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Abstract A considerable volume of evidence has accumulat-
ed to suggest that whole-body vibration (WBV) may have a
therapeutic role to play in the prevention of osteoporotic frac-
ture, particularly for individuals who are unable to tolerate
vigorous exercise interventions. There is moderate to strong
evidence that WBV will prevent falls (likely due to enhanced
neuromuscular function), but also some indication that the
effects of WBV do not outstrip those of targeted exercise.
Animal data indicates thatWBVwill also improve bone mass,
including preventing loss due to hormone withdrawal, disuse
and glucocorticoid exposure. Human trials, however, have
produced equivocal outcomes for bone. Positive trends are
apparent at the hip and spine, but shortcomings in study de-
signs have limited statistical power. The mechanism of the
vibration effect on bone tissue is likely to be mechanical cou-
pling between an oscillating cell nucleus and the cytoskeleton.
More robust dose-response human data are required before
therapeutic guidelines can be developed.
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Introduction

Why Vibration?

It is well recognised that the risk of osteoporotic fracture in-
creases with age-related loss of bone mass [1]. In fact, for
every standard deviation decrease in femoral neck bone min-
eral density (BMD), there is an almost threefold increased risk
of hip fracture [1]. Of even greater significance, over 90 % of
hip fractures occur as a direct result of a fall [2] which also
increase with age, largely reflecting a deterioration in neuro-
muscular function [3]. Thus, preventing age-related loss of
bone and enhancing lower extremity muscle strength and bal-
ance to decrease falls [4] are both vital strategies to reduce the
risk of osteoporotic fracture.

Pharmacological interventions are the most recognised and
accepted therapies for osteoporosis, by virtue of their ability to
induce the most marked improvement in bone mass and to re-
duce fractures [5]. However, adoption is low, non-response and
side effects are common and compliance after 1 year is very poor
[6–9]. Furthermore, while anti-resorptive treatment has been as-
sociated with a 42 % overall reduced risk for hip fracture [10],
only a 26 % reduction in rate of recurrent fractures has been
observed [11]. As medications do not maintain or enhance mus-
cle strength or balance [12], they offer no protection from falls.
There is, therefore, a clear need to identify alternative treatments
to drug therapy in order to address the growing burden of oste-
oporotic fractures in ageing populations.

Animal models have shown that exercises involving high
magnitude loads are anabolic to bone. The translation from
‘bench to bedside’ has been somewhat disappointing however,
as the response of the ageing human skeleton to exercise is often
quite modest. The latter situation may be a function of both
reduced capacity and inclination of the elderly to tolerate the
requisite loading intensity for exercise benefits to be realised. A
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less physically intense or passive source of mechanical stimula-
tion of the skeleton would therefore be advantageous for those
most at risk of osteoporotic fracture. For this reason, whole-body
vibration (WBV), a low-magnitude but high-frequency form of
mechanical stimulation, has been examined as a potential therapy
to enhance bone mass and improve neuromuscular function.

What Exactly Is Whole Body Vibration?

It is difficult, if not impossible, to actively apply mechanical
loads at very high frequency to the whole human body. To illus-
trate, the world 100-m sprint record holder Usain Bolt ran at a
step frequency of only 4.49 Hz to clock a time of 9.58 s (Berlin
2009). Clearly then, vibration loads must be externally applied.
For the ‘whole body’ to be stimulated, a person must stand on a
floor-mounted vibrating plate. (As the upper extremity does not
receive a weight bearing vibration, the whole body is not techni-
cally affected by the same stimulus.) WBV can be produced by
the plate in a number of ways (e.g. Fig. 1): by alternate direction
movements in a vertical plane, by alternating elevations of the
right and left sides around a central axis or by a combination of
movements in the horizontal, vertical and oblique planes (some-
times referred to as tri-planar vibration) [13]. Vertical vibration
has been shown to transmit 85 % of a 0.2 g, 30 Hz vibration
stimulus at the feet during standing to clinically relevant skeletal
sites (hip and spine) [14]. Others have also demonstrated strong
transmissibility of a broad range of vibration stimuli [15]. Some
report considerable damping of the signal (reduced transmission)
if joints are flexed rather than fully extended in standing [16], but
others have observed the opposite effect in a semi-squat position
[17].

Vibration intensity is best described in terms of acceleration,
in g-forces. A g is calculated by dividing maximum acceleration
by gravity (amax/9.81 ms−2); therefore, 1 g is equal to the accel-
eration of gravity. Acceleration can be modulated through the
frequency ( f ) of plate movements per second (in Hz), or the
amplitude (a) of plate movement (displacement of the plate from
equilibrium, measured in mm), or both (Fig. 2). Increasing vibra-
tion amplitude most notably increases acceleration forces [17]. A
vibration stimulus of <1 g is considered to be low intensity,
whereas a stimulus if ≥1 g is considered high intensity.

There are now many WBV devices commercially avail-
able, producing a wide range of accelerations; from 0.3 g to
more than 10 g. Depending on device, frequency and ampli-
tude can be fixed by the manufacturer, or varied by adjusting a
dial and/or foot placement (if the plate oscillates around a
central fulcrum). Of concern, vibration intensity is frequently
omitted from device specifications, as is the degree of change
in intensity per unit adjustment on a control panel. As a con-
sequence, it is likely that many devices operate at vibration
intensities above the safety limits determined by the
International Organisation for Standardisation (ISO 2631/3)
(discussed below).

Efficacy and Mechanisms

What Is the Evidence for Efficacy?

Bone Response

Animal Data A considerable volume of evidence from well-
controlled animal studies is available to suggest a beneficial
effect of vibration on bone. For example, decreased osteoclas-
tic resorption [18] and improved tibial metaphyseal geometry

Fig. 1 Two methods to apply vibration: vertically and alternating side
perturbations

Fig. 2 Vibration parameters and terminology. Displacement can be
described as amplitude (distance from plate equilibrium, in mm), or
peak-to-peak distance (in mm), which, when combined with the
sinusoidal cycle duration (frequency, in cycles per second, or Hz), can
be described in terms of acceleration (g-force, ms−2)
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and strength were observed in a murine model following
6 weeks of vibration [19]. ‘Postmenopausal’ bone loss was
prevented in ovariectomised (OVX) rats exposed to 2 g accel-
eration at 50 Hz for 30 min/day, 5 days/week [20]. The addi-
tion of vibration enhanced the effect bisphosphonate treatment
in one rat study [21] but not another [22]. Vibration at 90 Hz
for 10 min/day prevented the decline in bone formation asso-
ciated with disuse (hind limb suspension) in female rats, an
effect that was not matched by 10 min/day weight bearing
[23]. A protocol of 1 g at 60 Hz for 30 min/day, 5 days/
week for 9 weeks, prevented glucocorticoid-induced bone loss
[24]. Murine cell cultures subjected to 0.1–0.4 g at 30 Hz for
10–60 min/day also maintained bone formation and
mineralisation during disuse with potentially enhanced
preosteoblast differentiation [25]. Intriguingly, low-intensity
vibration appears to stimulate preferential differentiation of
mesenchymal stem cells into bone rather than fat cell precur-
sors [26]. The first large-animal trial (20 min, 0.3 g vertical
vibration at 30 Hz, 5 days/week for 12 months) increased
trabecular bone in the proximal femora of sheep by 34.2 %
[27]. Those trabeculae changed from rod to plate shaped in the
plane of weight bearing, an effect that created a stiffer bone,
less prone to fracture for a given load [28].

Human Data—Low-Intensity Vibration Human trials of
WBV have produced results that do not entirely reflect the
animal findings. Twelve months of 20 min/day, 0.2 g at
30 Hz, in postmenopausal women produced no significant
difference between treatment and control groups from inten-
tion to treat analysis, but WBV maintained femoral neck and
lumbar spine BMD of those who complied 86 % or more, and
the lightest women improved the most [29]. A recent similar
but larger trial also observed no significant between-group
differences at the same sites at 12 months; however, large
variability reduced statistical power and notable trends for a
beneficial effect of WBV were observed [30]. Another group
reported no effect of a similarWBV protocol at 30 or 90Hz on
volumetric BMD from high-resolution peripheral quantitative
computed tomography (HR-pQCT) [31]. Findings were argu-
ably confounded by simultaneous supplementation of the
whole sample with high doses of calcium and vitamin D,
now considered to be a non-trivial independent intervention.
A report that a 12-month daily 0.3 g protocol at 30 or 90 Hz
tended to reduce calcaneal BUA in postmenopausal women
with osteopenia [32], must also be interpreted with caution in
light of the recognised low precision of quantitative ultra-
sound (QUS) measures. In the latter trial, the reported changes
for all groups were considerably lower than the LSC calcula-
tions for short-term QUS measurement reproducibility.

Younger cohorts at risk of low bone mass have also been
treated with low-intensity WBV. A 12-month trial of 15–20-
year-old young women with low bone mass found a 0.3 g
stimulus at 30 Hz increased lumbar spine trabecular bone

2.1 % and femoral mid-shaft cortical bone 3.4 %. Cross-
sectional area of paraspinal musculature also improved
4.9 % more in the treatment group than in the controls [33].
A 6-month RCT of the same low-intensity protocol markedly
improved trabecular bone volume at the proximal tibia and
spine of 20 pre- and post-pubertal, disabled, ambulant chil-
dren [34].

Human Data—High-Intensity Vibration An 8-month high-
intensity WBV intervention examined the effect of 4 min/day,
3–5 days/week vibration plus light exercise at 25 to 45 Hz, for
maximum vertical accelerations of 2 to 8 g on young, healthy
adults [35]. No effect on mass, structure or estimated strength
of bone was observed at any skeletal site. The lack of effect in
the young healthy cohort may reflect the diminishing returns
of mechanical stimuli on an already robust skeleton.
Untrained postmenopausal women increased hip BMD
4.3 % and balance 29 % after 8 months of 3 days/week, 6×
1min sessions of side-to-side oscillatingWBV comparedwith
walking [36]. Six months of 5 mm, 30 Hz, 10min/day, 5 days/
week WBV stimulated improvements in femoral neck and
lumbar spine BMD and reduced chronic back pain in post-
menopausal women with osteoporosis [37]. While 6 months
of 5 min of 3.2 g vibration at 30 Hz 3/week improved lumbar
spine BMD >2 % in postmenopausal women [38], 12 months
of 10×1min, 20Hz (3–4mm) vibration at 30° knee flexion 2–
3/week produced no discernible change in indices of bone
quality from HR-pQCT [39]. Interestingly, results of a high-
protein diet study indicated 5 days of 3.5 g vibration at 30 Hz
10 min/day counteracted diet-induced increased excretion of
bone resorption markers in young men and women [40].

High-intensity vibration protocols that have been com-
bined with exercise (6 months 35–40 Hz, 2.3–5.1 g, 20 min/
day and 12.6 Hz, 2 g, 3/week) have shown improvements in
hip BMD 0.93–4.3 % and balance 29 % in postmenopausal
women [36, 41], but study designs prevent the examination of
WBV in isolation.

A direct comparison of two different vibration regimes of
twice weekly low-level WBV (15 min, 30 Hz, 0.3 g) versus
higher-level WBV (6 min, 12.5 Hz, 1 g) against a control
group found that both forms of WBV preserved bone mass
at the hip and spine compared to losses in controls (with no
notable differences between) and enhanced lower extremity
muscle function and mobility [42].

Systematic reviews of WBVeffects on bone have reported
that less than 1% of potentially relevant studies are eligible for
inclusion due to methodological shortcomings and that cohort
and stimulus heterogeneity limit the ability to make strong
conclusions from remaining data [43–46]. While the most
recent meta-analysis concluded that WBV has no effect on
BMD, each BMD analysis included only two or three trials
[46]. All reviews identify a need for future trials to be of more
robust design, with larger cohorts and longer interventions.
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Muscle Response

Muscle weakness not only increases the risk of falling [47] but
also minimises loads on bone which may contribute to disuse
osteopenia. Conversely, increased muscle strength is typically
associated with improvements in bone. Thus, enhancement of
neuromuscular performance likely provides dual benefits for
fracture prevention.

Vibration loading enlarges fast and slow twitch muscle
fibres [48] and increases lower extremity muscle activation
during squatting [49]. Larger displacements (4 mm) will acti-
vate muscles more and induce greater muscle fatigue than
smaller displacements (1 mm) [50].

A systematic review of the scientific support for effects of
WBV on muscle strength and jump performance concluded
there is moderate to strong evidence that long-term WBV
improves lower extremity muscle performance, but that the
effect is primarily observed in the untrained and/or those
who cannot exercise at a high level of intensity such as the
elderly [51]. In young, healthy [52] and postmenopausal co-
horts [53, 54], improvements in muscle strength and perfor-
mance following WBV training are often similar to those de-
rived from exercise alone; however, there is some evidence
that even when WBV-induced strength gains do not exceed
those derived from resistance training, functional performance
(e.g. counter movement jump height) may be enhanced [35,
55–57] or falls reduced [58]. The most recent meta-analysis
concluded that WBV improves lower extremity muscle
strength and function, an effect that can be achieved in 6–
10 weeks [46].

While there is inadequate evidence in the literature to de-
termine the optimum WBV dose for muscle strength out-
comes, two and three training sessions a week are reportedly
more effective than one [59]. It is possible that an
individualised vibration frequency is required to produce an
optimum neuromuscular response [60].

Balance and Fall Response

There is evidence to suggest thatWBVmay minimise fracture
risk by improving balance, thereby reducing the risk of falls
[3]. During vibration, small changes in muscle length are elic-
ited that enhance the excitability of the spinal reflex [61].
Experiments in anaesthetized cats indicate that single 1a affer-
ents can respond on a 1:1 basis to up to 150 Hz vibration [62].
Hypothetically then, neuromuscular adaptation to WBV may
improve postural control and prevent falls when balance is
perturbed.

While WBV does not appear to improve balance perfor-
mance in young, healthy adults [35], the results for older co-
horts are more consistently positive. A range of trials testing
WBV interventions for balance-related outcomes over periods
ranging from 6 weeks to 8 months have reported

improvements in timed up and go and balance scores [56],
walking speed, step length and balance [63], balance and sta-
bility [64], risk of falls and improved quality of life [65] and
ankle joint range of motion and improved foot plantar surface
sensation [66] of nursing home residents, untrained postmen-
opausal women and elderly community-living, non-
exercising women compared with walking [36], exercises
alone and physiotherapy. A number of well-designed trials
comparingWBV plus exercise training versus exercising con-
trols report beneficial effects such as reduced sway in response
to stance perturbation [67] and improved balance, gait and
functional mobility [68], but that WBVeffects are not greater
than exercise alone.

Importantly, a large trial examining the efficacy of
18 months of 20-min low-intensity vibration, 5 days/week,
in elderly men and women reported significantly fewer falls
or fractures in the treatment group [69•]. A simultaneous im-
provement in reaction time, muscle strength and movement
velocity may explain the reduction in falls. Fracture rate was
also lower in the WBV group but did not reach significance.

Authors of systematic reviews frequently conclude that
while there may be evidence from a number of acceptable
quality studies that WBV benefits balance, mobility and mus-
cle function, many other studies have been insufficiently ro-
bust to differentiate the influence of WBV from exercise [43,
70, 71]. A 2012 meta-analysis suggests simple balance abili-
ties and mobility (but not gait) may be improved byWBVand
that a reduction in falls may be evident in the most frail [72].

What Is the Mechanism of Action?

The transduction of large exercise-induced mechanical loads
into a biological signal for bone adaptation is thought to be a
function of the tissue deformation-induced fluid flow that oc-
curs during relatively large bone strain events [73]. Beyond
strain magnitude, however, the response of bone to mechani-
cal loads is governed by a complex interaction of strain pa-
rameters including frequency, rate and cycle number [74–76].
For example, as vibration frequency increases, strain magni-
tude necessarily falls as peak velocity of each vibration cycle
decreases [77]. Intuitively, if vibration loads are small in mag-
nitude, the mechanism of action on bone is unlikely to be
related to tissue deformation, and recent evidence confirms
that to be the case [78]. In fact, vibration at 0.6 g that induced
cortical surface strains of only 10 microstrain (με) increased
bone formation rates in the proximal tibiae of mice [79•].
Further, the mere oscillation of a limb in anaesthetised mice
at 0.3 g and 45 Hz for 10 min/day enhanced trabecular bone
formation rate, percent of mineralising surface and morphol-
ogy, as well as cortical thickness and area [80, 81].

The results of a microscale model of vibration loading of a
vertebral body suggested that fluid shear stress on trabecular
surfaces due to marrow movement governs the anabolic
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response of bone to a vibration stimulus [82]. However, others
conclude, from finite element modelling, that vibration causes
larger relative displacements of osteocyte-like cell nuclei than
fluid shear and that gap junctional intracellular communica-
tion increases by 25%, independent of vibration-induced fluid
shear [83••]. The same group has now demonstrated that mes-
enchymal stem cell (MSC) response to vibration is may be
driven by mechanical coupling between the cytoskeleton and
the nucleus, inducing actin remodeling at the perinuclear do-
main [84]. It has also been reported that osteocytes respond to
vibration by producing or downregulating soluble factors
(COX-2, RANKL and PGE2) that result in the inhibition of
osteoclast formation which reduces bone resorption [85].

While muscle activation may be enhanced by certain vibra-
tion protocols, there is considerable evidence to suggest that
the response of bone to vibration is not dependent on a muscle
response [78].

As is often the case in biological systems, it is possible that
the mechanism of action of vibration on bone is driven
through a number of parallel or serial pathways.

What Are the Applications and Indications?

Up to 85 % of nursing home residents may suffer from oste-
oporosis [86]. Female nursing home residents with low BMD
have over twice the risk of osteoporotic fracture than those
with higher BMD, and those independent in transfer have
three times the risk [87]. Although the initial cost of an indi-
vidual WBV device is not inconsequential, a single WBV
device may be installed in a nursing home and utilised by
many. The cost and risks of WBV are also considerably less
than chronic drug therapy for osteoporosis.

Any therapy is only as effective as its adoption and adher-
ence. A study of satisfaction and preference for low-
magnitude WBV versus medication suggested that 95 % of
elderly women (mean age 86) living in a Continuing Care
Retirement community were satisfied or very satisfied with
vibration therapy and that over half (57 %) of the sample
preferred vibration treatment to medication (24 %) [88].
Compliance was 83 % over 6 months [88]. A separate cohort
of 24 elderly nursing home residents demonstrated 96% com-
pliance with a WBV plus exercise protocol versus 86 % com-
pliance with exercise alone [56].

Nursing home residents and others for whom physical dis-
ability limits exercise feasibility are therefore particularly suit-
ed to the application of WBV therapy for musculoskeletal
outcomes.

What Dose Is Best?

It is apparent that increasing the magnitude of vibration accel-
eration beyond a recognised effective dose will not enhance
the effect and may be unsafe (in other words, more is not

better); however, only animal studies have examined dose-
response to any appreciable degree. Bouts of 30 and 60 min
of 0.3 g at 45 Hz were more effective for improving bone
formation rate in mice than 15-min bouts, but increasing the
number of bouts a day or partitioning a single daily bout into
multiple shorter duration bouts did not improve the response
[79•]. Others have also reported that the insertion of rest in-
tervals does not potentiate the bone response to 15 min/day,
0.3 g, 45 Hz vibration in mice [18]. There is some evidence
that a genetic predisposition to low bone mass may coincide
with a greater response to vibration [89].

As animal observations cannot be directly applied to the
human condition, considerably more data is required before
therapeutic recommendations can be developed. Most human
trials have been conducted using low to moderate vibration
intensities (≤1 g) at or around a frequency of 30 Hz, for 10–
20 min, 5–7 days a week, based on efficacy in animal studies
and safety concerns. As results from those trials have been
mixed, it remains unclear if such a dosage is optimal, and if
not, which dosing parameters will be most efficacious or safe
to modify. Minimal exposure appears to be required to stimu-
late a response, with benefits observed after as little as 2 min
of daily exposure (15–20-year-old young women with low
BMD and fracture) [90], or 15 min twice weekly in postmen-
opausal women [42].

It is important to note that there may be marked individual
variations in response to different vibration frequencies [91],
an effect that may reflect individual differences in transmis-
sion of the vibration stimulus to the body [17]. For this reason,
the development of safe and effective dosimetry is unlikely to
be straightforward, particularly for the frail elderly.

What Are the Risks?

As certain forms of occupational vibration are considered to
be hazardous to the health [92–95], it is important to ensure
that therapeutic applications do not replicate similar harmful
vibration characteristics. In order to minimise occupational
risk, the ISO has determined that a threshold of 0.3 g in the
20–50 Hz range is safe for human tolerance for up to 4 h at a
time. Not all therapeutic devices have been developed to de-
liver vibration stimuli within those parameters.

Important differences exist between typical occupational
and therapeutic vibrations however. Occupational exposures
are normally less than 1 g but in the range of 3–10 Hz and can
be very long duration. There is evidence from animal studies
that deleterious bone effects (stimulation of resorption, im-
paired osteoid maturation) tend to occur at such frequencies
(less than 10 Hz) [96••]. The effect may be a function of
amplification of similar resonance frequencies of body seg-
ments of the small animals tested. In a human study of
frequency-dependent transmissibility of vibration to ankles,
knees and hips, frequencies of 10–90 Hz and accelerations
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of 0.04–19.3 g were examined [15]. It was observed that
transmission of vibration to joints was virtually 100 % at res-
onant frequencies (ankle 10–40 Hz, knee 10–25 Hz, hip 10–
20 Hz). Others have reported the highest vibration accelera-
tions in the human body to occur at 20 Hz compared with 10
or 30 Hz [17]. The greatest accelerations will be observed at
anatomical sites in the closest proximity to the vibration sur-
face and when plate amplitudes are greatest (including when
feet are positioned farthest away from the central axis of the
teeter plate) [17].

A recent computational analysis of stress dispersion on a
femur with multiple vibration displacements and frequencies
concluded that stress levels during most vibration protocols
are likely to be equivalent to walking and stair climbing [97].
The authors indicate, however, that as vibration displacement
increased, so too did the peak stress on the femur suggesting
displacement ranges between 2 and 12mmmay not be safe for
individuals with low bone strength. Their lack of consider-
ation of the influence of muscle loads on the model and the
lack of data pertaining to other clinically relevant bones
(spine) suggests their findings are less than conclusive with
respect to the safety of all vibration loads.

It is important to note that WBV has been used with some
success to treat low back pain [98], and reports of side effects
from therapeutic WBV are uncommon. It is reasonable to
conclude that at low intensity, WBV is safe, as the magnitude
of forces are orders of magnitude below those that induce
damage; however, more exposure-response data is needed
for higher-intensity vibration [99], including long-term effects
on multiple systems. Although ISO standards can provide
some guidance, they do not specifically address the exposures
and durations of vibration typically applied during therapeutic
or training-related WBV.

Where to from Here?

The next steps in the field of vibration therapy is for the con-
duct of rigorously designed randomised controlled trials to
determine optimum dose-response guidelines on which future
vibration device development and therapy should be based.
Those studies must include larger samples sizes, both sexes
and relevant cohorts (those at increased risk of fracture) and
utilise clearly described vibration protocols based on the pre-
vailing best evidence.

At the very least, it will be important for researchers to
speak the same language. Current terminology includes
WBV, low-magnitude mechanical signals, non-invasive
micromechanical stimulation, plantar-based vibration and vi-
bration exercise. Many trials vary with respect to vibration
protocol and the details reported (e.g. treatment time, number,
frequency, amplitude, peak-to-peak displacement, maximum
acceleration) and do not distinguish vibration from simulta-
neous exercise intervention. Without systematic testing of a

variety of protocols, it will not be possible to develop optimal
therapeutic guidelines, including the determination of mini-
mum effective dose.

More quality human data is needed in virtually every area
of this field.

Conclusions

There is preliminary evidence that WBV will improve bone
mass and reduce risk of osteoporotic fracture by improving
neuromuscular function. Regrettably, much of the human re-
search on WBV has been of inadequate rigor, or so heteroge-
neous, that the ability to form strong conclusions with respect
to efficacy or dose is limited. It must be assumed that the
designs of many of the devices in the rapidly growing com-
mercial market of WBV have therefore not been informed by
a robust evidence base of safety and efficacy. While low-
intensity vibrating plates (<1 g) appear to be safe, individuals
with very low bone mass and prior fractures should exercise
caution when considering the use of devices that deliver
higher vibration accelerations.
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