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Abstract Bone quality is determined by a variety of compo-
sitional, micro- and ultrastructural properties of the mineral-
ized tissue matrix. In contrast to X-ray-based methods, the
interaction of acoustic waves with bone tissue carries infor-
mation about elastic and structural properties of the tissue.
Quantitative ultrasound (QUS) methods represent powerful
alternatives to ionizing x-ray based assessment of fracture risk.
New in vivo applicable methods permit measurements of
fracture-relevant properties, [eg, cortical thickness and stiff-
ness at fragile anatomic regions (eg, the distal radius and the
proximal femur)]. Experimentally, resonance ultrasound spec-
troscopy and acoustic microscopy can be used to assess the
mesoscale stiffness tensor and elastic maps of the tissuematrix
at microscale resolution, respectively. QUS methods, thus,
currently represent the most promising approach for noninva-
sive assessment of components of fragility beyond bone mass
and bone microstructure providing prospects for improved
assessment of fracture risk.
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Introduction

Today, the assessment of osteoporotic fracture risk and
the therapeutic management of patients mostly rely on
X-ray-based imaging modalities. However, these methods
are far from being perfect because they do not provide all
the information that is needed by clinicians, particularly the
assessment of cortical bone properties. Consequently, the
occurrence of osteoporotic bone fractures is still a largely
unpredictable event, and the effects of treatment on fracture
risk are difficult to assess. This can be explained by the
multiplicity of bone quality factors that, in addition to bone
quantity, determine bone strength and are currently poorly
assessed by available X-ray based techniques. In the past 3
decades, researchers have turned to quantitative ultrasound
(QUS) measurements to overcome these limitations.
Mechanical waves such as ultrasound are inherently suited
to probe mechanical properties. In addition to their affordable
and nonionizing nature, they are probably in the best position
among all the modalities to noninvasively provide the best
estimate of bone fragility. This research field was stimulated
by (1) experimental evidences from basic research showing
the ability of ultrasonic waves to probe bone quality factors,
eg, elasticity [1, 2, 3•], microstructure [3•, 4–10], bone matrix
constituents (organic and mineral phases) [11–13, 14••], or
microdamage accumulation [15–17], and (2) by the scalability
of ultrasound for multi-scale assessment of the above
mentioned features [3•, 18, 19].
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Osteoporosis and other degenerative bone pathologies af-
fect both cancellous and cortical bone compartments. Clinical
bone assessment has long been focused on trabecular bone. It
is only relatively recently that cortical bone got front stage
attention with several reports showing that (1) most bone loss
after age 65 occurs at peripheral sites and is cortical, not
trabecular [20••] and (2) most fractures occur rather after than
before an age of 65 years, are nonvertebral and occur predom-
inantly at cortical sites [21, 22]. The disbalance between bone
resorption and bone formation leads to a rarefaction of the
trabecular network and accumulation of partially refilled basic
multicellular units (BMUs) in cortical tissue. The latter result
in cortical bone loss with cortical thinning, increased porosity,
and consequently to a reduction of cortical bone stiffness and
strength. Cortical bone loss and the resulting structural decay
are poorly captured with currently clinically available tech-
niques. Because of limits in spatial resolution and radiation
exposure, dual energy X-ray absorptiometry (DXA), or quan-
titative computed tomography (QCT) provide only limited
means to assess the age- or disease- related increase in poros-
ity and the resulting increase in fragility.

Accounting for cortical bone morphology could improve
the identification of individuals at high risk of fracture and
therefore assist in pursuing patient specific treatment strate-
gies [23]. The ability to measure decreases in cortical bone or
tissue mineral density and cortical thickness, along with in-
creases in cortical porosity are becoming accepted as surro-
gate markers for cortical bone fragility [20••, 24].

Established QUS methods are based on empirically ob-
served relations between the measured sound velocities and
attenuation values in trabecular and cortical tissue with BMD
and fracture risk [25, 26]. The history and “golden age” of the
clinical use of diagnostic ultrasound for the assessment of
osteoporosis started with measurements of trabecular bone
employing a QUS technology commonly referred to as heel
transverse transmission [27]. Heel QUS technologies and
implementations were introduced into clinical practice in the
1990s [28]. While strong clinical evidence was obtained in
large scale prospective studies [29], showing equivalent frac-
ture risk prediction capabilities compared with X-ray densi-
tometry, an added-value of ultrasound technologies could not
be established. In particular, our limited understanding of the
interaction mechanisms between an ultrasound wave and the
complex structure of cancellous bone did not allow a clear
interpretation of the measured variables nor the identification
of clear relationships between these variables and bone
strength-related properties. As a direct continuation of these
heel transverse transmission techniques studies, basic research
aiming at elucidating interaction mechanisms, eg, wave scat-
tering or propagation in poroelastic media, are actively
continuing [30–35, 36••].

More recently, the research in the field has shifted toward
measurements of physical cortical bone properties in order to

answer the identified need to accurately quantify alterations of
cortical bone and to fill the current technological gap. Several
model-based approaches are currently being developed into
effective clinical methods. In these approaches, strength relat-
ed properties, eg, effective cortical stiffness, intra-cortical
porosity, and cortical thickness are retrieved from the spectral
analysis of guided and scattered waves by solving inverse
problems.

Relations Between Bone Structure, Matrix Stiffness
and Strength

The macroscopic mechanical properties of bones, particularly
the resistance to fractures depend on both, the material prop-
erties of the bone tissue and on multi-scale structural features,
eg, density and arrangement of the trabecular network, thick-
ness and porosity of the cortical tissue, and the bone shape
determining the moment of inertia. At its highest level of
hierarchical organization, ie, the millimeter (mm)-scale, corti-
cal bone can be considered as a 2-phase composite material: a
heterogeneous mineralized extracellular tissue matrix (ECM)
pervaded by hierarchical porous network. From a mechanical
perspective, mm-scale elasticity that will be referred to as
“effective elasticity” in what follows is determined by the
properties of the two phases: (1) pore structure and relative
volume and (2) matrix composition and microstructure.

Impact of the ECM Properties on Bone Stiffness
and Strength

The extracellular tissue matrix (ECM) of bone consists of a
network of hierarchically structured, heterogeneous, and an-
isotropic mineralized collagen fibrils. The major determinants
of ECM properties are the degree of mineralization, the lamel-
lar arrangement of mineralized collagen fibrils, the composi-
tion of the collagen cross-links, and the density of micro-
cracks. Mechanical properties of mineralized collagen fibrils,
determined primarily by the level of mineralization, are highly
anisotropic [37, 38]. Therefore, fibril orientation [39, 40] is a
major determinant of the elastic properties of bone at the
coarser length scales [14••], enabling adaptation of the ECM
to the governing type and direction of local mechanical stress
and strain [41•]. Tissue aging leads to a fast primary and a
slow secondary mineralization of the collagen fibrils [42],
resulting in a tissue-age dependent variation of the elastic
properties. The variation of the average ECM mineralization
is small (around 2 %) in healthy subjects [43]. However,
interstitial tissue, which is on average older compared with
the more recently built secondary osteons, has been shown in
human radius bone of elderly donors (age range between 68
and 90 years) to exhibit slightly higher (~10%)mineralization
values and much higher (~60 %) stiffness values compared
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with osteonal tissue regions [44, 45]. Moreover, the flexibility
of the cross-linked collagen matrix decreases [46], suggesting
that the tissue gets stiffer, but eventually also less tough [46].
This process contributes to the formation of micro-cracks,
occurring already at physiological load magnitudes of the
cyclic loading during everyday activities. The amount of
micro-damage in bone tissue increases with age and although
its direct relation to fragility is not clear, larger density of
micro-cracks may increase the remodeling rate [47–49], lead-
ing to a more frequent occurrence of BMUs [50]. Moreover,
the mechanical properties of collagen, providing the ductile
component of the behavior of bone, have also been reported to
degrade with age [51].

Orchestrated by osteocytes, the bone remodeling mecha-
nisms of osteoclastic resorption and osteoblastic ECM syn-
thesis not only ensure removal and replacement of micro-
damaged tissue, but also provide a high capacity for adapta-
tion to changes in mechanical conditions. Moreover, these
mechanisms prevent tissue-ageing and, in combination with
osteocytic osteolysis [52], participate in the maintenance of an
almost constant serum calcium level throughout life-time.
However, osteoporosis and other pathologies, eg, diabetes,
kidney failure can disturb this equilibrium of bone resorption
and formation and essentially reduce bone mass, potentially
tissue quality and consequently bone strength.

Impact of Cortical Porosity on Bone Stiffness and Strength

Disbalanced intracortical remodeling leaves progressively
more nonrefilled bone multicellular units (BMUs) in the cor-
tex, which becomes thinner and contains particularly large
coalescent basic multi-cellular units (BMUs) compared with
the Haversian canals. Specifically in the endosteal sub-
compartment, close clustering of BMUs enhances their
chances to merge, leading to the so-called trabecularized
cortex [20••, 53]. The relationship between porosity and ef-
fective elasticity has been investigated using both, experimen-
tal and theoretical approaches [54, 55]. The mm-scale elastic-
ity was found to be highly correlated to the cortical porosity
(adj.-R2=0.72–0.84), indicating that, for the elderly popula-
tion, the effective elastic properties of the mineralized matrix
do not undergo large variations among different donors, as
reflected in the low coefficients of variation of matrix imped-
ance (less than 6 %). The trend in the variation of mm-scale
elasticity with porosity can be predicted by a 2-parameter
micromechanical model [56, 57] consisting of an anisotropic
matrix pervaded by cylindrical pores.

Decreased cortical thickness and increased porosity reduce
bone strength [24], and are quantifiable ‘fingerprints’ of struc-
tural deterioration [23], which is likely to predict fracture risk
and may be used as a marker of responsiveness to therapy.
Patsch et al [58] have recently shown that women with type 2
diabetic related fragility fractures had a 4.7-fold greater

relative cortical porosity than age-matched diabetic women
without fractures. Furthermore, changes in cortical porosity
were significantly related to deficits in macroscopic stiffness,
failure load, and cortical load fraction at all investigated ana-
tomic sites (ultra-distal and distal radius, distal tibia). It should
be noted that relative variations of cortical porosity are ampli-
fied in changes in effective stiffness, For example, the afore-
mentioned 2-parameter model [57] predicts that an increase of
cortical porosity from 10 % to 20 % results in a decrease of
effective elasticity of 25 %. Therefore, the separate estima-
tions of cortical thickness and effective stiffness are anticipat-
ed to hold a high diagnostic value for the prediction of bone
strength.

Ultrasound Based Assessment of Mechanical Properties
at Various Length Scales

Nano and Microscale: Scanning Acoustic Microscopy

Scanning acoustic microscopy of bone specimens (SAM,
Fig. 1) provides large scale (cm range) maps of structural
and anisotropic micro-elastic properties at the tissue level with
a spatial resolution down to the μm-range [59–61]. Compared
with nanoindentation, which provides both elastic and post-
yield properties but is destructive and has limited scanning
capabilities, SAM is an attractive noncontact and nondestruc-
tive quantitative alternative to map linear elastic properties of
flat sample surfaces. A face-to-face comparison between 200-
MHz SAM and nanoindentation showed a strong correlation
between estimates of the elastic moduli derived from both
techniques on site-matched regions of human femoral cortical
bone [62]. Recent systematic SAM-surveys have been con-
ducted to study (1) the tissue level (25-μm length scale)
properties, ie, tissue mineralization, matrix stiffness tensor,
cortical porosity in cortical tissue within the human femoral
shaft [41•], and (2) the age-dependent variation in the spatial
distributions of microstructural and micro-elastic properties of
the human femoral neck and shaft in 21 men (age range
between 17 and 82 years) [63••]. Most importantly, these
studies revealed (1) remarkable regional variations of stiffness
with a coefficient of variation (CV) up to 45.5 % and porosity
(CV=47.5 %) in spite of a fairly invariable tissue mineraliza-
tion (CV=1.8 %) within the femoral shaft, and (2) an age-
related increase of cortical porosity and stiffening of the
cortical tissue matrix, as well as significant correlations be-
tween shaft and neck tissue stiffness values (R2=.63). These
findings support the hypothesis that no global relation be-
tween tissue mineralization and tissue elastic properties exists
[41•]. In particular, elastic adaptation of the tissue matrix by
local changes of the lamellar fibril orientation patterns [39] is
not associated with a change of tissue mineralization, but can
be studied by SAM [14••, 41•, 59, 61]. Further stiffening
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mechanisms not associated with an increase of tissue miner-
alization have been suggested to be linked to alterations of the
collagen cross-link composition [46] and an agglomeration of
mineral crystals [38, 64]. However, further site-matched stud-
ies of stiffness, toughness and chemical composition by SAM,
nanoindentation, and optical spectroscopy are needed to un-
ravel the associations between tissue mineralization, elastic
and ultimate bone properties and their relations with respect to
ageing, bone pathologies and drug treatments.

Large scale micro-elastic maps of entire cross-sections
obtained by 50-MHZ SAM have also been used as direct
input for numerical homogenization models [3•, 38, 55],
simulations of sound propagations through the femoral neck
[65, 66], and in fracture healing studies [67]. High resolution
SAM provides insight into the role of the organization of
collagen micro-fibril and mineral nanocrystals on micro-
elastic properties [60]. For example, the combination of 1-
GHz SAM measurements of bone micro-elastic properties
with site-matched synchrotron radiation micro-computed to-
mography (SR-μCT) and small angle X-ray scattering
(SAXS) imaging of mineral content and nanostructure re-
vealed that the periodic modulations of elasticity across
osteonal bone [68] is essentially determined by the orientation
of the mineral nanoparticles and to a lesser extent only by the
particle size and density [14••].

The possibilities to assess both, structural and elastic ma-
terial properties of the tissue across multiple length scales and
to site-match this information with 3D micromorphology and
tissue mineralization, eg, obtained by SR-μCT [38], opens
new perspectives for the identification of elastic tissue alter-
ations in response to ageing, pathologies and drug treatment,
which may not be associated with remarkable alterations of
the tissue mineralization.

Mesoscale (mm-Scale): Resonant Ultrasound Spectroscopy

The effective elastic stiffness tensor at the mesoscale (mm-
scale) can be measured in parallelepiped samples (edge length
typically larger than 5 mm) by time-of-flight measurements of

compressional and shear waves in several directions [1].
Resonant ultrasound spectroscopy (RUS) is currently devel-
oped with the aim to become a routine technique for the
accurate assessment of anisotropic elastic and viscoelastic
properties of mineralized tissues. RUS, a method based on
the comparison of measured and model-predicted resonant
frequencies, allows estimating all the terms of the stiffness
tensor of an anisotropic material from the measurement of the
mechanical resonant behavior of a specimen. Although RUS
was developed in the 1990s to measure metals [69, 70], the
difficulty raised by the high level of mechanical damping of
bone, which causes resonant peaks to overlap, has only been
recently overcome [71]. Bernard et al [72••] have demonstrat-
ed the feasibility of measuring the stiffness tensor on small
samples (edge length: 3–5 millimeters) with RUS with a good
agreement with pulse-echo measurements. The method does
not suffer from the drawbacks and limitations associated with
the conventional time-of-flight approach, which has been used
to measure bone elasticity by a number of authors. In partic-
ular, RUS is more precise and can measure smaller samples
(eg, from femur or tibia cortex). It is, therefore, a keystone for
future systematic routine measurements of the mesoscale stiff-
ness tensor in cortical bone samples in larger cohorts.

Clinical Development

Although QUS measurements at sites containing predomi-
nantly trabecular bone have been most widely tested and
validated clinically, this technology to date has not been
shown to permit assessment of trabecular bone material prop-
erties. However, cortical bone is readily accessible for mea-
surements at the radius and tibia and recently also measure-
ments at the proximal femur, a site containing both
cortical and trabecular bone have been reported both
ex vivo and in vivo [26]. Because of the recognized
importance of cortical bone efforts have been made to
improve its measurement.

Fig. 1 Differences in the tibia mid-shaft micro- and ultrastructure in
patients of increasing age depicted by 50-MHz scanning acoustic micros-
copy (SAM). The progression of bone deterioration (from left to right)

results in an accumulation of large BMUs, cortical thinning and changes
in the tissue stiffness. The medial (upper) region can be assessed in vivo
by ultrasound
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Axial Transmission with Guided Wave Analysis

The first reports on in-vivo measurements of cortical
bone using ultrasound axial transmission trace back to
more than half a century. A few clinical studies reported
use of the velocity of ultrasound waves transmitted
axially along the shaft of long bones (tibia) as a bio-
marker for monitoring bone fracture healing [73]. The
technique was rapidly forgotten and it was not before
the late 1990s that it was revived in the context of
osteoporosis [74, 75]. The first version of the axial
transmission approach essentially consisted in measuring
the time-of-flight of the first arriving signal (FAS). FAS
velocity discriminates patients with osteoporotic frac-
tures from controls, although not better than X-ray
densitometry [76]. FAS offers the advantage of a
straightforward signal analysis, but it also has the dis-
advantage of being difficult to interpret physically.
Empirically, the velocity of the FAS has been shown
to depend on various bone properties, eg, cortical thick-
ness, porosity, bone mineral density, and elasticity [19,
77], but until now no clear interpretation has been
reached regarding the link between FAS velocity and
these bone properties. Individual bone properties cannot
be inferred from a single FAS measurement. Because
the nature of the FAS changes with the frequency, a
multiple frequency approach, in which FAS velocity is
measured at different frequency has been described to
enhance cortical bone status assessment [78–80].

A step forward toward the ultrasonic characterization of
cortical bone has been made with reports showing that cortical
bone behaves as a waveguide for ultrasound [81–83]. In the
appropriate clinical frequency range (ie, roughly between
100 kHz and 2 MHz), cortical bone is a multi-modal wave-
guide (WG), which means that different modes coexist. The
frequency-dependent propagation speed of each mode is de-
termined by a specific combination of stiffness coefficients
and thickness of the WG [84]. Thus, improving the character-
ization of individual bone properties can be sought by
exploiting the waveguide character of cortical bone.
Measurements of the dispersion relationships (or in other
words, the frequency variation of the wave modes speed),
together with appropriate waveguide modeling have, there-
fore, the potential for providing estimations of effective stiff-
ness coefficients (which are largely determined by cortical
porosity) and also of cortical thickness [81, 85–88].
Moilanen et al were the first to propose a low-frequency
approach to excite and detect in-vivo a thickness-sensitive
fundamental flexural guided wave and to infer from the mea-
surement of its velocity dispersion characteristics estimates of
cortical thickness [89, 90]. Another approach is to record the
full response of the WG, enabling to measure the dispersion
curves of multiple guided waves [91]. The ability of the

method to recover parameters of interest such as the wave-
guide thickness and/or elastic coefficients has been validated
on bone mimicking phantoms and on ex-vivo human radius
specimens [88]. Using the empirical relations between effec-
tive stiffness and porosity [3•], the cortical porosity can be
estimated from this measurement.

Recently, a sensor was developed, which, in addition
to the measurement of axial transmission FAS velocity,
could measure a perpendicular component, the tangential
transmission FAS velocity. The feasibility of a direct
estimation of elastic anisotropy at the tibial mid-shaft
by simultaneously measuring both axial and tangential
FAS components could be demonstrated at tibia shaft
specimens [92].

Transverse Transmission at the Proximal Femur

An important limitation of QUS today is their limited access to
peripheral skeletal sites only. QUS assessment at the hip is
expected to provide better hip fracture risk prediction com-
pared with QUS at peripheral sites. However, the complexity
of the anatomy makes measurements at this site quite chal-
lenging. One of the most significant recent technological
advances is the new QUS scanner developed by Barkmann
et al [93] for direct assessment of skeletal properties at the
proximal femur. In-vivo QUS-measurements have been per-
formed at the proximal femur in a first clinical trial [94, 95].
These transverse-transmission measurements through the tro-
chanter major and proximal shaft, consisting of predominantly
trabecular and cortical tissues, respectively, could be used to
discriminate between women with and without fractures as
good as DXA [96•]. Both, direct waves through the trochanter
major (trabecular tissue) and guided waves through the prox-
imal shaft (cortical tissue) contributed to the estimation of
fracture risk. New research, extending the concept of guided
waves to the circumferential propagation in the cortex, led to
the development of methods for specific measurements of the
cortical shell at the proximal femur. Circumferential wave
propagation could be tested ex-vivo on 9 femurs, and the
time-of-flight of the FAS signal revealed a strong rela-
tionship with femur strength, as assessed by mechanical
testing (R2=.79) [97•]. Furthermore, simulations of ultra-
sound propagation through the femoral neck yielded associa-
tions between FAS propagation characteristics and bone prop-
erties, predominantly cortical porosity, indicating a possible
added value of a QUS measurement at the femoral neck [66].
Former measurements of circumferential waves through hu-
man finger phalanges [98, 99] demonstrated the impact of
cortical thickness, cortical porosity and apparent cortical den-
sity on the ultrasound parameters of FAS transmission. As the
relative cortical thickness (cortical thickness divided by bone
width) is similar in the long bones of finger phalanx and the
femur shaft, comparable results can be expected for
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measurements at the femoral proximal shaft. However, US-
transmission measurements at the proximal femur using a pair
of single-element transducers limit the clinical applicability.
Recently developed array systems increase the flexibility of
such QUS measurements and may enable a better estimation
of relevant bone properties by adjusting for the impact of bone
geometry [100]. Developments of signal processing tech-
niques inspired from time reversal are currently underway to
extend the principles of measuring the dispersion curves to
circumferential guided waves with the aim to assess the geo-
metric and mechanical properties of the cortical shell of the
femoral neck [101, 102].

Conclusions

Many advances have been achieved in recent years and a
variety of different sophisticated ultrasound technologies ca-
pable of measuring elastic properties from the tissue level (ex-
vivo) to the organ level (in- vivo) have been introduced and
evaluated. Elastic properties of bone are nowadays widely
used in fundamental studies, in conjunction with numerical
models, to investigate the structure-function relationships and
in clinical applications to predict fracture risk or to monitor
fracture healing. Novel quantitative ultrasound technologies
taking benefit of the scalability of ultrasound to noninvasively
investigate elastic properties at multiple organization levels
have emerged like, eg, scanning acoustic microscopy or res-
onant ultrasound spectroscopy. One important research goal is
to provide guidance for the interpretation and the optimization
of cortical bone QUS measurements in vivo. A secondary
motivation is to contribute to fundamental knowledge of
mechanical properties.

Basic research is continuing to gain better understanding of
the interaction between ultrasound and bone structure or to
investigate the nonlinear elastic properties in relation to bone
microdamage.

Active research is carried out to develop new measurement
modes as effective clinical tools, particularly to assess cortical
bone at peripheral skeletal sites including the proximal femur
as the location of the most severe osteoporotic fracture.
Measuring guided waves in cortical bone has the potential to
evaluate bone quality factors such as cortical thickness, elas-
ticity, and with a-priori assumptions also porosity. Several
GW-based approaches are currently in clinical testing.
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