transfer to the osteocyte. Specifically, the PCM decreased
peak strain transferred but increased the overall transmission
of strain to the osteocyte. This suggests that real geometries,
consisting of an osteocyte surrounded by ECM and PCM,
amplify average strain by 3–4 times that of idealised geom-
etries without an ECM or PCM network, reaching maximum
strains of more than 10,000 microstrain. In a further exten-
sion of this work using fluid-structure interaction modelling,
Verbruggen et al. [25••] introduced fluid in the PCM, be-
tween the ECM and the cell. This fluid-structural coupling
was analysed using ANSYS CFX and structural finite ele-
ment solver, and solved using a staggered iteration approach.
All solid structures were linear, elastic and isotropic, while
the interstitial fluid was modelled as a laminar flow, with
fluid properties of salt water. They reported that the highest
stress levels occurred not in the cell body itself, but within
the surrounding canaliculi. As such, compared with idealised
canaliculi, real canaliculi caused an amplification of stimuli
by 2–3 times. Vaughan et al. [7] also showed similar strain
amplification when modelling inhomogeneities in the micro-
structure around osteocytes, by incorporating Volkmann and
Haversian canals into an osteon. Osteocytes around the
Volkmann canals experienced strain up to 9 times the gen-
eralised applied strain, while osteocytes in the region of
lamella rings around the osteon experienced greater strain
amplification as their primary axis angle relative to the rings
increased. This amplification aligns well with several in
vitro studies, which report that osteocytes require a stimula-
tion of 5,000 to 10,000 microstrain to elicit a biological
response [21], as well as similar results from computational
approaches performed by Bonivtch et al. [47], Wang et al.
[48] and Kamioka et al. [49]. Estimating the mechanical
loads transferred from the tissue scale to the cell scale is
achievable with such computational approaches, albeit with-
out in vivo reference, and becomes even more challenging
beyond this scale.

Cell and Beyond

While intracellular mechanics models exist, it is question-
able whether multiscale models incorporating intracellular
complexity would increase accuracy, or only increase com-
putational burden. Hence, at this stage, it may be more
beneficial to incorporate these mechanisms outside of the
models. Indeed, several mechanisms transduce mechanical
stimuli that ultimately lead to the production of molecules
orchestrating the (re)modelling behaviour between all in-
volved cells. Actin filaments within cells are anchored to

the ECM via integrins and linker proteins, essentially
connecting the ECM and the cell’s cytoskeleton [50, 51].
Since cells must be anchored to sense shear stress [52], the
adhesion to the ECM is a requirement; as such, there is a
dependence on integrin function in transducing strain and
fluid shear stresses to cell deformations [53], even if
integrins do not sense the strain themselves. Proteins, in-
cluding myosin II motors, actin filaments and actin
crosslinkers, link the cell’s membrane via anchoring pro-
teins such as α-actinin or filamin, that sense dilation versus
shear cell deformations, respectively [54]. Fluid flow is also
sensed by primary cilium that extend from the cell surface,
whose deformation leads to the opening of ion channels
resulting in the internalisation or release of ions [55],
though its exact role is debated [56]. Other mechanisms
include glycocalyx, and membrane-bound proteins such as
connexions, or stretch-activated channels [57]. It is yet to
be ascertained whether detailed modelling of the cellular
mechanisms that transduce the cell mechanical environment
to the cell signals is even necessary; simply treating the
region as a ‘black box’ while experimentally quantifying
the inputs and outputs may be sufficient for tissue
(re)modelling research, at least at this relatively early stage
of computational prowess. Such computational biophysical
simulations that explore and understand molecular dynam-
ics are under development [58]; however, incorporating
such simulations into multiscale approaches in bone biome-
chanics would pose a challenge.

For now, one accessible building block could be the
lacuna-canalicular system, which acts as a communication
pathway, chemically, as shown by osteocyte calcium signal-
ling correlations to dynamic loading magnitude [59] and
frequency [60], and physically, via gap junctions. Ridha et
al. [61] captured elements of these features by applying
FEA to simulate rupturing of osteocyte cell connections,
showing how the loss of connection leads to bone resorp-
tion, while Jahani et al. [26] used network simulations to
model osteocyte apoptosis and its effect on bone-lining
cells, showing that only a 3% decrease in osteocytes was
needed to have a significant reduction in peak signal to the
bone-lining cells. These types of studies begin to shed light
on the interlinked, mechanosensitive biochemical relation-
ship between osteocytes, osteoclasts and osteoblasts which
collectively governs bone (re)modelling. The vast majority
of these inter- and intracellular pathways, molecules and
signals have been discovered in vitro, where creation of
an artificial mechanical environment is relatively simple.
Contrastingly, it is only in vivo, where the mechanical en-
vironment is inhomogeneous and substantially harder to
measure, that such cell-specific information can be validated
in the context of bone (re)modelling. Here, quantitative
computational tools may be key to estimate and appreciate
in vivo cell-scale loads and responses.
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Towards Multiscale Approaches

Several approaches have attempted to aggregate the influence
of mechanics over the range of scales required to investigate
biological processes such as bone remodelling. Frost [62] pro-
posed the concept of the bone multicellular unit (BMU), a unit
in which the relevant cell populations establish a localised
mechanically driven homeostasis via (re)modelling. This con-
cept allows the behaviour of this unit to be modelled without
taking into account individualised cell behaviour, addressing
the behaviour of cell populations within this BMU instead.
Several authors [11, 24•, 63] have adopted this approach and
made use of an RVE of cortical bone to attempt to aggregate
mechanics and capture the combined behaviour of the bone
(re)modelling cells. The RVE approach claims to be large
enough to account for all the micro-structural heterogeneities,
yet small enough to allow averaging of material behaviour
over the region [64], hence predicting a relevant mechanical
stimuli [11], especially if RVE convergence is considered
[65]. Further, the interconnectedness of the lacunar-
canalicular network integrates extracellular matrix strain as
well as fluid shear stress and provides adequate connection
between individual osteocytes that can sense mechanical stim-
uli on a larger scale, rather solely in the immediate dimensions
surrounding a single cell [30]. This results in the averaging of
tissue level strain over a particular volume, and the conversion
of these stimuli into a set of biochemical responses [24•]. Such
approaches could argue that cellular stimuli can be captured
by a volume substantially larger than an individual cell.
Conversely, it can be argued that to sufficiently capture the
intricate details that could affect the translation of mechanical
loads to cells, such as strain amplification behaviour [7] or
fluid-structure interaction within the lacunae [25••], the
RVE, in principle, would need to be smaller than the cell-
scale; hence the appropriateness of the use of an RVE in both
trabecular and cortical bone is debated [66]. However, it is
important to note that it is unknown what scale of detail is
required to quantify the mechanotransduction from tissue to
cell and determine a complete mechanical environment. As
such, depending on the model, the RVE approach may be
sufficient.

In contrast to the RVE approach, in vitro investigations
have shown that osteocytes require substantially greater levels
of strain to display a biological response than that measured in
the tissue-scale mechanical environment, established and
termed as strain amplification [47]. As known, complex inter-
actions between solid and fluid states [25••] and the micro-
structural geometries of the tissue [7, 27] lead to significant
amplification factors. These can occur between the average
tissue strain and the deformation of osteocytes, or the fluid
shear stress either on the cell itself or on its processes [67].
Currently, representative systems have begun to approach
multiscale bridging. Whether full multiscale approaches,

comprising of the organ to molecular scale, will provide in-
sights that are more relevant over representative systems, is
yet unclear.

Validation of Computational Approaches

While the use of computational bone-based biomechanical
models consistently increases, validation of the mechanical
signals used is in general very much lacking. Ascertaining
whether mechanical signal inputs into (re)modelling models
are truly representative of the in vivo mechanical signals is
very difficult, with increasing ambiguity at smaller scales. At
larger scales, the validation of models is somewhat achievable
[65]; historically, strain gauges have helped validate surface
strains of finite element simulations [33]. Other approaches,
such as digital image correlation, have also been implemented
as validation tools with varying degrees of success [68]. A
limitation of these techniques is that they are only appropriate
for surface strains, they stiffen the bone surface, or only cap-
ture in plane movement of 2D sections [69].

Beyond the organ-scale, experimental in vivo validation of
mechanical signals poses the greatest challenges. Cell ampli-
fication concepts, as discussed by Vaughan et al. [7] and
Verbruggen et al. [25••, 27], begin to address this with models
that converge on results observed in experimental studies,
generating results that align well with in vitro experimenta-
tion. Such indirect validation, with experimental observation
within the mechanical local in vivo environment, has been
performed with varying degrees of success. Several decades
ago, Weinans et al. [70] proposed a feedback driven mechan-
ical loading approach to bone remodelling, in which FEA
calculated the mechanical environment, which was used as a
remodelling stimulus in the simulation, leading to bone archi-
tecture changes. Over the years, more detailed and modern
approaches have built on this. Recently, Schulte et al. [8]
extended their own prior model [10], applying SED as a
(re)modelling stimulus to predict local spatial patterns of for-
mation and resorption. Here, an osteocyte density distribution
of 1/10.5 μm3 was combined with (re)modelling stimuli ap-
proximated by Gaussian smoothing of the mechanical envi-
ronment. Using the same micro-FE methods [10], measured
by SED value in the region, they could predict changes in
bone volume fraction (BV/TV) with a maximum prediction
error of 2.4%. However, this approach did not predict dynam-
ics rates of bone formation/resorption effectively, with signif-
icant differences between the simulated data and experimental
data. This approach was implemented by Levchuk et al. [71•]
in a large scale validation study of feedback controlled bone
remodelling. The in silico model was used to predict bone
(re)modelling behaviour in osteopenic mice under mechanical
loading with treatments of bisphosphonates or parathyroid
hormone. SED was once again used to describe the local
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mechanical environment and BV/TV was used as the assess-
ment variable for simulation to experimental comparison.
Similarly to Schulte et al. [8], overall errors for BV/TV pre-
diction were low, ranging from 0.1% (combined mechanical
loading and bisphosphonate treatment) to 4.5%, (control
group), though again, they could not predict dynamic param-
eters well. Both these studies indicate the effectiveness of
SED as a predictor of mechanical environment, primarily for
static parameters. This “soft validation” approach of mechan-
ical signals has provided an acceptable approach for assessing
the local mechanical environment. Similar validation ap-
proaches have been used in other in silico models [6••], such
as model behaviour aligning to fundamental (re)modelling
theories of bone. Despite the progress, what remains sorely
lacking, is the in vivo validation by direct comparison of pre-
dicted (re)modelling patterns to in vivo outcomes. As compu-
tational methods gain complexity and incorporate multiple
scales, the fundamental challenge of aligning and validating
these models becomes even more demanding.

At the organ scale, material models are usually isotropic
and purely elastic; inclusion of the viscous effects [72, 73] and
anisotropic effects [74] found in bone could improve such
models. This can be extended to bone marrow, where com-
parisons between highly viscous fluid, viscoelastic solid and
soft elastic solid constitutive models display different results
[41]. Therefore, the correct choice of model is essential, and
parameters require a comprehensive and application specific
database. Of further benefit would be an ability to quantify the
differences between mechanical environments determined un-
der varying model parameters and solving approaches, i.e.
linear versus non-linear solvers.

While tissue-averaged strain approaches have shown
success in predicting (re)modelling, it is clear that strain
and fluid stresses are amplified within the canaliculi-
lacunae network, causing cells to receive stimulation in
the range found to cause a biological response in in
vitro experiments. Hence, multiscale models incorporat-
ing strains and fluid stresses on the cells themselves,
based on tissues strains, could help explain the role of
single cells on the (re)modelling process. These models
would provide cell-specific mechanical stimuli boundary
conditions to inform experimental techniques heading
towards single cell analysis. However, many challenges
remain. Firstly, accurate mapping of the osteocyte lacu-
nae system, or the location of osteoblasts or osteoclasts
on the bone surface, is needed for (re)modelling exper-
iments. Secondly, coupling detailed imaging techniques
with in vivo experiments represents a significant chal-
lenge due to destructive doses of radiation, or long im-
aging times [28], and a lack of techniques linking the
two realms. Regardless, validation of input signals, and
the model themselves, appear the biggest hurdle towards
accuracy and confidence.

Conclusion

Over the last few decades in bone systems biomechanics, sub-
stantial progress has begun to elucidate the mechanosensitive
mechanisms of bone (re)modelling. Complete multiscale
modelling of the mechanical environment has significant appli-
cation towards understanding cellular mechanotransduction,
and the resultant processes in bone. In particular, the knowl-
edge of the exact forces and strain experienced by an individual
cell, or small populations of cells can be leveraged by rapidly
maturing experimental techniques. Techniques, such as laser
capture micro-dissection, or imaging mass spectroscopy, that
can gather molecular information from small populations of
cells, can be coupled with inter- and intracellular downstream
simulations converting the mechanical local in vivo environ-
ment to direct mechanical transduction within the cell.
Combining multiscale models, from organ level to protein
and molecular responses, with experimental data, will allow
the establishment of a continuum of knowledge from organ-
scale to protein expression. This will foster progress towards
understanding of the effects mechanics has on bone tissue,
allowing accurate characterisation of the molecular pathways
and processes involved in (re)modelling, repair and growth.
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