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Abstract Fat and bone have a complicated relationship. Al-
though obesity has been associated with low fracture risk,
there is increasing evidence that some of the factors that are
released by peripheral fat into the circulation may also have a
deleterious effect on bone mass, thus, predisposing to frac-
tures. More importantly, the local interaction between fat and
bone within the bone marrow seems to play a significant role
in the pathogenesis of age-related bone loss and osteoporosis.
This “local interaction” occurs inside the bone marrow
and is associated with the autocrine and paracrine release
of fatty acids and adipokines, which affect the cells in
their vicinity including the osteoblasts, reducing their
function and survival. In this review, we explore the
particularities of the fat and bone cell interactions within
the bone marrow, their significance in the pathogenesis of
osteoporosis, and the potential therapeutic applications
that regulating marrow fat may have in the near future
as a novel pharmacologic treatment for osteoporosis.
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Introduction

Osteoporosis is a major public health problem that affects
nearly 75 million people around the world and causes more
than 2million fractures annually [1]. This creates a major health

burden by costing billions annually and causing significant
morbidity and mortality within the older population.

The pathophysiology of osteoporosis has been associated
with a misbalance between bone formation and resorption [2].
During the menopause, bone resorption by the osteoclasts is
increased, thus inducing a significant bone loss [3], whereas
with aging there is a significant reduction in bone formation
due to low number and function of the bone forming osteo-
blasts [4]. More recently, a third pathophysiological mecha-
nism for osteoporosis has been proposed involving the in-
creasing presence of fat within the bone marrow, which is
known to affect osteoblast differentiation and function,
while increasing osteoclastic activity and also affecting
mineralization [5, 6].

In fact, the relationship between fat and bone is complex.
Several studies have differentiated this relationship into either
systemic (endocrine) or local (auto and paracrine) [7, 8•]. The
systemic interaction between fat and bone refers to those
factors that are released by peripheral fat (subcutaneous, vis-
ceral, etc) and affect bone metabolism either in a negative or
positive manner [4, 9]. In contrast, the local relationship refers
to the activity of fat within the bone marrow milieu and its
interaction with other bone cells [7].

Interest in the systemic effect of fat on bone has increased
in recent years mostly due to the obesity epidemic. Some
studies have reported that obesity reduces the risk for osteo-
porosis and that low body weight is a major risk for fractures
[9, 10]. However, more recent evidence indicates that obesity
could be detrimental to bone and that there is an inverse
relationship between body mass index, bone mineral density
and bone formation [11•, 12, 13]. Although this negative
systemic effect of fat on bone metabolism has been associated
with circulating adipokines, the mechanism of this deleterious
effect remains unclear.

In contrast, the local relationship between fat and bone has
been better understood and extensively explored in the last
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years. In this review, we summarize the current understanding
on the role of marrow fat in bone metabolism, its interaction
with other cells in the bone marrow milieu and the potential
therapeutic applications that regulating marrow fat volume
and activity would have on bone formation (Fig. 1).

The Multicellular Bone Marrow Milieu: Cell
Differentiation and Their Interactions

The bone marrow is a complex environment, in which a
variety of cell types share a common space locally releasing
cytokines and growth factors that could affect the cells in their
vicinity. Major cellular groups within the bone marrow in-
clude blood cells, bone mass-regulating cells (osteoblasts and
osteoclasts), and marrow adipocytes [14••].

In terms of their origin, mesenchymal precursors give rise
to osteoblast, adipocytes and chondrocytes whereas blood
cells are derived from hematopoietic stem cells. On the other
hand, osteoclasts are derived from hematopoietic monocytes
or macrophages [15]. Although both hematopoietic and mes-
enchymal precursors are present during the embryonic and
early stages of life, marrow fat (yellow fat) only acquire
significant levels during the second decade of life [16] in a
process of progressive infiltration of the bone marrow space,
which finally occupies a significant proportion of the bone
marrow [17, 18•]. In addition, this increase in adipocyte
number and volume is associated with reduced hematopoietic
function and decreased osteogenesis [19].

The first local linkage between bone and fat relies on their
cellular origin. Osteoblasts and marrow adipocytes derive

from bone marrow mesenchymal stem cells (MSCs),
which must not only differentiate but also proliferate in
order to reach the appropriate cell numbers required for
tissue regeneration, growing, and repair. Human MSCs
fulfill the following characteristics: (1) have a specific
antigenic profile that includes CD9+, CD54+, CD73+,
CD90+, CD105+, CD166+, CD29+, CD44+, CD14-,
CD19-, CD31-, CD34-, CD45-, HLA-DR-, and Nestin+
[20•]; (2) show a fibroblast-like morphology in culture
with significant adherence to tissue culture plastic; (3) are
isolated from specific niches in postnatal tissues, princi-
pally from bone marrow; (4) can remain undifferentiated
and have the multipotent in vitro capacity to differentiate
into mesenchymal lineage such as osteoblasts, adipocytes,
chondrocytes and myoblasts [21–24, 25••]. Finally, MSCs
show low immunogenicity and have pro-angiogenic and
anti-inflammatory properties, which made them attractive
not only for preventing the graft-versus-host disease and
modulating the immune system after transplantation [26],
but also to be used in regenerative medicine [21] and
antitumor therapy [27].

Indeed, the main and most studied source of MSCs is still
the bone marrow [28] with other diverse sources such as
peripheral blood and subcutaneous fat being tested as alterna-
tive sources, which would facilitate their collection and cul-
ture in a less invasive way. However, the plasticity of MSCs
from those extra medullar sources compared as bone marrow
MSCs is limited [29••]. In vitro, non-bone marrow MSCs
have a reduced capacity to proliferate and differentiate and
also show variable characteristics changing according to the
culture conditions [20•, 30].

Fig. 1 Fat and bone relationship
within the bone marrow milieu.
MSCs differentiate toward
osteogenic and adipogenic
lineage. MSCs are stimulated by
either osteogenic or adipogenic
factors at each stage of
differentiation. Furthermore, fatty
acids and adipokines released by
adipocytes are toxic and block the
osteoblast differentiation
pathway. BMP Bone
morphogenic protein, C/EBPαβ
CCAAT/enhancer binding protein
alpha and beta, ECM extracellular
matrix, OSX Osterix
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Although present in a very low numbers under physiolog-
ical conditions, minimal quantities of MSCs are required to
support bone formation during development and adulthood.
However, their numbers normally decrease after estrogen
withdraw and during ageing [22, 31]. These changes in
MSC number within the bone marrow environment would
contribute to a shifting of MSC differentiation into an
adipogenic lineage instead of an osteogenic one, which has
been a common finding in in vivo and ex vivo studies [22, 31].

In contrast, in vitro studies have been less successful in
mimicking the fat and bone interaction. This is due to the fact
that in vitro models, although allowing the control of several
factors such as the cell number and conditioning media,
critically impede to simulate the marrow microenvironment
where cells and their products interact in a reciprocal
crosstalk. With regard to these limitations, biomedical engi-
neers have developed 3D systems of co- and triculture with
artificial mineral-coated scaffolds, thus, mimicking the min-
eralized extracellular matrix and allowing a paracrine
multiple-way cellular interaction [32, 33]. Others have re-
placed the usual conditioning media with supernatants of
other bone marrow cells in culture, thus, exposing MSCs to
factors present in the bone marrow milieu [32]. Our group has
used a different approach by testing the interaction between fat
and bone cells in vitro separated by a porous membrane,
which allows growth factors and cytokines to unidirectionally
flow into the other cell group [34].

Indeed, there is enough evidence to suggest that, in the
process of osteogenic differentiation of MSCs, an inverse
relationship is established, in which mechanisms that promote
osteoblastogenesis prevent adipogenesis and vice versa [35,
36]. Certain states such as ageing [7], metabolic diseases such
as diabetes mellitus [37], estrogen withdrawal [38], immobi-
lization [39], and glucocorticoid treatment [40] favor fat ac-
cumulation at the expense of bone formation. Overall, these
risk factors induce the MSC to switch into its default lineage,
which is considered to be adipocytic. In addition to high levels
of adipogenesis observed in these conditions, it has been
demonstrated that adipocytes products (fatty acids and
adipokines) potentiate this negative scenario in a vicious
circle, which has been termed as lipotoxicity [8•]. Finally,
other cellular and molecular changes associated with ageing
such as bigger MSC size, diminished differentiation potential,
proliferation and growth rate as well as shortened telomeres
could affect the capacity of MSCs to differentiate into osteo-
blasts while increase their adipocytic differentiation [22].

Molecular Mechanisms of Adipogenesis
vs Osteoblastogenesis

The ultimate major controllers of the switching of a MSC
toward either osteogenic or adipogenic lineages are runt-

related transcription factor 2 (RUNX2) [41] for osteogenesis
and the peroxisome proliferator-activated receptor-γ (PPARγ)
[42] for adipogenesis, with many regulating routes and epige-
netic factors being directly or indirectly involved [43•]. To
reach the nucleus and to form their DNA-binding complex,
RUNX2 and PPARγ should interact with a set of elements of
osteogenic and adipogenic pathways, respectively. The most
important pathway involved in these 2 differentiation process-
es is known as canonical Wnt/β-Catenin pathway (Fig. 1).
Pro-osteogenic Wnts such as Wnt10b, Wnt1, Wnt6, Wnt7a,
and Wnt10a are soluble proteins that prevent β-Catenin deg-
radation and ultimately allow its nuclear translocation to form
transcriptional complexes along with Tcf/Lef (T-cell factor/
lymphoid enhancer-binding factor) and RUNX2, thus, stimu-
lating osteogenic commitment of MSCs [44]. This process
stimulates mineralization and alkaline phosphatase (ALP)
activity in pre-osteoblasts [45] while inducing osteoprotegerin
(OPG) expression, thus, indirectly downregulating bone
resorption.

Considering that this is a highly regulated pathway, the
exact mechanism by which the Wnt ligands and β-Catenin
regulate MSCs differentiation within the bone marrow re-
mains partially understood. Mutations in several up or down
stream components and controllers of the Wnt/β-Catenin
signaling pathway have been associated with bone-related
diseases either by up- or downregulating osteogenic genes,
thus, causing sclerosteosis or osteoporosis [46–49]. During
osteogenesis, several pro-osteogenic Wnt proteins crosstalk
and then bind to low-density lipoprotein (LDL) receptor–
related proteins 5 and 6 (LRP5/6). This communication,
which is followed by β-Catenin translocation, promotes os-
teoblastogenesis while blocks adipogenesis [50•]. In contrast,
the presence of other group of Wnt proteins such as Wnt4,
Wnt5a, and Wnt5b blocks these interactions, facilitate the
degradation of β-Catenin and induce adipogenesis [51].

In addition, there are also secreted antagonists of the Wnt/
β-Catenin pathway that could affect osteoblast differentiation
and function. Sclerostin, which is a protein encoded by the
SOST gene and is exclusively produced by the osteocytes,
binds to the Wnt co-receptors LRP5/6 in osteoblasts to block
the Wnt/β-Catenin signaling pathway while increases osteo-
blast apoptosis [52]. In contrast, mechanical loading sensed by
osteocytes, and parathyroid hormone (PTH) diminish
sclerostin production and favor osteoblastogenesis [53•, 54].
Furthermore, other antagonist of the Wnt/ β-Catenin pathway
known as Dickkopf-related protein 1 (DKK-1) play an impor-
tant role in skeletal formation since rare polymorphisms are
present in patients with juvenile osteoporosis [55]. Also, the
animal transgenic model Dkk-1+/- has increased osteoblast
number and bone formation rate [56]. Current clinical trials
are employing antibodies to neutralize these antagonists of
bone formation and to increase bone formation in patients
with osteoporosis [57, 58, 59••, 60].
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In addition to the soluble Wnt proteins, other growth fac-
tors are involved in osteoblastogenesis. Members of the
transforming growth factor-beta (TGF-β)/bone morphogenic
protein (BMP) signaling pathway crosstalk along with multi-
ple enhancers such as PTH, fibroblast growth factor (FGF),
Wnts, Hedgehog, and others, integrate and amplify their sig-
nals and ultimately activate RUNX2 in an either SMAD-
dependent or independent manner [61••]. Overall, most of
the members of these pathways are crucial for bone formation
as it is demonstrated by the critical bone impairment in genetic
models lacking any of their multiple components [61••].

Additionally, vitamin D3 has been proved to be stronger
than BMP-2 inducing all stages of osteogenesis in a
dexamethasone-dependent manner both in vitro [62] and
in vivo [63•]. Indirectly, vitamin D enhances calcium and
phosphate re-absorption in kidney and intestine, which im-
proves bone mineralization. Finally, vitamin D inhibits mar-
row adipogenesis by inhibition of PPARγ in vivo [63•].

Interestingly, the downstream response that determines
osteoblast differentiation is dependent on the translocation of
several transcription factors from the cytoplasm to the nucle-
us. This has allowed to the discovery that osteogenic/
adipogenic transcription factors could only reach the nucleus
by means of the mechanical coupling and physical interaction
between these activated factors and the proteins of the inner
nuclear envelope [64]. Amongst these proteins, lamin A has
acquired special relevance due to its regulatory role in the
nuclear translocation and DNA-binding of essential transcrip-
tion factors [65, 66]. In the case of osteoblastogenesis, it has
been demonstrated that lamin A integrity and function are
crucial to allow its progression [67, 68], otherwise, in the
presence of low levels of lamin A expression, adipogenesis
would take place [69, 70].

Furthermore, the molecular mechanism linking the Wnt
pathway with proteins of the nuclear envelope relay on how
β-Catenin translocates into the nucleus and also on the pre-
vention of its degradation while in the cytoplasm. Initially β-
Catenin is phosphorylated [71], then it can diffuse or migrate
freely through the nuclear pore complexes [72] or can interact
with other proteins of the nuclear envelope while facil-
itates their interaction with the RUNX-related osteogenic
complex [73].

In contrast to the role of RUNX2 in osteoblastogenesis,
PPARγ is the master transcription factor regulating adipogen-
esis that affects bone mass not only by blocking RUNX2
activity and thus, bone formation but also stimulating osteo-
clastogenesis [74]. Activation of PPARγ has a strong
adipogenic effect that is reached through the inhibition of
osteogenic Wnts, degradation of beta β-Catenin and low
levels of lamin A expression. Based on this antagonistic effect
between RUNX2 and PPARγ activity, it is proposed that
mechanisms blocking marrow adipogenesis through PPARγ
inhibition would facilitate RUNX2-related response and

would improve osteoblastogenesis and bone formation. This
therapeutic effect was obtained by using either pharmacologic
antagonists or molecular inhibitors of PPARγ in vivo
[63•, 75, 76].

In addition to local release of osteogenic proteins and
growth factors, systemic adipokines could also play a role in
the regulation of bone marrow MSCs. Leptin, an adipocyte-
specific adipokine, centrally inhibits bone formation by
preventing serotonin release from the hypothalamus [77•]. In
addition, absence of serotonin receptors and tryptophan hy-
droxylase (Tph2) deletion cause osteoporosis and anorexia
[78]. On the other hand, gut-derived serotonin peripherally
contributes to prevent bone formation through LRP regulation
[79], thus, inhibitors of gut-serotonin have shown to be effec-
tive in rescuing osteoporosis in an animal model of bone loss
[80]. In addition, Confavreux (2011) reported the relationship
between energy metabolism and bone remodeling via the
neuronal regulation of leptin (neuropeptide Y: NPY,
neuromedin: NMU, serotonin and β2-adrenergic receptor me-
diated) and osteocalcin (adiponectin and insulin mediated)
[81]. Finally, insulin inhibits OPG production in osteoblasts,
thus, the increased OPG/RANKL ratio favors osteocalcin
activation and release from the ECM toward the stimulation
of insulin in the pancreas [82].

Fat-Induced Osteoporosis

Both human and animal studies have demonstrated that mar-
row fat volumes are inversely related to bone mineral density
and to bone integrity [83, 84•]. An in vitro study by Verma
et al has proved that there is a clonal switch between
adipocytic and osteoblastic lineages in subjects with osteopo-
rosis [84•]. This increase in bone marrow adipogenesis could
be the result from a reduction in osteoblast formation by
stromal cells due to ageing or apoptosis of bone cells [85].
In addition, bone marrow adiposity may influence bone re-
modeling in 3 ways: (1) secretion of cytokines; (2) production
of adipokines; and (3) paracrine influences on adjacent bone
cells that decrease osteoblast number and increase adipocyte
number while stimulating osteoclastic activity [18•].

Several lines of evidence have revealed that there is a
correlation between fractures and fat marrow adipogenesis.
Meunier et al studied iliac crest biopsies and found out that
high bone marrow adipocytes in osteoporotic samples com-
pares with healthy samples [86]. Wehrli et al reported MRI
assessment of bone marrow in old women compared with
their bone mass. They reported that increased fracture risk is
associatedwith increasedmarrow fat together with lower bone
mass [87].

In addition, studies have reported that lipotoxicity was
detected after osteoblasts were exposed to adipocyte-
secreted factors in vitro [34, 88]. This is supported by
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experiments using co-cultures of adipocytes and osteoblasts,
which revealed that adipocytes inhibit osteoblast proliferation
and function through the secretion of adipokines and fatty
acids [34, 89]. When the adipocytes were treated with
cerulenin (inhibitor of fatty acid synthase) osteoblasts sur-
vived longer and mineralized better than their untreated con-
trols suggesting that the secretion of fatty acids by bone
marrow adipocytes could have a lipotoxic effect on osteo-
blasts that can be prevented through the inhibition of fatty acid
synthase [34].

Among the adipocyte-secreted factors, palmitic acid was
found to be highly prevalent and very toxic to osteoblasts [5,
34]. A recent study has revealed the mechanism of lipotoxicity
induced by palmitic acid on osteogenesis by demonstrating
that this fatty acid affects Wnt signaling and BMP2/RUNX2 /
SMADs pathways as well as mineralization [5]. Furthermore,
proteomic analysis investigating changes in adipocytes has
shown there is shift in ageing bone marrow in mice from
pro-osteogenic, anti-adipogenic and anti-apoptotic phenotype
to a toxic and pro-adipogenic one in old mice, which could be
associated with adipokines production [90]. Taken together,
new evidence on lipotoxicity in bone allows suggesting that
yellow fat plays a toxic role within the bone marrow milieu
and that inhibition of this toxicity could alleviate this negative
effect on bone formation.

Clinical Translation: Fat as a Therapeutic Target
for Bone-Related Diseases

From a therapeutic point of view, osteoblast differentiation
and RUNX2 activation may be stimulated by using agonists
of the Wnt osteogenic pathway, direct stimulation of RUNX2,
or inhibition of PPARγ. However, and considering that these
pathways also regulate growth and differentiation of other cell
types, there is always an inherent risk of increasing the risk of
malignancy [91]. For example, although LRP5 and GSK3β
could be ideal targets since they have crucial roles in either
promoting or blocking osteoblastogenesis, respectively, it is
extremely challenging to target their activity in MSCs without
affecting other cellular processes [92]. Furthermore, as an
additional beneficial effect of inducing MSC differentiation
into the osteogenic lineage is that myogenesis could
also be facilitated while decreasing high levels of fat
infiltration also observed in ageing muscle [93].

As a new therapeutic approach to osteoporosis, in addition
to their role in regulating glucose and lipids metabolism,
several synthetic [94] and natural PPARγ antagonists [95]
are being tested as stimulators of osteoblastogenesis and bone
formation. One of them, bisphenol-A-diglycidyl ether
(BADGE) is a low affinity PPARγ antagonist that has been
shown to have a bone anabolic effect [63•]. This effect that

was potentiated when administered in combination with vita-
min D in an aged animal model [63•].

As an alternative approach to regulateMSCs differentiation
and stimulate osteoblastogenesis, interferon gamma (IFNγ),
which we previously reported as increased together with its
inducible genes during early osteoblast differentiation in vitro
[96] and also to regulate osteoblastogenesis in mice, could
rescue oophorectomized mice from their osteoporotic pheno-
type by increasing osteoblastogenesis and inhibiting adipo-
genesis [97]. However, the exact mechanism of this effect
remains to be elucidated.

Finally, and considering that fatty acids released from
adipocytes, are toxic for osteoblast differentiation [5] and that
inhibition of fatty acid synthase protects osteoblasts from
apoptosis, this new evidence supports the notion that regulat-
ing the fatty acid synthase (FAS) pathway could effectively
prevent adipogenesis while stimulating osteoblastogenesis
[34, 98], which is a hypothesis that requires further explorato-
ry using in vivo studies.

Conclusions

In conclusion, the relationship between fat and bone is com-
plicated, especially within the marrow milieu. The inverse
relationship between osteoblastogenesis and adipogenesis,
the default differentiation of MSCs into adipocytes, and the
age-related changes in the differentiation machinery deter-
mine that ageing bone marrow becomes fatty at expense of
osteoblastogenesis and bone formation. In addition, the pres-
ence of marrow fat is associated with a toxic microenviron-
ment that affects other marrow cells and could induce cell
dysfunction and cell death. Considering that the regulatory
mechanisms involved in MSCs are well known, these
mechanisms could constitute novel therapeutic targets
for osteoporosis, especially in older persons in whom
bone formation is significantly reduced. With new regu-
lators of adipogenesis and inhibitors of lipotoxicity being
assessed in animal models, the potential development of
osteoporosis treatment focusing on the fat and bone rela-
tionship could constitute the future of the pharmacologic
approach to this devastating disease.
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