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Abstract Metabolic bone diseases manifesting fragility frac-
tures (such as osteoporosis) are routinely diagnosed based on
bone mineral density (BMD) measurements, and the effect of
various therapies also evaluated based on the same outcome.
Although useful, it is well recognized that this metric does not
fully account for either fracture incidence or the effect of
various therapies on fracture incidence, thus, the emergence
of bone quality as a contributing factor in the determination of
bone strength. Infrared and Raman vibrational spectroscopic
techniques are particularly well-suited for the determination of
bone quality as they provide quantitative and qualitative
information of the mineral and organic matrix bone compo-
nents, simultaneously. Through the use of microspectroscopic
techniques, this information is available in a spatially
resolved manner, thus, the outcomes may be easily correlated
with outcomes from techniques such as histology,
histomorphometry, and nanoindentation, linking metabolic
status with material properties.
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Need for Evaluation of Matrix and Mineral Chemistry

Loss of bone mass, measured clinically as change in bone
mineral density (BMD), is considered an important risk factor
for bone fragility. However, BMD is not the sole predictor of
whether an individual will experience a fracture [1, 2], and
there is considerable overlap in BMD between populations
that do and do not develop fractures [3, 4]. It has been
demonstrated that for a given bone mass an individual’s risk
to fracture increases with age [5], whereas the 1-year relative
risk associated with a given change in BMD has been shown
to be independent of age [6]. Consistent with these findings,
numerous investigators have shown that mechanical variables
directly related to fracture risk are either independent [7] or
not totally accounted for bone mass itself [8–12]. Epidemio-
logic evidence also shows considerable overlap of bone den-
sity values between fracture and nonfracture groups sug-
gesting that low bone quantity alone, often measured as
either BMD or bone mass, is an insufficient cause of
fragility fractures [13–15]. Finally, conditions such as idi-
opathic osteoporosis (IOP) where widely employed tools
(both clinical and basic research) such as BMD, biochem-
ical markers, micro-CT, quantitative backscattered electron
imaging (qBEI), and/or finite element analysis (FE) fail to
either account for, or predict the manifested bone strength,
further emphasizing the need for the establishment of
additional parameters that contribute to the determination
of bone strength [16–19].

It is becoming evident then, that in addition to BMD, “bone
quality” should also be considered when assessing bone
strength and fracture risk. Bone quality is a broad term
encompassing a plethora of factors such as geometry and bone
mass distribution, trabecular bone microarchitecture,
microdamage, increased remodeling activity, along with ge-
netics, body size, environmental factors, and changes in bone
mineral and matrix tissue properties [4, 20].
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Need forMicroscopic Imaging Techniques whenAssessing
Matrix and Mineral Chemistry

One of the obstacles to be circumvented when assessing
mineral and matrix tissue properties is tissue heterogeneity at
the microscopic level. In normal humans, cortical bone con-
stitutes approximately 80 % of the human skeletal mass and
trabecular bone approximately 20 % [21]. Bone surfaces may
be undergoing formation or resorption, or they may be rela-
tively inactive. Bone turnover processes, which can be visu-
alized microscopically, occur throughout life in both cortical
and trabecular bone [21]. Bone remodeling is a surface phe-
nomenon, and in humans occurs on periosteal, endosteal,
Haversian canal, and trabecular surfaces [21]. The rate of
cortical bone remodeling, which may be as high as 50 % per
year in the mid-shaft of the femur during the first 2 years of
life, eventually declines to a rate of 2 %–5 % per year in the
elderly. Rates of remodeling in trabecular bone are propor-
tionately higher throughout life and may normally be five to
ten times higher than cortical bone remodeling rates in the
adult [21]. It becomes evident that: (I) bone is most metabol-
ically active at its surfaces; (II) both mineral and matrix
composition may significantly change every few microns. It
is thus, important to utilize microscopic imaging techniques
and account for metabolic activity/tissue age [20, 22–25].
Previously published work has reported on the relation be-
tween tissue age, bone tissue composition, and mechanical
properties [26–28]. Finally, although because of the remodel-
ing process the organic matrix and mineral chemistry are
dependent on turnover rates, factors other than bone turnover
may influence bone composition [29–35]. Analysis of matrix
and mineral composition as a function of tissue age, thus,
allows for the discrimination between bone turnover and
independent effects. Utilizing techniques such as Small Angle
X-ray Scattering (SAXS), quantitative backscattered electron
imaging (qBEI), Raman microspectroscopy, and Fourier
transform infrared microspectroscopy (FTIRM) and imaging
(FTIRI), the analysis of bone mineral (poorly crystalline hy-
droxyapatite) at the microscopic level and the contribution of
mineral crystallinity (crystallite size) and maturity (chemical
composition) to bone strength is being actively pursued [20,
23–25]. Based on these analyses, an important role for the
organic matrix in the determination of biomechanical proper-
ties is predicted. Specifically, the matrix is proposed to play an
important role in alleviating impact damage to mineral crys-
tallites, and to matrix/mineral interfaces, behaving like a de-
formable protective layer around mineral crystallites, thus,
protecting them from the peak stresses caused by impact,
and homogenizing stress distribution within the bone com-
posite [36, 37]. Altered collagen properties have been associ-
ated with fragile bone, in both animals and humans [16, 18,
19, 29, 38–41]. Additionally, recent reports indicate that alter-
ations in organic matrix composition/quality even when

confined in limited anatomic areas (for example first few
microns of an actively bone forming surface) may be suffi-
cient to influence the mechanical performance of the whole
bone organ [26, 29], in the absence of concomitant changes in
either bone mineral quantity or quality.

Fourier Transform Infrared and Raman Spectroscopy

A Brief Overview

For 70 years, vibrational spectroscopy has been extensively
applied in analytical and physical chemistry for elucidation of
the structure of small molecules. The common principle under-
lying these two techniques is the transition between vibrational
energy states of molecules; infrared transitions arise directly
from absorption of energy in the infrared range, whereas Ra-
man spectra arise from the scattering of visible or ultraviolet
photons that have either gained or lost part of their energy upon
interaction with the vibrating bonds. Each molecule has its own
unique vibrational characteristics and therefore will result in
unique IR or Raman spectral signatures. Additionally, the
neighboring molecular environment influences the vibrational
characteristics. The position, intensity, and width of a vibration-
al band can be used for monitoring a particular functional group
or regions of a particular chemical species. The IR and Raman
spectra of a given sample differ considerably, as some vibra-
tions are only either IR or Raman active and hence, each
technique can provide complimentary information regarding
the analyzed sample [42]. Successful extension of these tech-
nologies into the biomedical arena has depended upon two
factors. First (1970s 1980s) was the development of spectra-
structure correlations for proteins, nucleic acids, and lipid as-
semblies along with smaller molecules that are essential for the
biological functions of the macromolecular entities. The second
factor was the recognition that in cells and tissues, the correct
spatial orientation of the structural components is essential for
their optimal function, and that pathologic states may result in
or may be induced by spatial disruption of the normal organi-
zation. Traditional cataloguing of spatial information has re-
quired high-resolution microscopy methods that provide visual
images of biological structures. However, the approaches gen-
erally require extensive sample preparation and are lacking in
molecular structure information.

Early in the history of vibrational spectroscopy, it was recog-
nized that for successful application of IR and Raman to bio-
medical problems, microscopy, and imaging approaches were
essential. Thus, in 1949 [43], a reflecting microscope was
coupled with an IR spectrometer to produce useable spectra of
nerve fibers and small crystals to demonstrate the utility of IR for
identification of a specimen’s molecular features. In contrast, the
weakness of ordinary Raman scattering delayed the introduction
of microscopic and imaging applications of that technology until
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1974 when two laboratories [44, 45] simultaneously proved the
feasibility of the approach.

The extensive technical advances leading to the wider
application of vibrational microscopy and imaging that have
occurred in the past 25 years have been widely reviewed
[46–50] and interested readers are strongly encouraged to
peruse these sources. More recently, substantial technological
gains have appeared for both IR and Raman, especially in the
areas of improved spatial resolution and rapid data acquisition.
These will be discussed briefly below.

Recent Technical Advances

Resolution Enhancement in IR Spectroscopy—Defeating
the Rayleigh Criterion

Two recent instrument designs have provided improved spa-
tial resolution for IR spectral acquisition at the AFM level
(20 nm compared with the 3–10 micron values normally
cited). In the first design [51], Fourier transform infrared
nanospectroscopy is based on a scattering-type scanning
near-field optical microscope equipped with a coherent-
continuum infrared light source. This mid-infrared source
emits a continuous spectrum that can be tuned between 700
−2500 cm−1. The method can acquire IR spectra of molecules
placed in the near-field of the AFM tip, with a spatial resolu-
tion of 20 nm. The backscattered radiation from the tip is
spectrally analyzed with an FT-IR spectrometer.

In the second approach, a pulsed, tunable IR laser excites
molecular absorption in a sample that has been mounted in
ATR (attenuated total reflection) fashion, on a ZnSe prism.
Samples may be prepared either by microtome sections rang-
ing in thickness from 100 nm and 1 micron or by casting films
directly from solvents. The beam from the IR laser illuminates
the sample by total internal reflection. When the sample
absorbs radiation, it heats up and thermally expands to excite
resonant oscillations of the AFM cantilever, which are detect-
ed in a standard AFM measurement system [52]. The cantile-
ver oscillations decay in a ringdown modality, from which
amplitudes and frequencies of the oscillations may be mathe-
matically extracted and related to IR spectral parameters. This
technique has been utilized in a recently released study of
bone [53] in which correlation analysis was performed across
of a series of AFM-IR spectra collected outward from an
osteonal center at 1 micron spatial resolution, with improve-
ments to 200 nm resolution (or better) readily envisioned.

Tip Enhanced Raman Scattering

Tip enhanced Raman scattering (TERS) combines surface
enhanced Raman spectroscopy (SERS) with AFM analysis
to offer the possibility of measurements with spatial resolution in
the nanometer scale. Although the basic underlying principle is

rather straightforward, achieving reproducible results has proven
challenging to date. The experiment incorporates a SERS AFM
or STM tip from gold or silver nanoparticles to enhance the
Raman signals from nearby molecules. The achievable spatial
resolution is tens of nanometers. The TERS effect would be
expected only in the vicinity of the tip, and would depend for
its detection on the magnitude of the SERS enhancement avail-
able. The resolution enhancement comes from the size of the
SERS-covered tip. The magnitude of the TERS enhancement
from the relatively small number of molecules near the SERS tip
must be both distinguishable from and significantly greater than
the normal Raman effect from scattering molecules in the re-
mainder of the excitation beam. Examples of TERS from single
biomolecules have been reported [54, 55].

Rapid Imaging Raman Spectroscopy

Xie and coworkers, among others, have dramatically improved
[56] the technique of Stimulated Raman scattering microscopy,
allowing the images at particular Raman shifted frequencies to be
acquired at video rates. Several applications of the technology
have appeared including the imaging of drug delivery to skin
[57], and detection of tumors in a mouse brain model, the latter
by providing rapid intraoperative assessment of brain tissue [58].

Spatially Offset Raman Spectroscopy (SORS)

Since 2005, several laboratories [59–61] have been developing a
method for noninvasive in vivo Raman measurements with
specially designed fiber optic probes placed on the skin of a
subject. The method is based on the fact that most materials are
neither completely transparent to light nor completely block it,
but that they tend to scatter it. A SORS procedure consists of at
least two Raman measurements; one at the surface and one at an
offset position of typically a few millimeters away. The two
acquired spectra can then be subtracted using a scaled subtraction
to result in two spectra representing the subsurface and surface
ones. In the case of biological tissues, when the distance between
the illumination and collection regions is increased, surface
signals from the soft tissue become less prominent, and the
collected Raman spectra contain a greater contribution from
subsurface components [59, 62–68].

Parameters That are Commonly Assessed
and Their Importance

Mineral to Matrix Ratio

In IR and Raman spectroscopy the area under a band is
directly proportional to the concentration of the chemical
species that gives rise to the specific band. As such, the ratio
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of the integrated areas of the v1,v3 PO4 (stretching and bend-
ing vibrations) to amide I (mainly from the peptide bond C=O
stretching vibration with minor contributions from the out of
phase CN stretching vibration, the CCN deformation and the
NH in-plane bend) or II (out of phase combination of the NH
in-plane bend and the CC and NC stretching vibration with
smaller contributions from the CO in-plane bend and the CC
and NC stretching vibrations) bands in FTIR, and either v1 or
v2 PO4 to either amide I or amide III band in Raman, provides
what is commonly reported as the mineral/matrix ratio. This is
a form of bone density that, unlike other measures such as
BMD by DEXA or TMC or BMD or DMB by μCT, directly
measures and accounts for the amount of the organic matrix in
the volume analyzed. Accounting for the organic matrix con-
tent in such considerations is important when assessing bone
strength as the mechanical properties of bone tissue depend on
both the mineral and the matrix (primarily type I collagen
fibrils) constituents [69, 70]. It has been shown that bone
exhibits a region of elastic (recoverable) deformation, follow-
ed by a region of plastic (permanent) deformation. Based on
tensile testing of progressively decalcified bovine bone tissue,
Burstein and Reilly postulated that the mineral provides main-
ly compressive, whereas the collagen, tensile strength [69].
The mineral/matrix ratio correlates with ash-weight measure-
ments in healthy bone [71] is directly proportional to bending
stiffness and failure moment, and is a superior predictor of
bone-bending stiffness compared with BMD alone [72].
Mineral/matrix ratio has been shown to (1) increase with
increasing tissue age in healthy premenopausal subjects [28],
(2) increase immediately after menopause (but without osteo-
porosis) because of a reduction in the amount of organic
matrix [28] compared with premenopausal healthy subjects,
(3) decrease in osteoporosis [73, 74] compared with premen-
opausal healthy controls, and (4) be modulated by the various
osteoporosis treatments [75–84].

Relative Proteoglycan Content

In bone, proteoglycans play multiple roles involving the mod-
ulation of both organic matrix mineralization and remodeling
rates. Moreover, different proteoglycans are present at distinct
microanatomic locations fulfilling different roles. In in vitro
solution experiments, the rate of hydroxyapatite growth is
regulated by the concentration of proteoglycans [85]. In oste-
oblastic cell culture experiments the small leucine rich (SLRP)
proteoglycan decorin, modulates matrix mineralization [86].
In animal models, deficiency of biglycan, another SLRP,
increases osteoblast activity and affects osteoclasts as well,
resulting in an osteoporosis-like phenotype [87–89]. Interest-
ingly, it is not only their presence or lack thereof that influ-
ences biomineralization, but also subtle posttranslational mod-
ifications in size, sulfation, and/or charge density, which are
crucial for the specific role they fulfill [90, 91]. Additionally,

some of these modifications are subject- and tissue age
dependent [92]. Proteoglycans have also been described
in perilacunar matrix around the osteocyte lacunae, and
around the canaliculi [93] in compact lamellar rat and
human bone, suggesting that a plausible role of these
(and in particular perlecan/Hspg2 (PLN)) is to prevent
mineralization and, thus, to ensure uninhibited intersti-
tial fluid movement [94]. Proteoglycans have also been
implicated in osteoclastogenesis and remodeling regula-
tion [87, 90, 95].

A characteristic of hyaline cartilage is its high content of
proteoglycan aggregates resulting in the turgid nature of the
tissue, and affording the osmotic properties needed to absorb
compressive loads in articular cartilage. Like bone, cartilage
contains small leucine-rich repeat proteoglycans (decorin,
biglycan, fibromodulin, and lumican), which contribute to
the maintenance of the tissue integrity and modulate its me-
tabolism [96].

While both FTIR and Raman spectroscopic analyses are
capable of describing proteoglycan content in cartilage
[22, 97–100], only Raman (spectral band~1375 cm-1;
CH3 symmetric deformation of glycosaminoglycan groups)
can do so in mineralized tissues [18, 28, 76–79, 101] as
the marker band for proteoglycans in FTIR~1060 cm-1

(indicative of sugar rings) is overlapped by the v3PO4

band. To date, Raman microspectroscopic analysis cannot
discriminate between different proteoglycan species, but it
should be kept in mind that the Raman spectral signature
of proteoglycans is due to the glycosaminoglycan (GAG)
chains [102, 103], and in bone, chondroitin 4-sulfate con-
stitutes~90 % of the total GAG content and is found
predominantly in biglycan and decorin [104].

Relative Lipid Content

In the literature, lipids have been reported as nucleators of
collagen fiber mineralization, with a layer of lipids present
just behind the first mineral deposited [105, 106]. More-
over, oxidized lipids are a substratum involved in AGEs
(advanced glycation endproducts) accumulation [107].
Since increased accumulation of AGEs is associated with
fracture risk [108], their distribution is important to con-
sider. In Raman spectroscopic analysis, spectral bands~
1060 cm-1 (mainly phospholipids), ~1079 cm-1,
~1300 cm-1, ~1439 cm-1, and ~1745 cm-1 are characteris-
tic of tissue lipids [109, 110]. Of particular utility for
bone, is the band at~1300 cm-1 (arising from methylene
twisting vibrations) as it is not overlapped by collagen
bands [109]. The ratio of the integrated area of this band
normalized to the integrated area of the amide III band
may be used to describe the relative lipid content in
mineralized tissues [111].
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Mineral Maturity/Crystallinity

Vibrational spectroscopic analyses, either FTIR or Raman [23,
24, 112], provide information on the chemical makeup of the
poorly crystalline apatitic crystals in bone ie, the presence of
impurities, and, based on comparison to X-ray line broadening
analysis, on their shape and size [113, 114]. Normal bone
crystallites exhibit a range of sizes, and deviations from this
range have been encountered in cases of fragile bone [20, 73,
115]. In FTIR, the most commonly applied method of deriv-
ing parameters describing this bone quality metric involves
resolution and quantification of the underlying peaks in the
v1,v3 PO4 band by second derivative spectroscopic and curve-
fitting analysis [116, 117], while in Raman spectroscopic
analysis this metric is estimated from either the full width at
half height of the v1 PO4 band [112, 114] or the wavelength at
maxima of the same band [114]. Its contribution to bone
strength may be inferred by the fact that osteoporotic bone
consistently exhibits crystallites of higher maturity/
crystallinity compared with healthy bone [73, 74, 116,
118–120].

Collagen Cross-Links

A distinct feature of type I collagen in mineralized tissues is its
cross-linking chemistry and molecular packing structure
[121], which provides the fibrillar matrices with mechanical
properties such as tensile strength and viscoelasticity. The
importance of collagen intermolecular cross-links to the me-
chanical performance of bone is very apparent in the pyridox-
ine deficient chick [40], as well as in lathyrism [29, 41]. To
date, vibrational spectroscopic analysis is able to describe the
spatial distribution of two types of the collagen cross-links,
namely pyridinoline and divalent cross-links [111, 112, 122,
123]. In both FTIR and Raman analyses, this is achieved
through the resolution and quantification of the amide I (am-
ide I and II in case of FTIR) underlying peaks through second
derivative spectroscopy and curve-fitting routines [123]. Sec-
ond derivative spectroscopy is a popular, mathematically ob-
jective (as no initial assumptions are required as to the number
and full width at half height of the anticipated underlying
peaks) spectral analysis technique that allows enhanced iden-
tification of small and overlapping absorption peaks that are
not resolved in the original spectrum, albeit at a loss in signal-
to-noise ratio [124–126]. These peak heights and positions
provide insight into the environment of the vibrating species.

The collagen cross-link parameter may well be the most
important contributor to bone quality and thus, strength and/or
toughness. In cases where bone resistance to fracture cannot
be explained by either BMD or architecture, or predicted by
finite element analysis, the ratio of pyridinoline to divalent
collagen cross-links correlates with fracture incidence [16–19,
80, 127]. To further emphasize their importance in the

determination of bone strength, experiments in an animal
model showed that alterations in this ratio, even when con-
fined to microanatomic locations, are sufficient to influence
the mechanical properties of the whole bone organ, even in the
absence of any alteration in mineral quantity and quality [29].

Other Parameters

There are a few other parameters evaluated by one or both of
the vibrational spectroscopic techniques that have been corre-
lated with fracture risk and therapies, and a few that remain to
be correlated. The peak width at half-height of the pixel
distribution, often referred to as “heterogeneity” [128] has
been reported in FTIR imaging, X-ray diffraction, and BMDD
(bone mineral density distribution) measurements, and shown
to decrease with bisphosphonate treatment [82, 83, 129] and
in bones from patients with fractures compared with
nonfractured controls [130].

The loss of acid phosphate substitution into the HA lattice,
which can be measured with synchrotron radiation [131] or by
FTIR imaging [117], is inversely associated with an increase
in crystallinity and hence, as indicated above, with a matrix
more likely to fail under load.

Proof of Principle: Idiopathic Osteoporosis

The utility/importance of the bone quality parameters deter-
mined by vibrational spectroscopic techniques is readily seen
in the case of idiopathic osteoporosis (IOP), an uncommon
disorder in premenopausal women, in which fragility fractures
and/or low BMD occur in otherwise healthy women with
normal gonadal function [18]. A large number of iliac crest
biopsies were obtained from women diagnosed with IOP and
compared with sex- and age-matched control by several tech-
niques including histology/histomorphometry, micro-CT, cen-
tral QCT, BMD by DXA, p-qCT, qBEI, and vibrational spec-
troscopic techniques [18, 132–138]. Interestingly, the IOP
cohort included women with abnormally low BMD and no
fragility fractures, as well as women with normal BMD and
fragility fractures. Although all of the techniques were able to
discriminate between healthy controls and IOP subjects, only
vibrational spectroscopic techniques, and in particular the
pyridinoline/divalent collagen cross-link ratio, were able
to discriminate IOP subjects based on whether they had
suffered fragility fractures or not [18], verifying the
results of previous preliminary studies involving smaller
numbers of IOP patients [16, 19]. Moreover, these re-
sults [16, 18, 19] were reproduced independently in a
different cohort of human iliac crest biopsies [17].
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Examples

Figures 1 and 2 are examples of FTIR and Raman analysis of
bone tissue.

Potential Pitfalls

While both FTIR and Raman analysis are very informative,
they are associatedwith potential pitfalls that the user has to be
aware of.

Because of the inherent polarization of its laser
source, some of the Raman bands are not only depen-
dent on the functional group present and its content in
the tissue analyzed, but also on tissue organization/ori-
entation. For example, the most commonly reported
mineral/matrix ratio is based on the v1PO4 and amide
I bands, yet it has been shown that this ratio is greatly
dependent on tissue organization, unlike the ratio calcu-
lated based on the v2PO4 and amide III bands [139].

Both in FTIR and Raman spectroscopy, the bands are
composite ones, consisting of underlying peaks, each specific

to a unique chemical environment. As a result, useful infor-
mationmay be obtained through resolution of these bands into
their underlying peaks, and quantification through
deconvolution routines, or as noted above, second derivative
spectroscopy. Currently, there are two general methods to
achieve that (1) Empirical (arbitrarily chosen number and
position of the underlying peaks). Although it is the
fastest method as one does not have to account for
spectral contribution from embedding material (such as
PMMA) and water vapor, or the time consuming selec-
tion of underlying peaks based on more mathematically
and spectroscopically robust methods, it only offers a
mathematical solution that often has no real biological
value/meaning. For example, analysis of the v1,v3 PO4
FTIR band by either empirical approach or based on
more robust methodology results in significantly differ-
ent number of underlying peaks, position, and interpre-
tation of results even if performed by the same investi-
gator [140, 141]. A recent publication based on spec-
troscopically robust methodology highlighted the para-
dox conclusions arrived at when underlying peaks are
chosen arbitrarily [117]. Similarly, conflicting and bio-
logically irrelevant conclusions may be arrived at when

Figure 1 FTIR images (both x and y axes represent distance in microns)
of an osteon adjacent to the edge of the section in a 6-year-old baboon.
The color images all come from the same specimen.A, Optical image of a
typical osteon surrounding a Haversian canal (*). In the first color image
the center of the Haversian canal is shown by an *.B F, FTIRI images. B,
Mineral to matrix ratio increases going from the newly forming osteoid
surrounding the canal to the interstitial bone. C, Crystallinity also

increases as the tissue age increases going from the center of the canal
outwards.D,Acid phosphate substitution is greatest in the newest mineral
and decreases with increasing age. E, Carbonate to mineral ratio de-
creases as the tissue ages going from the center of the canal to the edge.
F, Collagen cross-link ratio increases as the tissue ages. Positive
values in the center of the Haversian canal are due to the division
of a small number by 0.
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the amide bands are resolved to their underlying peaks
empirically and arbitrarily. For example, the same in-
vestigators in one publication propose spectroscopic pa-
rameters describing collagen “maturity,” intimately relat-
ed to extent of mineralization [142], while in a concur-
rent one analyzing human bone tissue from osteoporosis
patients on long-term alendronate therapy, they report
that their collagen “maturity” index changes as a func-
tion of therapy even though they compared areas of
similar mineralization extent [143]; (2) Spectroscopically
robust methods include deconvolution (though minimal
initial parameter input by operator is required) and
second derivative spectroscopy (mathematically objec-
tive as no initial parameter input is required by the
operator).

Clinical Use

Although being able to offer detailed information on bone
quality otherwise unattainable, FTIR and Raman techniques
are not particularly well-suited to date for routine clinical use
as they require excised bone tissue, something that is rather
invasive and not too common in everyday clinical practice.
Thus, we would suggest that these techniques be considered
when pathophysiologic mechanisms need to be established,

when the clinically used indices do not account for fracture
incidence (eg, idiopathic osteoporosis), or when the effect of
various therapies on bone material properties is investigated
(especially during clinical trials). On the other hand, we follow
with great interest the development of SORS Raman spectro-
scopic techniques [59, 61, 65–68, 144], as they hold promise
for eventual everyday clinical use.

Conclusions

It is widely accepted that bone quality is an important con-
tributor in the determination of bone strength. Infrared and
Raman vibrational spectroscopic techniques are particularly
well-suited methods to measure bone quality as they provide
simultaneous information on the quantity and quality of both
the mineral and organic matrix components, simultaneously.
The outcomes that these two techniques offer are unattainable
by other analytical techniques, and provide unique insights
into the pathophysiology of healthy and brittle bone. A grow-
ing body of evidence suggests that these outcomes are inti-
mately related with actual rather than predicted bone strength,
thus, affording for a better, more precise, description of the
contributors to bone strength, and allowing for more focused
choices in the case of disease.

Figure 2 Raman imaging analysis of an osteon in the cortical bone of an
iliac crest biopsy from a 43-year-old healthy female subject. A, Optical
image obtained with the×20 objective and the measured osteon shown in
the shaded area; B, calculated ratio v2PO4/amide III (mineral/matrix),

PGs/amide III (relative proteoglycan content), lipids/amide III (relative
lipids content), and PYR/amide I (relative pyridinoline collagen cross-
link content) from the osteon region (×20 objective, 35×35 Raman
spectra, 165×190 μm, step size 5 μm).
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