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Abstract
Purpose of the Review Mounting evidence supports a role of
low-grade inflammation in the pathophysiology of osteoar-
thritis (OA). We review and discuss the role of synovitis,
complement activation, cytokines, and immune cell popula-
tion in OA.
Recent Findings Using newer imaging modalities, synovitis
is found in the majority of knees with OA. Complement acti-
vation and pro-inflammatory cytokines play a significant role
in the development of cartilage destruction and synovitis.
Immune cell infiltration of OA synovial tissue by sub-
populations of T cells and activated macrophages correlates
with OA disease progression and pain.
Summary The innate and acquired immune system plays a
key role in the low-grade inflammation found associated with
OA. Targets of these pathways my hold promise for future
disease-modifying osteoarthritis drugs (DMOADs).
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Introduction

Osteoarthritis (OA) is a degenerative multifactorial joint dis-
ease, characterized by progressive joint failure with pain and
disability. OA involves breakdown and loss of articular carti-
lage, bone deformation, and synovial inflammation [1, 2].
Studies have shown a direct role for inflammatory factors in
OA pathogenesis, which now define OA as no longer simply
the result of “wear and tear” biomechanical processes [3]. The
interaction between trauma and chronic inflammation has
been described as a “triggering factor” that activates the im-
mune responses in OA pathogenesis [4].

Synovial Inflammation and OA

OA has traditionally been considered a pathological response
to abnormal joint loading and mechanics but low-grade syno-
vitis is now recognized as a common finding [5•]. Many au-
thors agree that in OA patients, the grade of synovitis is fre-
quently associated with: increased local cartilage damage and
pain [6]. Depending on the diagnostic technique and the se-
lection criteria for OA patients, synovitis may occur in the
majority of patients. Localized proliferative and inflammatory
changes of synovium occur in up to 50% of OA patients
suggested by arthroscopic studies [7]. The prevalence of sy-
novial hypertrophy detected by ultrasound (US) in OA of the
knees was analyzed by meta-analysis and found that synovial
hypertrophy was present in 41.5% (95% CI 26.3 to57.7) of
patients with knee OA compared to 14.5% (95% CI 0–58.81)
of control subjects without OA [8]. MRI assessment of a thou-
sand knee OA patients revealed synovial inflammation, mea-
sured by synovial hypertrophy and synovial enhancement, in
60% of OA patients [9]. Whether synovitis is causative of OA
or a consequence of joint failure is still not clear; however,
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synovitis and bone marrow lesions, detected by contrast- en-
hanced MRI (ceMRI) or Doppler US, have revealed that sy-
novitis and/or bone marrow lesions are predictive of incident
OA and the severity of synovitis predicts OA progression
[10–16]. These data are highly suggestive that synovitis may
play a pathological role in OA.

Histopathology of OA Synovium

Synovium is constructed of an outer layer, subintima, and an
inner layer, intima, and functions to produce and retain syno-
vial fluid in the joint. Typically, the subintima is composed of
dense fibrous tissue, type I collagen, adipose tissue, and in-
cludes lymphatic vessels, nerve fibers, and microvascular
blood vessels [17]. The intima is usually 1–4 cells thick and
includes synoviocytes, macrophages, and fibroblasts [17]. In
OA, synovial lining hyperplasia, sublining fibrosis, and neo-
vascularization of the stroma occur with infiltration of pre-
dominantly macrophages and T cells and some mast cells, B
cells, plasma cells, and NK cells [5•]. However, another study
suggests that the grade of macrophage infiltration is increased
in early OA [18]. Unlike RA synovitis, lymphoid aggregates
and germinal center formation are rarely seen in OA synovial
samples [19]. Cumulatively, these studies support a model of
OA development that includes local damage to the articular
cartilage, release of danger-associated molecular patterns
(DAMPs) that stimulate macrophage activation, release of
pro-inflammatory cytokine and chemokines that lead to re-
cruitment of more macrophages and lymphocytes, increase
in angiogenesis, and promotion of chondrocyte dysregulation
that leads to secretion of metalloproteinases, pro-
inflammatory cytokines, and prostaglandins that induce more
cartilage destruction [20] (Fig. 1).

The Role of Chemokines in OA

There are two well-documented events in OA and their man-
ifestation as synovitis. The first is the infiltration of monocytes
and macrophages in the synovial tissue and the second is the
increase of cytokines and chemokines in the synovial tissue
and synovial fluid [21, 22••]. The infiltration of immune cells
in the synovium of OA primarily reflects migration rather than
local proliferation and therefore is dependent on soluble me-
diators, especially chemokines [23]. Chemokines are a family
of low-molecular-weight secretory proteins that induce im-
mune cell migration as well as cell activation, angiogenesis,
and pain responses and inflammation [23]. Currently, four
subfamilies of chemokine receptors have been classified
based on the chemokine ligands to which they bind. The re-
lationship between chemokines and their receptors is complex
because a given chemokine can bind to several receptors, and

each receptor may bind to multiple chemokines. In OA,
chemokines are produced by a variety of cells including sy-
novial macrophages and fibroblasts, chondrocytes, and osteo-
blasts activated by inflammatory mediators or by mechanical
stress [23]. Chemokines expressed by human chondrocytes
include IL-8/CXCL-8, GROα/CXCL-1, MCP-1/CCL-2,
RANTES/CCL-5, MIP-1α/CCL-3, and MIP-1β/CCL-4, and
some of them are over-expressed in OA [24, 25].

CCL2 is also known as monocyte chemotactic protein 1
(MCP-1) and has been extensively studied in human OA and
animal models of OA [26]. Synovial fluid levels of CCL2
positively correlate with pain and physical disability in pa-
tients with OA [27]. Similarly, OA-related pain is significantly
decreased in mice deficient in the receptor for CCL2, CCR2,
in a destabilized medial meniscus (DMM) model of OA [28].
In this study, cartilage damage and proteoglycan loss were not
severe and were not significantly different between wild type
and CCR2-deficient mice [28]. However, a recent study
showed significant decreases in DMM-induced OA in mice
lacking CCR2 or CCL2 [21]. Protection from DMM-induced
OA was associated with significantly reduced joint macro-
phage infiltration [21]. Furthermore, synovial fluid from OA
patients had significant levels of CCR2 ligands, including
CCL2, CCL7, and CCL8, and synovial biopsies had abundant
CCR2+ macrophages that lined, invaded, and were associated
with OA cartilage erosions [21]. Importantly, blockade of
CCL2/CCR2 signaling significantly attenuated macrophage
accumulation, synovitis, and cartilage damage induced by
DMM in mice [21]. A third study found that mice deficient
in CCR2 or CCL2 had decreased synovial inflammation and
delayed pain behavior but only CCR2-deficient mice were
protected from developing OA at 20 weeks [29]. Human ar-
ticular chondrocytes express CCR2, and CCL2 induces in-
creased expression of MMP-3 and proteoglycan loss in vitro
[26]. Highlighting the possible role of CCL2 in human OA, a
single nucleotide polymorphism study of CCL2 gene found
both OA disease-associated and OA protective variants [30].
Taken together, these data support a significant role for
CCL2/CCR2 in trauma-induced OA but further studies are
needed to establish a role of CCR2 in age or high-fat diet-
induced OA.

CCR5 and its ligands CCL5 (RANTES), CCL4 (MIP-1β),
and CCL3 (MIP-1α) have also been evaluated in OA [26].
CCL5 and CCL4 levels have been reported to be increased in
the OA synovial fluid [31]. However, a more recent paper
found no increase in CCL5 or CCL3 in OA samples that
had high levels of CCL2 [21]. This study also showed that
mice deficient in CCR5 or CCL5 were not protected from
DMM-induced OA [21]. In contrast, Takebe et al. found that
CCR5-deficient mice were partially protected from DMM-
induced OA, with reduced cartilage damage but similar syno-
vitis and bone changes as WT mice [32]. Further studies are
needed to determine a role of CCR5 or its ligands in OA.
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Other chemokines, such as CXCR2, may have a more
homeostatic role in articular cartilage [33]. CXCR2 and
its ligand CXCL6 are expressed in adult healthy articular
cartilage; CXCL6 is retained in articular cartilage within
the extracellular matrix and CXCL6 is not detected in
advanced OA samples [33]. Mice with CXCR2 deficiency
developed more severe DMM-induced OA with increased
chondrocyte apoptosis compared to WT mice [33].
However, CXCR2-deficient mice did not develop sponta-
neous OA. Similarly, disruption of CXCR1/2 in human
and CXCR2 signaling in mouse chondrocytes leads to
decreased extracellular matrix production, reduced ex-
pression of chondrocyte differentiation markers, and in-
creased chondrocyte apoptosis [34]. Additional studies
are needed to determine if exogenous CXCL6 can restore
articular chondrocyte health.

The Role of Complement in OA

The complement system is one of the “first lines of defense” in
innate immunity, initiating a systemic danger response to cope
with an insult [4]. It is composed by over 30 proteins, capable
of inducing opsonization of pathogens, and initiating phago-
cytosis of its own cells and tissues when improperly regulated
by inhibitors, autoantibodies, or mutations in complement
components [35–37]. Complement activation can also in-
crease vascular permeability, recruitment of phagocytic cells,
augmentation of acute phase response, and stimulation of B
and T lymphocytes [38, 39]. Three distinct pathways can ac-
tivate the complement cascade. The classical and lectin path-
ways have their own specific pattern recognition molecules
(PRMs), whereas the alternative pathway is activated by a

spontaneous hydrolysis of C3 [40–42]. All pathways con-
verge into the C3 and C5 convertases, enzymes responsible
to mediate the formation of the membrane attack complex
(MAC), composed by C5b-C9 [43]. This complex has been
extensively demonstrated to lyse target cells through pore for-
mation when deposited on cellular membranes [44].
Importantly, the complement system is involved in physiolog-
ical and pathological processes in cartilage [45, 46].

Components of the classical (C1s and C4a) and alternative
(factor B) pathways, C3 and C5, and the components of MAC
are reported to be highly expressed in the synovial membrane
and synovial fluid from OA patients with meniscal tears and
cartilage degeneration [47–51]. The activation and deposition
of complement factors are found in cartilage fromOA patients
as well as in animal models of OA [24]. Chondrocytes have
been shown to synthesize complement components and syn-
thesis can be upregulated by pro-inflammatory cytokines such
as IL-1β and TNF-α in OA [51, 52]. Other components of the
complement, such as C5a receptors, have been reported to be
upregulated on the surface of chondrocytes in OA but not to
the same extent as in RA [39]. MAC formation is induced in
response to extracellular matrix (ECM) proteins, such as
aggrecans, chondroadherin, fibromodulin, osteoadherin,
COMP, and type II collagen [53, 54]. However, within the
joint, MAC activation is directly or indirectly inhibited by
proline/arginine-rich end leucine-rich repeat protein
(PRELP), the NC4 domain of type IX collagen, biglycan,
decorin, and COMP [42, 55]. This duality may explain why
no correlation was seen between cartilage protein fragments
and complement proteins in synovial fluid from patients with
knee injury [40]. However, a series of recent studies clearly
demonstrate the pathological function of the complement sys-
tem in trauma-induced OA in mouse models.

Fig. 1 Components of low-grade inflammation associated with
osteoarthritis. Multiple inflammatory pathways and mechanisms
contribute to the pathogenesis of OA. Tissue injury from trauma,
mechanical disturbances, and other mediators including obesity
predispose the joint to complement activation and cartilage destruction
releasing disease-associated molecular patterns (DAMPS) that can

stimulate macrophages and chondrocytes via toll-like receptors (TLRs)
to secrete chemokines like CCL2, aggrecanases, metalloproteinases, and
pro-inflammatory cytokines like TNF-α and IL-1β. Additional
macrophages, T cells, and mast cells are recruited leading to mild
synovitis and continued cartilage degradation
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DMM in mice deficient in C5 or C6 have reduced joint
pathology, with less cartilage loss, osteophyte formation, and
synovitis [53]. Chondrocytes from C5-deficient mice after
DMM surgery also demonstrated lower mRNA expression
levels of Jun and Fos pro-inflammatory transcriptional factors,
whose expression is induced by MAC in OA [51, 56]. Mice
deficient in MAC-inhibitor, CD59a, developed more severe
OA as compared to WT mice using three mouse models of
OA [53]. In addition, blocking complement activity with a
pharmacological drug, such as CR2-fH, a fusion protein that
inhibits activation of C3 and C5, attenuates the development
of joint damage. In the same way, another study showed that
carboxypeptidase B (CPB) appeared to have a protective ef-
fect against joint erosion in rheumatoid arthritis and OA by
inactivating the complement system [57]. The same group
observed that high levels of CPB in the synovial fluid from
individuals with OAwere associated with high levels of pro-
inflammatory cytokines, and complement components which
correlated positively with levels of MAC [53, 57]. Similar
findings were seen in Cpb2-deficient mice that developed
greater cartilage damage than WT mice and had a greater
number of osteophytes and degree of synovitis [57]. In
in vitro studies of complement activation assays, the CBP-
treated serum suppressed the formation of MAC as well as
MAC-induced hemolysis, suggesting that CPB has an anti-
inflammatory role in OA [57]. Taken together, these data in-
dicate that complement activation and regulation play a cen-
tral role in trauma-induced OA.

The Role of Macrophages in OA

Macrophage infiltration is common in OA synovial hyperpla-
sia and up to 90% of end-stage knee OA samples have signif-
icant infiltration of CD68+ macrophages [19]. Macrophages
are the most abundant cells in OA synovium and produce pro-
inflammatory cytokines including IL-1β and TNF-α known
to induce cartilage breakdown [24]. Seventy-six percent of
OA knees have accumulation of macrophages detected
in vivo using etarfolatide labeling and SPECT-CT analysis
of activated macrophages and the quantity of activated mac-
rophages in the joint is significantly associated with knee pain
(R = 0.60, p < 0.0001), joint space narrowing (R = 0.68,
p = 0.007), and osteophytes (R = 0.66, p = 0.001) [58•].
These results are highly suggestive that synovitis with activat-
ed macrophage recruitment to the joint is pathogenic in OA.

Activated macrophages may develop in response to
pathogen-associated molecular patterns (PAMPs) and endog-
enous DAMPS. Pattern recognition receptors (PRRs) are
germ-line encoded innate immune receptors that recognize
exogenous PAMPS and endogenous DAMPs. Major families
of PRRs include Toll-like receptors (TLR), C-type lectin re-
ceptors (CLRs), nucleotide binding and oligomerization

domain (NOD)-like receptor family, pyrin and HIN200
domain-containing (PYHIN) family, the RIG-1-like receptor
(RLR) family, and oligoadenylate synthase (OAS) proteins.
PRRs activate signaling pathways that collectively induce
the production of cytokines as well as activation of NLR fam-
ily, pyrin domain containing 3 (NALP3) inflammasomes,
driving activation of caspase-1 and generating biologically
active Il-1β and IL-18 and inducing pyroptosis or inflamma-
tory cell death [59]. Dysregulated NALP3 inflammasome re-
sponses are commonly found in human diseases including
Parkinson’s disease, Alzheimer’s disease, type 2 diabetes,
gout, and obesity [59]. Multiple crystals, including uric acid
(UA), calcium pyrophosphate, basic calcium phosphate
(BCP) crystals such as hydroxyapatite (HA), activate
inflammasomes leading to secretion of IL-1β and IL-18 with-
in the joint and likely contributes to OA. NALP3 protein is
over-expressed 5.4 fold in OA synovium compared to non-
OA synovium [60]. HA crystal deposition and prevalence in
joint fluid are found in up to 60% of OA patients and correlate
with OA severity [61–63]. HA crystals activate the
inflammasome in synovial macrophages, leading to IL-1β
and IL-18 release into the synovial fluid targeting
chondrocytes and synovial lining cells to up regulate
cartilage-degrading enzymes and suppress extracellular ma-
trix synthesis, resulting in joint destruction [64]. However,
clinical trials using anti- IL-1β therapies have been disap-
pointing [65]. Recent studies have shown that BCP crystals
induce Syk, PI3K, and MAPK activation leading to IL-1β,
MMP1, and generation of DAMP antigen S100A8 in human
macrophages [66]. Syk inhibition effectively prevented these
cellular responses and suggests that treatment with Syk inhib-
itors, several of which are currently in clinical trials for cancer
and autoimmune disease, may be advantageous to prevent
crystal- and DAMP- induced inflammation and cartilage
damage.

The Role of T Cells in OA

A pathological role of T cells in OA is still uncertain but a
significant body of literature indicates OA synovium has a
rich population of T cells compared to healthy synovium
[67, 68]. In OA synovium, T cells are second only to macro-
phages in frequency and may account for 20–25% of the in-
flammatory cells [69]. CD4+ T cells are enriched within sy-
novial aggregates compared to CD8+ T cells [70] and OA
synovial tissue has increased CD4+/CD8+ ratios approaching
5:1 in OA compared to 2:1 in healthy synovium [67, 68, 70,
71]. Unilateral versus bi-compartmental OA synovial mem-
brane inflammatory cellular infiltrates also differ, with pre-
dominantly CD14+ macrophages in unilateral and both mac-
rophages and CD4+ T cells in bilateral OA [72]. OA synovial
T cells also have decreased expression of CD3zeta+ mRNA
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and protein compared to CD3epsilon suggesting that they are
chronically stimulated [73]. When adjusted for age, sex, and
body mass index (BMI), synovial CD4+ T cells, but not other
immune cells, are associated with the pain visual analog scale
(VAS) [74]. Peripherally, OA patients also have altered ratios
of circulating CD4+/CD8+ Tcell ratios [75]. Peripheral blood
Tcell populations are also altered in aged OA patients [71, 76,
77]. These data indicate that OA is associated with alterations
in T cells locally within the joint and peripherally.

In both RA and OA, T regulatory (Tregs) cells
(CD4+CD25+/high CD127/−) are increased in peripheral blood
and synovial fluid, while Tregs are significantly elevated in
RA synovium (p = 0.0335) compared to OA synovium [78].
Interestingly, the Tregs present in RA and OA synovium are
very similar, displaying an activated effector memory pheno-
type (CD45RO + RA-, CD69, CD62L) and Treg functional
markers CD152, CD154, CD274, CD279, and GITR [74].
However, despite the increased frequency of CD4 +
CD25 + Foxp3+ Tregs in the blood of OA patients, these
Tregs have lower secretion of IL-10, likely due to decreased
expression of Tcell inhibitory receptor Tcell immunoglobulin
and mucin domain-containing-3 (Tim-3) [79]. Another study
found increased Tim-3 + CD4+ Tcells in the peripheral blood
of OA patients and found that galectin 9, a ligand for Tim-3,
was increased in the synovial fluid in less severe grade 2 OA
patients compared to grade 4 OA patients [80]. In the synovial
fluid, surface Tim-3 was also higher on CD8+ T cells and
CD14+ monocytes from grade 2 OA patients and lower in
grade 4 OA patients [80]. Importantly, galectin 9 induced
Tim-3 + CD4+ Th1 cell apoptosis, suggesting that galectin 9
may inhibit T cell-induced inflammation in early OA [80].

The role of effector T cells including Th1, Th2, Th9, Th22,
and Th17 in OA has been recently reviewed [68]. Although
pro-inflammatory Th1 cells, producing interferon-γ (IFN-γ)
and TNF-α, are present in the sublining layer of synovial
membranes of OA, they are much less frequent than in RA
synovium [81–83]. Th2 cells, induced by IL-4, producing IL-
10, IL-4, IL-5, and IL-13, are infrequent in OA synovium and
synovial fluid [68]. There is controversy on alternations in OA
synovium with some studies showing similar peripheral Th17
cell percentages as healthy controls [84, 85] and while another
has shown an increased frequency or presence in OA
synovium [77, 81]. Recent work investigated the percentage
of T follicular helper (TFH) cells (CXCR5+, CD4+) and se-
rum IL-21, IL-17A, and IFN-γ in 40 OA patients compared to
12 health controls [86]. CXCR5+, CD4+ TFH cell popula-
tions were increased in OA patients and the percent of TFH
increased with OA grade [86]. Furthermore, OA patients com-
pared to healthy controls had significantly elevated serum IL-
21, IL-17A, and IFN-γ levels. Overall, the expression of IL-
21 + TFH cells positively correlated with OA disease activity,
CRP levels, and WOMAC. The newly described Th9 cells
(CD4+ CD8- IL9+), producing IL-9, positively correlate with

Western Ontario and McMaster Universities Osteoarthritis
Index in OA patients and may represent a marker of disease
activity [77]. Collectively, these studies are suggestive that T
cells are dysregulated in OA but more data are needed to
confirm a pathological role of individual subsets of T cells in
OA.

The Role of Other Immune Cells in OA

OA synovial tissue includes other immune cells including B
cells, plasma cells, mast cells, and NK cells [67, 74, 87].
While many studies have shown B cells present in low levels
in OA, one study has shownmoderate to strong B cell staining
in 15% of OA patients while 54% had no B cell staining [88].
However, studies are lacking showing a correlation between B
cell infiltration and OA progression or severity. NK cells are
present in limited numbers in OA synovium and no evidence
supports a significant role of NK cells in OA [89]. Synovial
biopsies from 56 symptomatic OA and 49 RA patients re-
vealed significantly more mast cells in the OA samples and
a positive association between number of mast cells and KL
grade [87]. Mechanical loading can induce mast cell degran-
ulation [90]; however, activated mast cells as indicated by
substance P are found in a minority (7%) of OA samples
compared to 41% of RA synovial biopsies [91]. Additional
studies are needed confirm a possible pathological role of
mast cells or B cells in OA development.

Conclusion

Recent studies have provided significant mechanistic ad-
vances into the role of inflammation and immune cells in the
pathophysiology of OA. Traumatic OA initiation clearly re-
quires both complement activation and macrophage infiltra-
tion. Future studies aimed at testing local inhibition of com-
plement activation or preventing macrophage infiltration in
the immediate post-injury phase will help to determine if
targeting these factors will reduce the progression to end-
stage OA. Activated macrophages and T cell synovial infiltra-
tion predict pain and disease progression in OA but further
studies are needed to identify how this low-level inflammation
contributes to cartilage damage.
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