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Abstract
Purpose of Review Bone disease is a defining characteristic of
multiple myeloma (MM) and the major cause of morbidity. It
manifests as lytic lesions or osteopenia and is often associated
with severe pain, pathological fracture, spinal cord compres-
sion, vertebral collapse, and hypercalcemia. Here, we have
reviewed recent data on understanding its biology and
treatment.
Recent Findings The imbalance between bone regeneration
and bone resorption underlies the pathogenesis of osteolytic
bone disease. Increased osteoclast proliferation and activity
accompanied by inhibition of bone-forming osteoblasts leads
to progressive bone loss and lytic lesions. Although tremen-
dous progress has been made, MM remains an incurable dis-
ease. Novel agents targeting bone disease are under investiga-
tion with the goal of not only preventing bone loss and im-
proving bone quality but also harnessing MM tumor growth.
Summary Current data illustrate that the interactions be-
tween MM cells and the tumor-bone microenvironment
contribute to the bone disease and continued MM progres-
sion. A better understanding of this microenvironment is
critical for novel therapeutic treatments of both MM and
associated bone disease.
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Introduction

With more than 30,300 new cases diagnosed in 2016, multiple
myeloma (MM) is the second most common hematological
cancer and is the 14th leading cause of cancer death in the
USA (https://seer.cancer.gov/statfacts/html/mulmy.html).
MM is a B cell malignancy characterized by clonal
expansion of terminally differentiated, immunoglobulin-
producing, transformed plasma cells in the bone marrow
(BM) [1, 2]. The evolution of the disease is characterized by
an asymptomatic premalignant state, monoclonal
gammopathy of undetermined significance (MGUS), and
smoldering MM [2]. Smoldering MM is an asymptomatic,
precancerous form of myeloma with increased level of plasma
cells in bone marrow and/or monoclonal protein but without
evidence of end organ involvement. Clinically, MMmanifests
with hypercalcemia, renal failure, anemia, and/or bone disease
(also known as the CRAB criteria). The progression of the
disease from a premalignant state into active MM is charac-
terized by the development of osteolytic bone disease (OBD)
[3] as one of its disease-defining features. At least 85% ofMM
patients show some degree of osteopenia [4] at diagnosis, and
the severity of bone destruction typically correlates with tu-
mor burden and prognosis [2, 5].

OBD is a consequence of bone homeostasis perturbation.
Bone homeostasis is physiologically maintained by the bal-
ance between bone formation and bone resorption which is
mainly regulated by osteoblasts and osteoclasts, respectively.
MM cells are known to secrete factors that enhance osteoclast
proliferation and activity while inhibiting osteoblast bone
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formation [6]. Additionally, the myeloma-driven deregulation
of the bone compartment creates a permissive microenviron-
ment for MM cell expansion [7]. Since MM burden and pro-
gression tightly depend on the interactions of MM cells with
the bone microenvironment, therapies aimed at restoring bone
homeostasis targeting osteoblasts, osteoclasts, or both hold
promise for the treatment of MM. Animal studies have shown
that inhibition of osteoclast function or stimulation of bone
formation can reduce tumor burden and prevent OBD [8, 9].
Here, we review bone metabolism in the context of MM dis-
ease progression and treatment strategies to mitigate the im-
pact of OBD.

Defining the Cellular Interplay inMyeloma-Derived Bone
Disease

Bone Marrow Mesenchymal Stromal Cells

An understanding of the cellular interplay between tumor and
the microenvironmental compartment is critical to developing
novel therapies for MM (Fig. 1). Bone marrow stromal cells
(BMSCs) comprise of cells of hematopoietic (red and white
blood cells) and mesenchymal origin (osteoprogenitors, oste-
oblasts, adipocytes, chondrocytes, endothelial cells, and fibro-
blasts) [10]. BMSCs indirectly participate in hematopoiesis by
secreting cytokines, chemokines, and growth factors such as
CXCL12, IL7, LIF, G-CSF, GM-CSF, and IL-6. These factors
play a critical role in the maintenance, proliferation, and dif-
ferentiation of hematopoietic stem and progenitor cells
[10–13]. Mesenchymal cells originate from a mesenchymal
stem cell (MSC) [14] via differentiation into lineage-specific
cells, which is strictly regulated by physical, chemical, and
spatial stimuli. B lymphocytes originate and differentiate in
the BM, and studies in mice have reported the crucial role of
bone cells during B lymphopoiesis and plasma cell recircula-
tion [13]. For example, induced in vivo cellular deficiency of
osteoprogenitors and preosteoblasts depletes the common
lymphoid precursor cells and overall B cell populations in
the BM [15], while deletion of the α subunit in the G protein
arrests B cell differentiation at the pro-B cell stage [16].
Interestingly, deletion of the parathyroid hormone (PTH) re-
ceptor, a G-protein-coupled receptor in osteoprogenitors, ar-
rests the differentiation of the pro-B cell into a mature B cell. It
also impairs egress of immature B cells from the BM,
resulting in increased accumulation of maturing B cells in
the BM. This accumulation occurs specifically along the bone
surface in part due to overexpression of the vascular cell ad-
hesion molecule 1 (VCAM1) by stromal and bone cells [17].

MM cells influence the behavior of BMSCs through direct
cell-cell contact and via secretion of paracrine factors.
Adhesion of the myeloma tumor cells to BMSCs stimulates
secretion of BMSC-derived factors (such as BAFF) that, in
turn, upregulate expression of anti-apoptotic proteins (e.g.,

MCL-1 and BCL-2) and cell cycle regulating proteins (e.g.,
serine/threonine kinase Pim-2), which confer chemoresistance
to MM cells [18–21]. Cell-cell interactions between BMSCs
and MM cells are mediated via adhesion molecules, such as
inter-cellular adhesion molecule 1 (ICAM-1) and VCAM-1
on BMSCs and very late antigen 4 (VLA-4) on MM cells.
These interactions promote retention of MM cells within the
BM and contribute to increased osteolytic bone lesions [22,
23, 24]. In addition to the MM-BMSC cell-cell interactions,
secreted factors such as interleukin 6 (IL-6) are also critical
promoters of MM progression [25]. Both MM and BMSCs
secrete IL-6 upon stimulation of different signaling pathways
including NF-kB and Notch [26–29]. They also secrete other
inflammatory cytokines like TNF-α and IL-1βwhich can lead
to OBD by activating osteoclasts, inhibiting osteoblasts, and
increased IL-6 expression [30, 31]. Other factors secreted by
both MM cells and BMSCs include vascular endothelial
growth factor (VEGF), insulin-like growth factor (IGF-1),
IL-1, TGF-β, angiopoietin-1 (Ang-1), platelet-derived growth
factor (PDGF), basic-fibroblast growth factor (bFGF), and
hepatocyte growth factor (HGF) [32, 33]. These growth fac-
tors have been shown to be associated with increased angio-
genesis, osteoclastogenesis, and tumor growth in MM [34].
MM patients with advanced bone disease also show higher
levels of activin A in the blood [35, 36]. Activin A is an
osteoclast-activating factor and inhibitor of osteoblast differ-
entiation but is not secreted by MM cells [36]. Interestingly,
MSCs from MM patients, but not healthy donors, were found
to secrete activin A, suggesting a possible intrinsic genetic
defect in BMSCs of MM patients [36]. Preclinical models
showed that targeting activin A reversed osteoblast inhibition
and improved MM bone disease. Furthermore, lenalidomide,
an immunomodulatory drug commonly used in the treatment
of MM, increases activin A secretion from BMSCs, leading to
inhibition of osteoblastogenesis. The combination of
lenalidomide with activin A-neutralizing antibody could rep-
resent a new strategy in managing MM bone disease [37].
BMSCs of MM patients were found to have abnormal gene
expression with decreased osteoblastic differentiation poten-
tial and aberrantly secrete growth differentiation factor 15
(GDF15), which supports myeloma stem cell survival and
self-renewal [38–41]. Together, these findings highlight the
crucial role of the BM microenvironment in the establishment
and progression of MM [39, 40, 42, 43].

Drugs currently used in the clinic, like the proteasome in-
hibitors, can target the cross talk between MM and BMSCs.
The proteasome inhibitor bortezomib inhibitsMM cell growth
by impairing MM cell adhesion to BMSCs and by reducing
the secretion of cytokines necessary for MM survival [44].
Bortezomib acts on MSCs directly to increase osteoblast dif-
ferentiation [45]. Another strategy to decrease MM cell adhe-
sion to stroma involves the inhibition of CXCL-12/CXCR-4
axis, which is reinforced by VLA-4/VCAM-1 interaction, by
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using CXCR4 inhibitor AMD3100. Mobilization [36] of MM
cells was found to enhance their sensitivity to chemotherapy
[46].

Osteolineage Cells

Cells of the osteoblast lineage are the main actors in mineral
bone apposition and thus primarily affected in MM bone dis-
ease. Differentiation of MSCs into bone cells is regulated by
activation of two major transcription factors: runt-related tran-
scription factor 2 (RUNX2) and osterix (OSX) [47]. These
transcription factors, essential for the maturation of osteoblasts
and ossification, rely on the canonical Wnt signaling pathway.
The binding of Wnt proteins to frizzled (FZ) family receptors
and lipoprotein receptor-related protein (LRP)-5/6 coreceptors
forces the release of β-catenin from the cytosolic destruction
complex and is internalized in the nucleus, where it acts as
coactivator of transcription factors that belong to the TCF/
LEF family [48••]. However, Wnt signaling is inhibited by a
variety of Wnt antagonists such as dickkopf-1 (DKK1),
sclerostin (SOST), and secreted frizzled-related proteins
(sFRPs) that compete for the same Wnt coreceptors [48••].
MM cells produce a variety of Wnt antagonists including
DKK1, sRFP2, and sRFP3 [49–51]. High levels of DKK1
have been found in the BM and blood of MM patients and
have been correlated with the presence of focal bone lesions
[49]. In vitro and in vivo studies have shown that blocking
DKK1 and increasing Wnt signaling restored osteoblast num-
ber and trabecular bone while decreasing tumor burden [9,
52–54]. A phase IB trial of an anti-DKK1 antibody,
BHQ880, in relapsed/refractory MM showed a general trend

towards increased BMD, though interpretation is limited giv-
en that BHQ880 was given with zoledronic acid [55].

MM cells have been reported to also secrete SOST [56].
Although we and others were not able to detect SOST secre-
tion from MM patient cells or MM cell lines [57], the level of
circulating SOST in MM patients is significantly higher and
correlates with advanced MM disease stage and fractures [58,
43]. Osteocytes are responsible for SOST secretion but the
number of osteocytes in MM patients is drastically reduced
because of osteolytic lesions. We have recently reported that
MSCs of MM patients aberrantly secrete SOST, and this may,
at least in part, account for the increased circulating SOST
levels in MM patients [43, 57]. In vivo treatment of MM-
bearing mice with SOST neutralizing antibody showed re-
duced bone loss and osteolytic lesions, although no effect
was seen on tumor burden [59•]. However, the source of
SOST secretion and its effects on MM and tumor microenvi-
ronment remain under investigation. Together, these results
indicate that rescuing osteoblast activity and increasing bone
formation in MM patients can be a potential tool to inhibit
MM tumor growth and improve MM bone disease.

Adipocytes

Although BM adipocytes have not been directly implicated in
MM bone disease, emerging evidence show that adipocytes
support MM growth and survival which negatively correlate
with bone mass. Adipocyte and osteoblast lineage commit-
ment, arising from common progenitor MSCs, are tightly reg-
ulated events in BM. Wnt signaling is a major promoter of
osteoblast lineage while suppressing adipocyte lineage

Fig. 1 Cellular interplay
between tumor and the
microenvironmental
compartment critical to
developing novel therapies for
MM
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commitment regulated by PPARγ signaling pathway [60, 61].
Moreover, marrow adiposity increases with age, from 30% of
the BM volume in young adults to 70% in elderly people
[62••]. Conversely, bone formation rates decrease with aging.

Obesity is positively correlated with increased risk of devel-
opingMM and is associated with higher levels of BM adiposity
[63–65]. Compared to patients with MGUS, patients with MM
had higher abdominal fat cross-sectional area and higher fat
metabolic activity as demonstrated by FDG-PET/computed to-
mography (CT) [66]. A recent in vivo study demonstrated that
diet-induced obesity promoted a MM-like syndrome in mice,
suggesting that even an unhealthy diet may be implicated in the
initiation of the tumor [67•]. In vitro, BM adipocytes have been
shown to support MM growth and survival by secreting
adipocyte-specific cytokines (adipokines) (leptin, insulin,
adipsin, resistin, etc.) and growth factors [IL-1β, IL-6, IL-10,
IL-12, TNFα, monocyte chemoattractant protein 1 (MCP-1),
IGF-1, VEGF, SCF, bFGF] [68–72] and protecting MM cells
against chemotherapy-induced apoptosis through autophagy
activation [73].

BM adipocytes also secrete lipids in the form of free fatty
acids that can be used as energy for tumor cell proliferation
[74]. Increased levels of free fatty acids were found in the
serum ofMMpatients when compared to healthy donor serum
[75]. Although some specific fatty acids resulted in anti-
myeloma effects [76, 77], a recent study implicated lysolipids
in the origin of monoclonal gammopathies, including MGUS
and MM [78••]. They reported that lysolipids act as antigens
for plasma cell-derived antibodies and reactivity to this cate-
gory of lipids accounts for 33% of sporadic human monoclo-
nal gammopathies. The results suggest that extensive immune
activation due to lysolipids could potentially represent an ini-
tiation factor in sporadicmonoclonal gammopathies and could
represent novel biomarkers and targets to prevent disease pro-
gression. Many lipids also act as ligands for the nuclear recep-
tors involved in PPARγ signaling pathway. Therefore, in-
creased levels of free fatty acids in MM patients likely lead
to upregulation of PPARγ signaling, which in turn enhances
BM adipogenesis and MM survival while inhibiting osteo-
blast differentiation. A recent in vitro study demonstrated the
direct lipotoxic effect of saturated fatty acids, stearate and
palmitate, on human osteoblasts [79, 80]. Data also demon-
strated that augmented adipogenesis during obesity and aging
impaired bone regeneration [81]. Taken together, BM fat is
emerging as an important regulator of MM development and
bone disease and, therefore, may represent a new promising
therapeutic target.

Osteoclasts

The pathogenesis of MM-induced bone disease underlies pri-
marily in upregulation of osteoclast differentiation and activity
that results in unbalanced bone resorption giving rise to

characteristic osteolytic lesions [82]. Positive correlations
were found among osteoclast numbers, resorptive surface,
and disease progression [5, 83, 84]. Several factors mediate
osteoclast activation in MM patients. MM cells directly se-
crete cytokines with osteoclastogenic potential, including IL-
1, IL-3, IL-6, TNFα, MIP-1α, MIP-1β, and decoy receptor 3
(DcR3) [85–90].

MSCs and bone cells are also a source of osteoclast-
activating cytokines. In addition to BAFF, activin A,
CXCL12, IL-6, and VEGF, two proteins produced by bone
cells play a central role in osteoclast differentiation: the recep-
tor activator of nuclear factor kappa-B ligand (RANKL) and
osteoprotegerin (OPG) [91–93]. Adhesion of MM cells to
BMSCs stimulates RANKL expression by osteoblasts which
promote osteoclast differentiation through stimulation of
NF-κB and JunN-terminal kinase pathways [94]. In addition,
RANKL is able to inhibit osteoclast apoptosis. Denosumab is
a human monoclonal antibody that binds to RANKL with
high affinity resulting in rapid and extensive bone resorption
inhibition but also MM burden modulation [95]. Denosumab
is approved for the treatment of bone metastases due to solid
tumors (see below). OPG is significantly decreased and cor-
relates with advanced bone disease in MM patients [96]. A
high RANKL/OPG ratio is associated with a worse prognosis
[5]. Treatments aimed to normalize the RANKL/OPG ratio by
increasing OPG and/or reducing RANKL were effective in
arresting bone destruction and MM growth in vivo [97–100].

High levels of the pro-inflammatory cytokine MIP-1α,
mainly secreted by MM cells and osteoclasts, correlate with
bone disease and poor prognosis [101]. MIP-1α promotes
MM cell survival and migration through activation of ERK
and AKT signaling, stimulates osteoclastogenesis, and inhibits
osteoblastic differentiation by downregulating osterix
[102–104]. Similar to MIP-1α, high expression of Bruton’s
tyrosine kinase (BTK) in MM cells and osteoclasts, fundamen-
tal to B-lymphocyte development as well as osteoclast differ-
entiation, has been implicated inMM cell growth and increased
bone resorption [105, 106]. The BTK inhibitor ibrutinib dem-
onstrated cytotoxicity on MM cells and was effective in reduc-
ing osteolysis through inhibition of the NF-κB pathway [107,
108]. The combination of the Btk inhibitor, CC-292, with the
proteasome inhibitor carfilzomib in vivo showed a synergistic
effect in reducing the tumor burden and increasing bone vol-
ume [109]. In addition to their fundamental role in bone turn-
over, osteoclasts are implicated in a variety of functions [110,
111]. Osteoclasts are terminally differentiated cells of the
monocyte/macrophage lineage and as all cells of the innate
immune system, share similar immune receptors and activities.
They interact directly with T lymphocytes and activate them in
the context of autoimmune disease [112]. Moreover, while T
cells produce potent osteoclastogenic cytokines (RANKL and
IL-1β), osteoclasts are able to suppress T lymphocyte prolifer-
ation in order to maintain a balance in bone remodeling [113].

486 Curr Osteoporos Rep (2017) 15:483–498



Cells of the myeloid lineage, including macrophages, dendritic
cells, and other myeloid-derived suppressor cells (MDSCs),
have been implicated in the establishment of a protective envi-
ronment for MM cells by suppressing killer T cells and
preventing chemotherapy-induced apoptosis [114–116]. A re-
cent study demonstrated that osteoclasts protect MM cells
against T cell-mediated cytotoxicity via direct inhibition of pro-
liferating T cells [117•]. Because defective T cell-mediated re-
sponse is a key mechanism for tumor escape from immunolog-
ical surveillance [118], the immunosuppressive function of os-
teoclasts and their crucial role in osteolytic disease need to be
considered primary targets in the treatment of MM.

Imaging of Multiple Myeloma

Traditionally, imaging using plain films, i.e., the skeletal sur-
vey, has been used for the initial assessment of bone disease
[119]. Conventional radiography has the advantage of cost
and widespread availability. However, a significant limitation
is that 30–50% of bone can be destroyed before it can be
detected by this modality [120]. Cross-sectional imaging by
CT, MRI, or PET-CT have increased sensitivity and are in-
creasingly used for assessing bone disease with the aim of
detecting disease at an earlier time point [121].

Whole-Body Low-Dose CT

CT overall has a 4–33% higher detection rate for picking up
lytic lesions compared to conventional radiography [122]. To
take advantage of the increased sensitivity of CT and to mini-
mize radiation exposure, whole-body low-dose CT
(WBLDCT) protocols have been developed [123]. The radia-
tion exposure fromWBLDCT is minimal, about double that of
the skeletal survey ((4.1 versus 2.4 mSV) [124] versus an esti-
mated 21mSV for conventional chest, abdomen, and pelvic CT
[125]). WBLDCT is more sensitive than conventional radiog-
raphy for detecting lesions in the spine, pelvis, and thoracic
cage, and in one study, led to change in treatment in 18.2%
patients [126] and in another study, detected lytic lesions in
an additional 23% of patients with plasma cell disorders
[127]. In a recent retrospective study by the International
MyelomaWorking Group, 21.4% of patients who were consid-
ered to have smoldering multiple myeloma by skeletal survey
were upstaged to active multiple myeloma through WBLDCT
[128]. In addition to increased sensitivity, WBLDCT has the
advantages of speed and convenience and has replaced the
skeletal survey at some European institutions [124].

MRI

MRI plays a key role in the imaging of MM due to its sensi-
tivity for detecting BM involvement in contrast to convention-
al radiography or CT, which are better suited for detecting

lytic lesions [129]. Several patterns of bone marrow involve-
ment have been described, including a normal appearance,
focal involvement, diffuse infiltration, and a variegated pattern
[130].MRI is alsomore sensitive than plain films for detecting
lesions; for example, MRI detected lesions in 74% of MM
patients compared to 56% by skeletal survey. In the spine,
MRI revealed more lesions than the skeletal survey by con-
ventional radiography, 78 versus 16% [131]. This is clinically
relevant, as identification of more than one focal lesion by
MRI in patients traditionally classified as smoldering MM is
associated with a high risk of progression to active disease:
70% progression in 2 years [132]. Furthermore, MRI findings
change in response to treatment; there was a strong relation-
ship between response to treatment and changes in diffuse and
focal patterns in one study [133]. Due to the prognostic rele-
vance of findings on MRI, the definition for active multiple
myeloma has been recently updated to include more than one
focal lesion (≥5 mm) seen on MRI [134].

PET/CT

Functional imaging using 18fluorodeoxyglucose (18F-FDG)
PET/CT has also emerged as a valuable tool for assessing
bone disease, particularly assessing the burden of disease
and for distinguishing between active and inactive lesions. It
already is a standard component for diagnosis and assessment
of response in patients with lymphoma and solid tumors. The
IMWG has recently described guidelines for its use [135]. An
advantage of PET/CT over MRI is the ability to evaluate dis-
ease outside the field of view of MRI as well as evaluating
extramedullary sites of disease. PET/CT plays an important
role in staging plasma cell dyscrasias, for example, confirming
a solitary site of disease in solitary plasmacytoma versus ac-
tive multiple myeloma. Recently, the Intergroupe
Francophone du Myélome (IFM) compared PET/CT and
MRI in a prospective randomized study in newly diagnosed
MM patients [136]. This study found that normalization of
PET/CT following induction treatment was associated with
significant improvement in progression-free survival. In con-
trast, normalization of MRI did not have prognostic value.
This suggests that PET/CT may play a larger role in the future
for assessing response to treatment and be a potential prog-
nostic factor.

Bisphosphonates

Bisphosphonates are a cornerstone of treating and preventing
bone disease in MM [137]. Bisphosphonates are related to py-
rophosphate and are characterized by a P-C-P backbone. They
deposit in bone and reduce osteoclast activity by inhibiting
farnesyl pyrophosphate synthase [138]. In MM, the develop-
ment of higher-potency bisphosphonates such as pamidronate
and zoledronic acid, which are given intravenously, was a
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significant advance for relieving pain due to bone disease and
preventing skeletal-related events (SREs) such as pathologic
fracture, irradiation or surgery on bone, or spinal cord compres-
sion [139–141]. Pamidronate was the first bisphosphonate to
show a benefit in MM. In patients with at least one osteolytic
lesion, pamidronate given every 4 weeks significantly reduced
SREs compared to placebo, 24 versus 41% (p < 0.001) after
9 cycles, respectively [139] (Table 1). Importantly, pamidronate
also significantly improved quality of life, with decreases in
pain scores seen within a month. Zoledronic acid is another
bisphosphonate that is also given monthly and is more potent
than pamidronate. For treatment of hypercalcemia of malignan-
cy, zoledronic acid was superior to pamidronate [142]. In MM,
the efficacy of zoledronic acid in preventing SREs was compa-
rable to pamidronate [143], though zoledronic acid has themain
practical advantage of a shorter infusion time compared to
pamidronate.

In addition to playing an important supportive role,
bisphosphonates may have an anti-MM effect. The MRC
Myeloma IX trial is a key trial that compared zoledronic acid
to oral clodronate in patients with newly diagnosed MM
[144••]. This study found that zoledronic acid reduced mor-
tality by 16% and had superior overall survival, 50 versus
44.5 months with clodronate (p = 0.04). There also was a
lower incidence of SREs with zoledronic acid, 27 versus
35% (p = 0.0004) compared to clodronate [145]. Moreover,
patients who did not have bone lesions at baseline also had
fewer SREs with zoledronic acid [145], though the benefit in
survival was seen only in patients with bone disease on study
entry [146].

Based on these findings, the National Comprehensive
Cancer Network [147] and the International Myeloma
Working Group [148] recommend bisphosphonates
(pamidronate or zoledronic acid) for all patients with symp-
tomatic MM. The IMWG guidelines note that the optimal
duration of bisphosphonate treatment has not been determined
for patients who achieve at least a very good partial response;
in these patients, bisphosphonates should be given for at least
12 months and up to 24 months. For patients who achieve less
than a VGPR, the group recommended treatment until disease
progression and further continued at relapse.

Osteonecrosis of the Jaw

Osteonecrosis of the jaw (ONJ) is one of the most serious
adverse events of bisphosphonates [149, 150]. ONJ is tradi-
tionally defined as exposed, necrotic bone in the jaw that does
not heal after 8 weeks, and it is generally painful. The highest
risk of ONJ occurs with zoledronic acid due to its increased
potency, and initial studies showed an incidence of 4–11%
which increases with duration of exposure [151, 152]. In the
Myeloma IX trial, the cumulative incidence of ONJwas 3–4%
at a median follow-up of 3.7 years [153].

A major risk factor for ONJ is dental extraction [152, 154].
Attention to dental hygiene and minimizing invasive proce-
dures (such as tooth extractions or dental implants) may re-
duce the risk of ONJ [155]. IMWG guidelines recommend
holding bisphosphonate therapy before and after invasive den-
tal procedures for 90 days (though routine dental cleanings
and procedures, including root canals, may occur) [148].
Treatment of ONJ is supportive. After healing has occurred,
the IMWG recommends resuming bisphosphonate treatment.

Atypical Femur Fracture

Atypical femur fractures have been better appreciated in pa-
tients undergoing oral bisphosphonate therapy for osteoporo-
sis, but are now being seen in MM patients treated with
pamidronate or zoledronic acid [156]. These represent isolated
cases, as the incidence of atypical femur fracture remains to be
determined, as these femur fractures are typically assumed to
be pathologic.

Renal Toxicity

Nephrotoxicity is another limiting factor in bisphosphonate
use [157]. Bisphosphonates are excreted unchanged in the
urine, and impaired renal function can lead to accumulation
of the drug. With zoledronic acid, the risk of kidney injury (in
this case defined as a rise in creatinine of 0.5 mg/dL) was
appreciated in the initial phase III trials, prompting a dose
reduction from 8 to 4 mg and increase in the duration of the
infusion from 5 to 15 min [140]. Acute tubular necrosis is the
main pathology observed. The American Society of Clinical
Oncology provides guidelines for the dosing of zoledronic
acid in patients with renal impairment [158]. Notably, zole-
dronic acid is not recommended in patients with severe renal
impairment (creatinine clearance <30 mL/min). In the
Myeloma IX trial, the rate of acute renal failure was 5–7%
in the zoledronic acid arm, similar to 6% in the clodronate arm
[144••].

Effect of Myeloma Therapy on Bone Disease

Another key component in managing the bone disease is an
effective treatment of the underlying disease. The landscape of
MM treatment has changed dramatically in the past decade,
with the introduction of two highly effective classes of drugs,
immunomodulatory drugs (e.g., lenalidomide, pomalidomide)
and proteasome inhibitors (e.g., bortezomib, carfilzomib),
along with the recent approval of drugs with novel mecha-
nisms of action, such as the monoclonal antibody targeting
CD38 (daratumumab) [159]. The use of these novel agents
has been responsible for significant improvements in overall
survival [160, 161], and patients diagnosed more recently in
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2012 were 25% more likely to survive to 2 years than those
diagnosed only 6 years previously [162].

Improvements in treatment have also correlated with im-
provements in bone-related outcomes. For example, in a sub-
set analysis of the previously described Myeloma IX trial
(which randomized patients to zoledronic acid versus
pamidronate), the frequency of SREs was lower by 26% in
patients randomized to the more effective treatment arm with
cyclophosphamide, thalidomide, and dexamethasone com-
pared to the melphalan and prednisone arm [146].
Additionally, the depth of response may influence the impact
of bisphosphonate therapy. In a retrospective analysis of the
Myeloma IX trial, in patients who have undergone autologous
stem cell transplant, the benefit in SRE and overall survival of
zoledronic acid versus clodronate was mainly seen in patients
who did not achieve a complete response [163].

Moreover, the proteasome inhibitor class has been shown
to have bone anabolic effects. Preclinical studies show that
proteasome inhibitors such as bortezomib and carfilzomib
stimulate osteoblast growth and differentiation and inhibit os-
teoclast activity [164, 165]. An earlier study showed that pa-
tients receiving the combination of bortezomib and dexameth-
asone (and who also received zoledronic acid) showed an
improvement in lumbar spine bone mineral density [166]. In
the phase III VISTA study comparing the combination of
bortezomib (Velcade) with melphalan and prednisone
(VMP) versus melphalan and prednisone (MP) in newly diag-
nosed transplant-ineligible patients, bone disease and need for
radiation therapy was less frequent in the bortezomib arm

[167]. There was also radiological evidence of bone healing
in some of the patients treated with VMP (versus none of the
patients treated with MP) where data was available. Similarly,
consolidation with bortezomib, thalidomide, and dexametha-
sone following autologous stem cell transplant was shown to
reduce bone resorption and was associated with a very low
incidence of SREs; notably, bisphosphonates were not used
[168]. However, in a recent phase II study specifically inves-
tigating the effect of consolidation with bortezomib versus
observation on bone disease as a primary endpoint in patients
who had a partial response or better after autologous stem cell
transplant did not see an effect on bone mineral density [169].
Interpretation of these findings is limited as a substantial pro-
portion of patients in both arms previously received
bortezomib upfront, and zoledronic acid use was significantly
higher in the control arm.

In contrast, the beneficial effect of lenalidomide, a widely
used immunomodulatory drug, on bone disease is less certain.
A retrospective study of treatment with lenalidomide and
dexamethasone in relapsed disease showed that reduction of
bone resorption biomarker CTX (carboxy-telopeptide frag-
ments of collagen type-I α1 chains) only occurred in patients
responding to treatment, and the treatment did not have any
effect on bone formation [170]. On the other hand, the addi-
tion of bortezomib to lenalidomide and dexamethasone was
associated with increased bone formationmarkers. The lack of
apparent benefit of lenalidomide on bone formation may be
mediated by activin A, a member of the TGF-β superfamily
that is most commonly associated with embryogenesis and

Table 1 Randomized trials of bone-directed agents in multiple myeloma

Eligibility Treatment N Median time
to first SRE

ONJ Renal
toxicity

SRE
incidence

Berenson et al.
[139]

At least one osteolytic bone lesion; newly diagnosed
and relapsed

Pamidronate 196 24%a

Placebo 181 41%a

Rosen et al. [140] At least one osteolytic bone lesion; newly diagnosed
and relapsed

Zoledronicb acid 129 12.5 months

Pamidronate 65 9.4 months

Gimsing et al. [190] Newly diagnosed patients Pamidronate 30 mg 252 10.2 months 0.8% 33.7%

Pamidronate 90 mg 252 9.2 months 3.2% 35.2%

Morgan et al.
[144••, 145]

Newly diagnosed patients Zoledronic acid 981 4% 27%

Clodronate 979 <1% 35%

Himelstein et al.
[195]

Newly diagnosed patients with at least one bone
lesionc

Zoledronic acid q12
weeks

139 1%c 15.5%c 55%

Zoledronic acid q4
weeks

139 2%c 19.9%c 60%

Raje et al. [181••] Newly diagnosed patients with at least one bone
lesion

Denosumab 859 22.8 months 4.1% 10% 43.8%

Zoledronic acid 859 24 months 2.8% 17.1% 44.6%

aAfter 9 cycles of treatment
b Includes cohorts treated with zoledronic acid 4 and 8 mg with subsequent dose reduction to 4 mg for renal safety
cMultiple myeloma cohort in study that included patients with breast cancer and prostate cancer, ONJ in overall cohort and renal toxicity in overall
cohort, defined as increase in creatinine 0.5 mg/dL if baseline 1.4 mg/dL or less and 1 mg/dL if baseline was greater than 1.4 mg/dL
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gonadal hormone signaling, but is also involved in bone re-
modeling and osteoclast formation. This has motivated the
study of inhibiting activin A with sotatercept (ACE-011), an
activin type IIA receptor fusion protein that binds to activin A,
in combination with standard treatment with melphalan, pred-
nisolone, and thalidomide [171] or lenalidomide or
poma l i d om id e i n p a t i e n t s w i t h r e l a p s e d MM
(NCT01562405) [172].

Denosumab

A newer agent for managing bone disease is denosumab.
Denosumab is a fully human monoclonal antibody given sub-
cutaneously that targets RANKL. As described above,
RANKL is a cytokine produced by osteoblasts that activates
the RANK receptor present on osteoclast precursors and oste-
oclasts and promotes the formation, function, and survival of
osteoclasts [173]. Since it is a monoclonal antibody, unlike
bisphosphonates, denosumab does not accumulate or persist
in bone. It has a circulatory half-life of approximately 26 days,
and like other monoclonal antibodies, the clearance of
denosumab is through the reticuloendothelial system and im-
portantly does not depend on renal clearance [174].

Like zoledronic acid, denosumab is approved for the pre-
vention of SREs in patients with bone metastases due to solid
tumors based on several phase III clinical trials [175]. In these
studies, patients were randomized to denosumab 120 mg sub-
cutaneously versus zoledronic acid 4 mg intravenously (or
equivalent creatinine clearance adjusted dose) every 4 weeks.
In two of the studies, denosumab was superior to zoledronic
acid in delaying SREs [176, 177]. Similar to zoledronic acid,
the risk of ONJ was seen in about 1.8% of patients [178].

However, in a third study, the 244 study, about 10% of the
population were MM patients, and an ad hoc analysis showed
that survival was unexpectedly worse in the MM cohort treat-
ed with denosumab compared to zoledronic acid [179].
Consequently, denosumab is not approved in MM (at the time
of this writing). However, conclusions from the study about
the MM cohort are limited [180]. Given the small number of
MM patients, there were imbalances between the study arms
that favored the zoledronic acid arm; the denosumab arm had
more patients with renal dysfunction, and the zoledronic acid
arm patients were treated more often with novel agents and
autologous stem cell transplantation. In addition, there was
unequal early withdrawal censoring that may have favored
the zoledronic acid arm. These findings confounded the inter-
pretation of outcomes in the MM cohort.

To address these limitations in the 244 study, a larger phase
III study enrolling only patients with MM was recently con-
ducted, and presented at the International MyelomaWorkshop
[181••]. This is the largest international study inMM, random-
izing 1718 newly diagnosed patients with at least one bone
lesion to denosumab versus zoledronic acid, both given

according to standard q4 week schedules. Patients were strat-
ified by type of therapy, intent for autologous stem cell trans-
plant, ISS stage, and region. The primary endpoint was time to
SRE, defined as pathologic fracture (vertebral or non-verte-
bral), need for radiation therapy or bone surgery, or spinal cord
compression. In this study, denosumab was non-inferior to
zoledronic acid (22.83 versus 23.98 months); overall survival
was similar in both arms. Interestingly, progression-free sur-
vival, an exploratory endpoint, was longer in the denosumab
arm (46.09 months) compared to the zoledronic acid arm
(35.38 months), p = 0.036. Adverse events of interest include
ONJ, which was 4.1% in the denosumab arm compared to
2.8% in the zoledronic acid arm. Importantly, the incidence
of renal toxicity was significantly lower with denosumab, 10
versus 17.1% (p < 0.001), especially in patients with renal
insufficiency at baseline (creatinine clearance ≤60 mL/min),
12.9 versus 26.4%, respectively. Additionally, there were few-
er acute phase reactions in the denosumab group, 5.4 versus
8.7%. Overall, these findings may change practice, given that
kidney dysfunction is common in MM and often presents a
major barrier to effective use of osteoclast-targeted therapy.
Indeed, denosumab may be able to play a key role for man-
aging and preventing bone disease in this challenging patient
population. The improved PFS observed in the denosumab
arm warrants further evaluation.

Vertebroplasty and Kyphoplasty

Vertebroplasty (injection of methyl methacrylate or bone ce-
ment) and kyphoplasty (use of an inflatable balloon followed
by instillation of bone cement) are percutaneous procedures
for treating compression fractures, which are common in MM
[182, 183]. The Cancer Patient Fracture Evaluation study ran-
domized 134 patients with malignancy and at least one verte-
bral compression fracture to balloon kyphoplasty versus non-
surgical management [184]. Forty percent of the patients in
the study had MM, and at 1 month, there was significant
improvement in back pain and quality of life. A recent retro-
spective series showed durable improvement in disability
which persisted at 1 year and also noted better outcomes in
patients after treatment was initiated [185]. These procedures
can play a key adjunctive role for managing bone-related pain.

Palliative Radiation Therapy

Radiation also plays an important role for palliation of painful
bony lesions in MM. An estimated 38% of patients are expect-
ed to receive radiation over the course of their illness [186], and
this figure remains similar in the era of novel treatments [187].
The primary indication for the use of radiation therapy is
treating bone pain, and other indications include impeding frac-
ture, cord compression, or relief of symptoms associated with a
mass (i.e., cranial nerve palsies or organ or joint dysfunction).
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Minimal doses of radiation can be used, given the radiosensi-
tivity of plasma cell lesion [188]. Doses of 20–35 Gy can be
used, but it is essential to consider ability to retreat when de-
signing treatment fields, particularly of the spine. In our expe-
rience, we have found that 20 Gy delivered in either five or ten
fractions provide adequate symptom relief [189]. A retrospec-
tive series found that 76.4% of patients reporting complete re-
lief of pain with palliative radiation with a median dose of
30 Gy [187].

Ongoing Areas of Study

An ongoing question is the amount of bisphosphonate neces-
sary for improving bone disease. This is especially true given
that currentMM therapies are increasinglymore effective than
when the initial studies with bisphosphonates were conducted
as well as concerns for adverse events such as ONJ with
chronic exposure.

A lower dose of pamidronate was evaluated by the
Nordic Myeloma Study group, which compared a 30 mg
dose of pamidronate versus the standard dose of 90 mg in a
double-blind, randomized study [190]. The rates of SREs
were similar, and there was a trend towards less adverse
events in the 30 mg dose group with fewer episodes of ONJ
and nephrotoxicity.

With zoledronic acid, its monthly dosing schedule is based
on suppression of urine N-telopeptide of type I collagen
(NTX), a biomarker for bone resorption, for 4 to 8 weeks after
a single dose of zoledronic acid [191, 192]. To further under-
stand the duration of bone resorption suppression, a study
measured urine NTX in 29 patients who achieved at least a
partial response and who previously received bisphosphonate
therapy. In these patients, urine NTX (uNTX) continued to be
suppressed in nearly all these patients for 6 months after a
single dose of zoledronic acid, and this correlated with free-
dom from SRE [193], suggesting that the zoledronic acid
could be given less frequently.

These findings were further supported in the Z-MARK
study, which evaluated less frequent zoledronic acid dosing
based on urine NTX levels in patients who had already re-
ceived at least 1 year of bisphosphonate therapy [194]. For
patients where uNTX <50 nmol/mmol creatinine, zoledronic
acid was given every 12months; otherwise, it was given every
4 weeks. This study enrolled 121 patients, and nearly all pa-
tients, 117 patients, were assigned to the q12 week arm. The
SRE rate was low, 5.8% in the first year and 4.9% in the
second year, and the 2-year incidence of ONJ was 3.3%.
These findings suggest that less frequent dosing is feasible
with low risk of SRE.

Evaluation of less frequent dosing has been evaluated in a
phase III study, CALGB 70604, which randomized bisphos-
phonate-naïve metastatic breast cancer and prostate cancer,
and MM patients with at least one bone lesion to every 12

week dosing of zoledronic acid versus every 4 week dosing
[195]. In the MM cohort, which comprised 15.3% of the
study, the SRE rate was similar; 55% of patients had an SRE
in the every 12 week arm versus 60% in the every 4 week arm.
In the overall group, the rate of kidney dysfunction, defined as
increase ≥0.5 mg/dL over baseline if baseline creatinine ≤1.4
or ≥1 mg/dL if baseline >1.4 mg/dL, was higher in the every
4 week arm, 19.9 versus 15.5% (p = 0.02). The ONJ rate in the
overall cohort trended towards higher in the every 4 week arm,
2 versus 1% (p = 0.08). A limitation of the study is the high
dropout rate due to patient withdrawal, with only 47% of
patients with two or more years of treatment. Overall, this
study adds support for every 12 week dosing, though the effect
of this approach on overall survival remains to be determined.

Finally, patients with severe kidney dysfunction (creatinine
clearance <30 mL/min) have an unmet need for managing
bone disease, as current guidelines do not recommend use of
zoledronic acid. Denosumab, given its lack of nephrotoxicity
and lack of dependence on renal clearance, is currently being
evaluated in a phase II study in this patient population
(NCT02833610).

Conclusions

Here, we discuss the complexity of the cross talk between
MM and the surrounding BM stromal microenvironment.
Although the overall survival and quality of life of MM pa-
tients have significantly improved due to the introduction of
novel therapeutic strategies, MM remains an incurable dis-
ease. MM progression and resistance tightly depend on the
interactions with the stromal compartment; hence, treatments
targeting this interplay are fundamental for the cure of MM
and osteolytic bone disease. Osteoclast-targeted therapy with
bisphosphonates has become an integral part of supportive
therapy and plays a significant role in addressing the bone
disease. Newer drugs, such as denosumab and other bone
anabolic agents, are currently under investigation and may
represent promising tools in the treatment of MM-derived
bone disease. Further understanding of the MM stromal mi-
croenvironment and the development of novel agents
targeting them are therefore needed.
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