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Abstract Osteoporosis is a major public health threat for
millions of Americans with billions of dollars per year of
national direct costs for osteoporotic fractures. Osteoporosis
results in a decrease in overall bone mass and subsequent
increase in the risk of bone fracture. Bone strength arises from
the combination of bone size and shape, the distribution of
bone mass throughout the structure, and the quality of the
bone material. Advances in medical imaging have enabled a
comprehensive assessment of bone structure through the anal-
ysis of high-resolution scans of relevant anatomical sites, eg,
the proximal femur. However, conventional imaging analysis
techniques use predefined regions of interest that do not take
full advantage of such scans. Recently, computational anato-
my, a set of imaging-based analysis algorithms, has emerged
as a promising technique in studies of osteoporosis.
Computational anatomy enables analyses that are not biased
to one particular region and provide a more complete assess-
ment of the whole structure. In this article, we review studies
that have used computational anatomy to investigate the
structure of the proximal femur in relation to age, fracture,
osteoporotic treatment, and spaceflight effects.
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Introduction

Osteoporosis is characterized by loss of bone mass, structural
deterioration, and diminished mechanical properties that com-
promise bone strength predisposing a person to an increased
risk of fracture [1]. Bone strength is a consequence of bone
density and bone quality, with bone quality including factors
such as trabecular and cortical architecture, bone turnover,
mineralization, and cellularity. Although osteoporosis affects
most of the bones in the human body, osteoporosis-related
fractures of the proximal femur are the most devastating
outcome of the disease, often signaling an end to independent
living in the functional elderly. A hip fracture usually requires
hospitalization and major surgery and is associated with sig-
nificantly increased morbidity and mortality [2, 3].

Dual x-ray absorptiometry (DXA) is the standard imag-
ing modality for the diagnosis of osteoporosis, assessment
of a patient’s risk of sustaining an osteoporotic bone frac-
ture, and monitoring response to osteoporosis treatment [4,
5]. DXA provides a 2-dimensional (2D) projection of the
scanned region enabling the quantification of areal bone
mineral density (aBMD) and 2D geometric measurements
of the bone structure. DXA is a low radiation dose imaging
technique that is widely available, however, DXA provides
2D measurements of 3-dimensional (3D) structures, and
does not capture all factors contributing to bone strength [6].

Quantitative computed tomography (QCT) is the leading
3D imaging modality for the study of osteoporosis. QCT
enables the accurate quantification of 3D bone geometry,
and the accurate estimation of volumetric bone mineral den-
sity (vBMD), which is an important surrogate of bone strength
[7]. QCT also enables the application of finite element model-
ing (FEM), which is a numerical engineering technique that
enables the prediction of the performance of a structure when
subjected to an external load. QCT-based FEM estimates bone
strength based on bone geometry, distribution of material
properties derived from vBMD values, and clinically relevant
loading conditions such as single-limb stance or a fall to the
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side with an impact on the posterolateral or lateral aspect of
the greater trochanter [8, 9]. Recently, QCT has also been used
for the accurate quantification of cortical bone thickness [10].
However, QCT cannot provide high-spatial resolution images
to quantify the trabecular bone microstructure due to the high
radiation dose that would be needed to achieve the required
spatial resolution [11].

Recent advances in hardware, pulse sequence develop-
ment, and coil design have allowed magnetic resonance
imaging (MRI) to be used as an additional alternative to
the study of osteoporosis in relevant sites such as the prox-
imal femur [12, 13]. While MRI cannot provide measures of
bone density, MRI enables the quantification of bone geom-
etry and the acquisition of high-spatial resolution images for
the quantification of trabecular bone microstructure [11].
Recent studies have also shown the feasibility of micro-
FEM analysis and cortical bone thickness quantification
using MRI [14–16]. Furthermore, MRI goes beyond struc-
tural measures by enabling the generation of accurate bone
maps of the distribution of marrow-fat fraction [17].

Conventional image analysis approaches are based on
predefined regions of interest averaging tissue features over
those regions, thus obscuring local information regarding
the distribution of the features and how such 2D/3D features
contribute to the integrity of the investigated tissue. In
contrast, computational anatomy techniques are not biased
to one particular region and give an even-handed and com-
prehensive assessment of parametric differences throughout
the structure of interest. Computational anatomy algorithms,
initially developed for brain imaging analysis where they
have shown their significant potential, have been slowly, but
successfully, integrated into studies of osteoporosis.

In this article, we provide an overview of studies that
have used computational anatomy in the context of osteo-
porosis. We start by briefly introducing the basic principles
that are needed to understand the concept of computational
anatomy. Then for each imaging modality, namely DXA,
radiography, QCT, and MRI, we present a summary of
studies that have used computational anatomy to investigate
the structure of the proximal femur in relation to hip fracture
risk, osteoporosis treatment, age, and/or spaceflight effects.
We have selected the proximal femur because it is by far the
anatomical site that has been most studied with computa-
tional anatomy algorithms and because its relevance in
osteoporosis. We conclude the article with a brief discussion
of the future work in the field of computational anatomy and
osteoporosis.

Computational Anatomy

Computational Anatomy is a set of imaging analysis tech-
niques that model anatomical structures in images as curves,
surfaces, maps, and volumes with the objective of combining

them across subjects to create statistical feature maps. The
statistics of features can then be spatially analyzed based on
information from several subjects to detect subtle changes that
are associated with prognosis, progression, treatment, or other
variables of interest, making it possible to visualize group
differences or longitudinal changes as statistical maps [18].

The first step in the conventional approach of computation-
al anatomy requires the spatial normalization of the individual
feature maps. Spatial normalization refers to the process of
removing, to the extent possible, the natural anatomical vari-
ability in a population by deforming each individual’s anato-
my into a standardized space [19]. After spatial normalization,
feature maps can be compared locally and comparisons can be
interpreted as being done at corresponding anatomic
locations.

Spatial normalization is commonly accomplished in 3
steps: (1) selection of the standardized space, (2) alignment
of all the scans in the study to the standardized space using an
affine transformation to correct for translation, rotation, and
size, and (3) nonlinear registration of the affine registered
scans to accommodate for the remaining anatomical variabil-
ity. Usually the second and third steps are concatenated into a
single step.

After spatial normalization, statistical tests are usually
performed on a voxel-by-voxel basis (3D; pixel-by-pixel in
2D) generating statistical maps, and P-values are corrected for
multiple comparisons to identify regions where the feature of
interest is significantly related with the effect of interest.

Other approaches, specifically those that include study-
ing variations in shape, take a slightly different approach
based on active shape modeling [20]. In this method, the
parameter space is defined by mapping a dense set of
surface points onto each individual anatomical structure.
The surface points are then optimally repositioned to ensure
point-to-point correspondence across the population of in-
terest such that each point on each individual structure
corresponds to the same anatomical location. In these ap-
proaches, principal component analysis (PCA) is applied to
the aligned shapes and/or corresponding volumetric data
and the association of the calculated principal components
and the effect of interest is investigated.

DXA – Radiography

In this section we discuss early and recent 2D applications
of computational anatomy to study the structure of the
proximal femur in relation to hip fracture risk using shape
and/or intensity features.

Hip Fracture Risk

Gregory and colleagues perform pioneering work in the
study of the relationship between the shape of the proximal
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femur and osteoporotic hip fractures [21]. The authors stud-
ied 26 women who had sustained hip fracture (mean age=
69.2 ± 6.3 years), and 24 gender- and age-matched controls
(mean age=69.1 ± 6.5 years). An active shape model
(ASM) of the proximal femur was generated, and using
stepwise linear discriminant analysis on the principal modes
of shape variation, the probability that a given subject would
belong to the fracture group was estimated and referred as
PShape. Linear discriminant analysis was used to assess the
strength of PShape, DXA-aBMD, and PShape combined
with DXA-aBMD to discriminate between the groups.
Results showed that by adding ASM features to the
Ward’s triangle aBMD improved the accuracy of the frac-
ture discrimination from 82 % to 90 %. This work also
demonstrated that ASM features were independent of age,
body mass index, and aBMD. A year later Gregory and
colleagues perform a similar study on the same dataset
where they showed that the addition of trabecular structural
measures to DXA-aBMD and ASM features improved the
discrimination between fracture cases and controls with an
area under the receiver operator characteristic (ROC) curve
(Az) reaching a value of 0.99 [22].

Baker-LePain and colleagues applied active shape
modeling to a nested-control study of incident hip fracture
in white women [23]. The study included radiographs of the
proximal femur of 168 women with incident hip fracture
(mean age=71.7 ± 4.6 years) and 231 controls (mean age=
70.6 ± 4.4 years). The association of ASM modes of the
proximal femur with incident hip fracture was investigated
using logistic regression. In models controlling for age and
body mass index, Az for hip shape was 0.813, and it im-
proved when ASM modes where combined with femoral
neck DXA-aBMD to 0.835.

Following the work of Gregory and colleagues [21,
22], Goodyear used DXA of the proximal femur in a
prospective study of incident hip fracture that included
182 women with incident hip fracture (mean age=81.5
± 4.6 years) and 364 gender-, age-, weight-, and height-
matched controls (mean age=81.5 ± 4.5 years) [24].
The authors generated an ASM and an active appear-
ance model (AAM; shape and patterns of aBMD), and
used logistic regression to evaluate the association be-
tween incident hip fracture with DXA-aBMD, shape modes,
and appearance modes. ROC analysis showed that the com-
bination of the second shape mode, the sixth appearance
mode, and aBMD improved the prediction of hip fracture by
3 % compared with any single predictor, and demonstrated
that the shape and appearance modes used in the prediction
model were independent predictors of hip fracture after
adjusting for aBMD. According to the authors, this slight
improvement represents the prediction of additional 2000
and 10000 hip fracture cases per year in the UK and US,
respectively.

QCT

In this section we present QCT studies that have used
vBMD, cortical bone thickness, FEM, and shape as features
for the ex-vivo and in-vivo study of bone structure using
computational anatomy.

Spaceflight Effects

Li and colleagues presented the first 3D application of
computational anatomy for the study of bone structure
[25]. The authors studied the effects of spaceflight on the
proximal femur of 16 astronauts (mean age 44.6 ± 4.0 years)
during spaceflight durations of 4–6 months on the
International Space Station. QCT scans were obtained be-
fore (30–60 days prior to launch) and after spaceflight (7–
10 days of landing). All QCT scans were spatially normal-
ized to a common reference to create pre-flight and post-
flight composite hip models of vBMD, which enabled the
visualization of the distribution of gradients of bone loss.
The authors then performed paired t-tests on a voxel-by-
voxel basis, and used false discovery rate (FDR) correction
to correct for multiple comparisons, yielding maps indicat-
ing regions inside the proximal femur with significant bone
loss. These maps indicated that the superior aspect of the
femoral head experienced greater bone loss than other re-
gions of the proximal femur. The authors hypothesized that
these results could be due to focal bone loss in the principal
compressive band of trabeculae, the medial aspect of which
is located in the femoral head. In prolonged mechanical
unloading situations such as a spaceflight, the largest bone
losses are known to occur in those regions that are most
heavily used in normal usage, and the principal compressive
band is 1 of the major load-bearing structures in the hip.

Hip Fracture Risk

A year later, Li and colleagues applied their statistical para-
metric mapping (SPM) technique of the spaceflight study to
a cross-sectional study of hip fracture in Chinese women
[26]. QCT scans of 37 women (65 years old or older) with
hip fracture, and 38 gender- and age-matched controls were
registered to a common reference space to create a voxel-
based statistical atlas of vBMD. The authors then used this
atlas to perform t-tests between the 2 groups on a voxel-by-
voxel basis correcting for multiple comparisons with FDR,
and identified regions inside the proximal femur where
vBMD was significantly associated with hip fracture.
Three main clusters were identified, 1 in the femoral head,
1 in the femoral neck, and a third one in the trochanteric
region. The clusters in the femoral neck and trochanter
agreed with previous studies in the literature indicating that
these 2 locations are commonly involved in hip fracture.
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The finding in the femoral head, suggested that this com-
monly ignored region, could play a significant role in the
study of hip fracture. In the same study, fracture discrimi-
nation was assessed using mean vBMD values from the
conventional volumes of interest and the 3 identified clus-
ters, showing that fracture discrimination could be improved
by focusing on vBMD values of the fracture-critical regions.
The authors also reported that women with neck fracture had
lower vBMD in a small region near the femoral neck and the
femoral head (P=0.014), and women with trochanteric frac-
ture had lower vBMD in trochanteric regions such as the
internal calcar septum (P=0.006).

Poole and colleagues applied SPM of cortical bone thick-
ness to identify focal osteoporosis in a cross-sectional study of
hip fracture [27]. They studied 150 women, 75 with acute
fracture, and 75 age-matched controls (mean age=76.6 ±
7.3 years). Thirty-six women had femoral neck fracture (mean
age=78.1 ± 7.1 years), and 39 trochanteric fracture (mean age
=75.2 ± 7.9 years). Surface maps of cortical bone thickness
were calculated for each subject based on QCTscans [10], and
spatially normalized to a common frame of reference. The
authors then investigated differences in cortical thickness
between: (1) femoral neck fracture cases (n=36) and controls
(n=75), and (2) trochanteric fracture cases (n=39) and con-
trols (n=75). The authors fitted a model to the statistical
atlases where the model effects were group, age, height, and
weight. T-statistics were calculated to test the significance of
the group term, and random field theory was used to correct
for multiple comparisons. Significant focal cortical thinning
was observed in women with hip fracture compared with
controls. Cortical thinning was observed in different regions
in women with neck fracture compared with women with
trochanteric fracture. The largest region of cortical thinning
was the head-neck junction showing a thumbnail-size patch of
up 30% of cortical thinning in neck fracture cases. This region
is commonly involved in hip fracture. Other regions included
patches in the greater and lesser trochanter for both types of
fracture. No regions of statistically significant thicker bone
were observed in fracture cases.

Recently, Carballido-Gamio and colleagues applied SPM,
specifically voxel-based morphometry (VBM), to a prospec-
tive study to identify regions inside the proximal femur where
vBMD was significantly associated with incident hip fracture
[28, 29••]. They studied 222 women from a population-based
cohort of Icelandic women, 74 with incident hip fracture
(mean age=79.4 ± 5.9 years) and 148 without fracture (mean
age=79.2 ± 5.7 years). QCTscans of the proximal femur were
acquired at baseline (before hip fracture), and spatially nor-
malized to a common reference to generate a statistical atlas of
vBMD. The authors then fitted a general linear model on a
voxel-by-voxel basis to generate a Student’s t-test statistical
map of the voxelwise vBMDdifferences between controls and
fracture cases. The vBMD values were used as the dependent

variable, and group membership as the independent variable
(controls or fracture). Age, height, and weight were incorpo-
rated as covariates, and FDR was used to correct for multiple
comparisons. Results indicated significant bone loss in frac-
ture cases compared with controls in regions commonly in-
volved with hip fracture, namely the neck and trochanteric
regions. However, the authors also reported significant bone
loss in fracture cases at the inferomedial proximal femoral
cortex (Fig. 1a), a primary load-bearing region that in an aging
study performed in parallel by the same authors [29••],
showed minimal differences between young and older
American women.

In the same population-based cohort of Icelandic women
(74 with incident hip fracture and 148 without fracture),
Carballido-Gamio and colleagues studied the local association
of shape with incident hip fracture in the proximal femur [28]
using tensor-basedmorphometry (TBM) [30]. TBM processes
the displacement vectors that are assigned to each voxel
during the nonlinear step of spatial normalization, and for
each voxel calculates the amount of contraction or expansion
that is needed to match the standardized space generating
shape feature maps. Contraction-expansion maps were then
compared between controls and fracture cases with a similar
voxel-wise approach as for vBMD to generate an FDR-
corrected Student’s t-test statistical map. TBM showed vol-
ume loss in the principal compressive bands and cortices, and
enlargement of the trabecular neck area in fracture women
compared with age-matched controls. A focal region of corti-
cal volume loss in the superior neck of fracture women was
also observed in agreement with a previous study indicating
cortical thinning in this area [31].

Osteoporosis Treatment

Poole and colleagues published what has been so far the only
application of computational anatomy in a study of osteopo-
rosis treatment [32••]. The authors studied a total of 238
femora from 65 women (mean age 67.5 ± 6.8 years) with
severe osteoporosis that were treated with recombinant human
parathyroid hormone (hPTH-(1–34)) for 24 months. QCT
scans of the proximal femur were acquired at baseline and
24 months. The authors generated surface maps of cortical
bone thickness [10], and aligned all of them to a common
reference frame. Surface maps representing response to treat-
ment were generated for each subject by subtracting the
baseline maps from the 24-month maps, and averaging the
left and right difference maps when both were available, thus
yielding a total of 65 response maps. The authors then fitted a
model to the response maps, and used T-statistics and random
field theory to correct for multiple comparisons with the aim
of detecting regions where hPTH-(1–34) caused a significant
positive thickness change. Results indicated significant corti-
cal thickening despite ageing effects in regions of high stress
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in normal locomotion: (1) inferomedial junction of the cortex
with the load-bearing calcar femorale, and (2) the head-neck
junction of the superior cortex (Fig. 1b). Both regions are
commonly involved in hip fracture. The authors also identified
focal thickening at the enthuses of powerful locomotionmuscles
in the greater (gluteus medius) and lesser trochanter (psoas), and
at the inter-trochanteric region (quadratus femoris). No signifi-
cant cortical thinning was observed. Authors suggested a

possible synergistic effect of habitual load and PTH, since
significant cortical thickening was seen at sites that are highly
stressed by walking.

FEM

QCT-based FEM provides accurate predictions of bone
strength, however, the generation of subject-specific models

Fig. 1 (a) Student’s t-test
statistical maps indicating
regions where vBMD was
significantly associated with
incident hip fracture (3D
anterior, 3D posterior, and 3D
femoral neck cross-sectional
views) [29••]. (b) P-value maps
indicating regions of significant
cortical bone thickening in
response to osteoporosis
treatment (3D medial, 3D
superior, and 3D posterior
views) [32••].(c) Finite element
models constructed from a
statistical shape density model
[35••].(d) Student’s t-test
statistical maps indicating
regions where vBMD was
significantly associated with
aging (3D anterior, 3D
posterior, and 3D femoral neck
cross-sectional views) [29••]. In
(a) and (d), nonsignificant
voxels were rendered
transparent
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is a time consuming and computational intense problem, which
has limited this Mechanical Engineering technique to research
studies and hampered its translation to the clinic. Even in the
research field, population-based studies using FEM is still
limited to a reduced number of research centers. For these
reasons, efforts are currently in progress to improve the practi-
cality of FEM for the study of bone strength in osteoporosis.

In the work of Bryan and colleagues [33], statistical-
deformation models [34] were used to generate a statistical
atlas of elastic material properties of the proximal femur. QCT
scans of 8 women and 13 men (mean age=68 years; 43–
84 years) were used to define point correspondence between
scans, and principal component analysis (PCA) was used to
summarize the variation in shape and material properties (8
PCA modes). The purpose of the study was then to generate
1000 realistic and unique finite element models to be used on
a study of femoral neck fracture risk. Simulations of the
impact of an oblique fall to the side on the 1000 models
indicated that 28 of the 1000 femora were at high risk of neck
fracture. The location more likely to sustain fracture was the
intertrochanteric region, and the authors reported that the
percentage of cortical bone in the proximal femur was the
main differentiator between the failed and non-failed groups.

A more recent work in the field of QCT, FEM, and compu-
tational anatomy was published by Nicolella and Bredbenner
[35••]. The objective of their study was to develop a parametric
finite element model of the proximal femur and show how this
parametric model can be used to reconstruct the 3D shape and
bone density distribution of a previously unseen femur. For this
purpose, the authors built a statistical shape density model
(SSDM; Fig. 1c) using QCT scans of 7 fresh-frozen human
female femora (mean age=69.9 ± 8.8 years). Point-to-point
correspondence was automatically established on the segment-
ed femora, and PCAwas applied to the matched data. For each
bone element in the QCT scans, elastic–plastic material behav-
ior with linear hardeningwas assumed, and isotropic elastic and
hardening moduli and ultimate stress values were determined
as functions of ash density using empirical relationships [36].
Using a leave-one-out strategy, the authors demonstrated that a
3D finite element model of an unknown femur was
reconstructed from the SSDM with an average spatial error of
0.016 mm and an average density error of 0.037 g/cm3. The
authors also demonstrated that relatively large differences in
predicted bone strength can be observed with relatively subtle
changes in bone shape and density distribution. They argue that
traditional clinical measures of bone density may not be sensi-
tive enough to detect these relatively minor structural and
material variations.

Age

Carballido-Gamio and colleagues performed an aging study
[28, 29] in parallel to the incident hip fracture study using

VBM and TBM. The authors studied 349 American women
from a population-based cohort (21–97 years), and
subdivided them into 3 groups based on their age: (1) young
women (n=94; mean age=34.1 ± 6.6 years), (2) middle-age
women (n=98; mean age=51.9 ± 4.0 years), and (3) older
women (n=157; mean age=72.5 ± 8.8 years). QCT scans
were spatially normalized to a common reference to gener-
ate vBMD and contraction-expansion statistical atlases.
Comparisons of vBMD and contraction-expansion maps
were performed on a voxel-by-voxel basis between young
and middle-age, and between young and older women.
Comparisons were made in the form of general linear
models adjusting for weight and height, thus generating
Student’s t-test statistical maps. P-values were corrected
for multiple comparisons using FDR to indicate regions
where vBMD or shape was significantly associated with
aging. Most of the proximal femoral regions showed signif-
icant vBMD loss with aging, with the femoral neck and
medial femoral head showing the greatest loss. However,
the inferior cortex, a region constantly loaded in daily ac-
tivities such as walking, indicated preservation of vBMD
with aging (Fig. 1d). In terms of shape, TBM showed
volume loss in the principal compressive bands and cortices,
and enlargement of the trabecular neck area in middle-age
and older women compared with young women.

Prediction of Outcome of Interest

As discussed in the previous paragraphs, computational
anatomy has been primarily used for the identification of
regions or/and features significantly associated with an ef-
fect of interest (space flight effects, hip fracture risk, osteo-
porosis treatment, aging), or as a mean to generate new
realistic data (FEM), however, computational anatomy in
conjunction with other computational imaging analysis
techniques, such as machine learning can be used to predict
an outcome of interest.

Li and colleagues had already shown the utility of fracture-
critical regions identified by SPM for hip fracture discrimina-
tion [26]. Using the same dataset of the hip fracture study of
older Chinese women, Li and colleagues built a fracture risk
linear model [37]. The population was divided into training
and tests sets, and PCA was performed on the spatially nor-
malized training vBMD scans. The principal components that
showed a stronger association with hip fracture were se-
lected, and the projections (eigenvalues) of the training
scans on these principal components (eigenimages) along
with the known fracture status (Fx_index=0 for controls
and Fx_index=1 for fracture) were used to calculate the
coefficients of the linear model. The model was then ap-
plied to the spatially normalized test vBMD scans to esti-
mate a fracture risk index that was used to discriminate the
fracture cases and controls. Results showed comparable
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performance to fracture discrimination based on conven-
tional densitometric QCT analysis, however the authors
highlighted the potential utility of the principal components
as features to be explored in future studies of osteoporosis.
Li and colleagues also implemented an image similarity
technique to discriminate fracture cases and controls [38].
The same dataset of older Chinese women [26] was
subdivided into training and test scans, and the spatially
normalized tests scans were classified as either fracture
cases or controls based on its vBMD similarity to the
spatially normalized training controls and fracture cases.
The authors showed that combining vBMD with image
similarity measures resulted in improved hip fracture risk
estimation.

Fritscher and colleagues used CT statistical models of
appearance (shape and spatial intensity distribution) and
tested the performance of PCA, independent component
analysis, and locally liner embedding (LLE) techniques to
generate prediction models of vBMD and break away torque
(BT) on predefined regions of interest in the femoral head of
28 femur specimens [39]. Based on the leave-one-out strat-
egy the authors reported that PCA and LLE led to the best
results for the prediction of both BT and BMD. The same
research group used 100 QCT scans of human cadaver
specimens (64 from females with mean age=80.1 ±
9.9 years; and 36 from males with mean age=78.9 ±
11.8 years) to generate a statistical appearance model and
evaluate the performance of 5 different regions of interest to
predict individual fracture load (FL) [40]. Using principal
component regression, leave-one-out tests, and DXA-
aBMD as standard of comparison, significant better results
for FL prediction were reported using the model-based
approach (R=0.91) than using DXA-aBMD as predictor
(R=0.81). The feasibility of applying the work of Fritscher
and colleagues [39] on the lumbar spine was shown by
Leber and colleagues on a QCT study of 17 spinal speci-
mens [41]. Similarly, Whitmarsh in collaboration with
Fritscher and Schubert applied statistical models of ap-
pearance and regression models for the assessment of
hip fracture risk [42]. They studied 58 women with
(mean age=79 ± 10 years) and 58 women without hip
fracture (mean age=55 ± 12 years). Using DXA-aBMD
from the femoral neck as standard of comparison, and
Fisher linear discriminant analysis, the authors showed
improved fracture discrimination with the model-based
approach (Fisher criterion 6.70 vs 0.98).

In a preliminary investigation [43], Bredbenner and col-
leagues assessed the ability of SSDM to [35••] discriminate
between fracture and non-fracture cases in the Osteoporotic
Fractures in Men (MrOS) Study [44]. Baseline QCT data
was obtained for 40 randomly selected subjects (20 who
subsequently fractured their hip and 20 who did not; age≥
65 years) and was processed to develop a parametric

representation of the proximal femur geometry and bone
density distribution for each of the 40 subjects [35••]. A
parameter vector composed of over 36,000 geometry and
bone density variables that correspond between all individ-
uals represented the shape and bone density of each proxi-
mal femur. The authors reduced this data set to 39 indepen-
dent trait combinations variables (TCV) using PCA, where
each independent variable consisted of a unique combina-
tion of the original 36,000 shape and density parameters.
They found that the first 20 TCVs described over 98.0 % of
the variability in this set of 40 femurs and 3 TCVs were
found to be significantly different between fracture and no
fracture groups. The authors stated that these 3 new trait
variables describe the independent, complex, and subtle
differences in 3D shape and bone density between individ-
uals in the fracture group and no-fracture group. Using a
stepwise logistic regression of TCVs against fracture or non-
fracture group membership, TCVs appeared to be more
successful as a fracture risk discriminator than DXA
aBMD measurements alone. A discriminator based on 4
TCVs resulted in as ROC Az of 0.98 compared with an
Az of 0.88 using a discriminator based on aBMD alone.

In a later investigation [45], Bredbenner and colleagues
applied SSDM methods to a larger sample of 450 men
selected from the MrOS study cohort (age≥65). This sample
included 40 fracture cases (mean 6.9 year observation, val-
idated by physician review) and 410 non-cases. Using base-
line QCT data, SSDM was used to develop an independent
set of TCVs of which TCVs 1–11 explained 90 % of the
shape and bone density variation and TCVs 1–51 explained
99 % of the shape and bone density distribution variance in
this sample. The authors used a step-wise logistic regression
to develop fracture classifiers based on SSMD derived
TCVs as well as age, BMI, and aBMD from DXA. TCVs
were significantly more successful as a fracture risk discrim-
inator than DXA aBMD measurements alone with an ROC
Az of 0.9900 for the discriminator constructed using TCVs
compared with an Az of 0.8203 using total hip aBMD.
When adjusted for age and BMI, the TCV based fracture
discriminator resulted in an Az of 0.9951. Furthermore, the
authors showed that the TCV-based discriminator correctly
classified 8 times as many fracture cases compared with
aBMD alone.

Later, Whitmarsh and colleagues took an interesting 2D-
3D approach for hip fracture discrimination [46]. The au-
thors constructed a 3D statistical model of appearance based
on QCT scans of 180 women (mean age=67.8 ± 17.0 years).
The model was then registered to match 2D DXA scans of a
fracture and a control group. The fracture group consisted of
175 women (mean age 66.4 ± 9.9 years) who sustained a
fracture on the contralateral femur, and the control group of
175 women (mean age=65.3 ± 10.0 years) with no history
of fracture. The fracture discrimination ability of the 3D-to-
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2D registration parameters and DXA-aBMD was evaluated
using logistic regression analysis. Az was 0.802 for DXA-
aBMD, and 0.840 for the combination of model parameters
with DXA-aBMD showing a slight improvement when the
3D model was used in addition to DXA-aBMD for hip
fracture discrimination.

MRI

Up to date, there has been only 1 study that has used
computational anatomy in the proximal femur with MRI
in the context of osteoporosis. Carballido-Gamio and
colleagues generated a shape atlas of the proximal fe-
mur and demonstrated its utility for the consistent auto-
matic positioning of regions of interest in conventional
region-of-interest-based cross-sectional studies of trabec-
ular bone microstructure [47]. However, the authors also
showed that proximal femoral parametric maps of tra-
becular bone microstructural features can be generated
using high-spatial resolution MRI scans, and potentially
used for region-of-interest-free analyses.

Conclusions

In this review, we have provided a summary of the
most recent work involving computational anatomy for
the study of bone structure in osteoporosis, with partic-
ular emphasis on the proximal femur. QCT, radiography,
and DXA are by far the imaging modalities that have
received the greatest amount of attention since, until
recently, they were the only clinical imaging techniques
capable of the in vivo study of deep seated locations
like the proximal femur. MRI, which is now also capa-
ble of generating high-spatial resolution scans of this
anatomic location, could also play a significant role in
the field through the generation of accurate fat-fraction
maps and the analysis of trabecular bone microstructure.
Another imaging modality that could be important in
computational anatomy studies of osteoporosis is high-
resolution peripheral QCT (HR-pQCT). Although limit-
ed to imaging of the extremities (distal radius and distal
tibia), HR-pQCT provides the capability of generating
maps of vBMD, trabecular bone microstructural param-
eters, cortical bone thickness, and, when combined with
FEM, can be used to predict bone strain and stress.
Significant knowledge has been accomplished with con-
ventional region-of-interest-based imaging analysis tech-
niques with respect to bone structure, however, compu-
tational anatomy techniques will certainly help to provide a
deeper understanding of the structural deterioration and path-
ophysiological processes that accompany osteoporosis.
Furthermore, the combination of computational anatomy with

machine learning approaches will improve the prediction of
outcomes of interest such as the risk of hip fracture.
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