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Abstract Thrombospondins (TSPs) are a family of five
secreted multimeric matricellular proteins that share homolo-
gy in the type II and III repeats and carboxy-terminal region.
Type I repeats, also known as properdin or thrombospondin
repeats (TSRs), are found in TSP1/2, but not TSP3-5. Avariety
of other secreted proteins contain TSRs, including the novel
extracellular molecules, R-spondins. TSP family and many
TSR-containing proteins, including R-spondins, are highly
expressed in skeletal tissues during development and postnatal.
TSP2 regulates the osteoblast lineage, influencing bone mass
and geometry, as well as response to fracture healing,
ovariectomy, and mechanical loading. Compound knockout
mice of TSPs have revealed important mechanistic insights.
TSP1/2 knockout mice have craniofacial dysmorphism, and
TSP1/3/5 compound knockout mice display growth plate
abnormalities. R-spondins promote osteoblast differentiation
and R-spondin-2 deficiency results in skeletal developmental
defects. Overall, TSP and other TSR molecules influence
multiple aspects of bone development and remodeling.
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Introduction

Bone and cartilage are relatively acellular and characterized
by extensive extracellular matrix (ECM). Although ECM

provides structural integrity for tissue function, some ECM
molecules play a nonstructural, modulatory role that is
more pleiotropic, affecting cell behavior, growth factor
activity, and progenitor cell differentiation. This group of
proteins is referred to as matricellular proteins [1]. A
functional, rather than structural, classification defines
matricellular proteins, and prototypical representatives are
the thrombospondin (TSP) gene family [1, 2].

The TSP gene family has five members. The first TSP
protein (TSP1) was identified in the 1980s as a component
of platelet α granules and then later four additional family
members were cloned [2–5]. TSPs are secreted ECM
proteins that do not have a primary structural role.
Characteristic of other matricellular proteins, knockout
mice of TSP do not result in embryonic lethality or severe
structural abnormalities in the skeleton, but rather show
relatively mild skeletal phenotypes and a variety of
nonskeletal phenotypes [6, 7].

Structurally, TSPs are large multimeric, modular proteins
(Fig. 1). TSP1/2 are trimers and are more similar to one
another than to TSP3-5. TSPs show increasing homology as
the molecules are compared from the amino to the carboxy-
terminus. Named domains include the globular N-terminus,
von Willebrand factor/procollagen domain, type I repeats
(also known as properdin or thrombospondin repeats [TSRs]),
type II repeats (epidermal growth factor [EGF]-like), type III
repeats (calcium binding), and a globular C-terminus (Fig. 1).
Whereas TSP1/2 are trimeric proteins and contain three
TSRs, TSP3-5 are pentameric and do not contain a TSR.

Despite having significant structural homology, TSP1 and
TSP2 have divergent promoter regions and show differential
gene regulation. TSP1, and to a lesser degree TSP2, have been
studied most extensively as inhibitors of angiogenesis. The
TSP1/2 group binds to cells through integrin receptors,
heparin sulfated proteoglycans, lipoprotein-related receptor
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protein (LRP) receptors, CD36 (fatty acid translocase), and the
integrin-associated protein CD47. Also, the molecules have
been shown to bind to a variety of growth factors, including
transforming growth factor-β (TGF-β), vascular endothelial
growth factor (VEGF), and fibroblast growth factor, and other
matrix proteins such as collagens and fibronectin.

There are at least 41 different human extracellular
proteins containing one to seven TSRs. Proteins containing
TSRs include F-spondins, ADAMTS (a disintegrin and
metalloproteinase with a TSP type 1 motif), connective
tissue growth factor, and a novel family of ECM proteins,
the R-spondins [8]. X-ray crystallographic data show that a
TSR contains three strands, A–C, arranged in a β sheet [9].
Although there is variation between TSR sequences they
are commonly defined by the presence of six cysteines and
three functional regions: 1) tryptophan-rich–containing

WXXW repeats, 2) a cysteine-rich region, and 3) basic amino
acid–containing region (Fig. 1). The three TSRs from TSP1
are perhaps the best characterized and bind to growth factors,
heparin, and the cell surface receptor CD36 [5]. The second
TSR of TSP1 contains a TGF-β activation domain [10]. TSR
appears to be the portion of the molecule that has functional
activity regulating proliferation and apoptosis.

The other three pentameric TSP family members, TSP3-5,
do not contain TSRs, but show relatively strong homology in
the type II, type III, and globular C-terminus domains.
Whereas TSP3-5 are all expressed in cartilage and bone, the
roles of TSP3/4 are perhaps the least well-characterized of the
five TSPs. Conversely, TSP5, also known as cartilage
oligomeric matrix protein (COMP), has been extensively
studied [11]. TSP5 is highly expressed in cartilage and joints,
and increased serum levels are associated with joint erosion.

Fig. 1 Alignment of thrombospondins and R-spondins. Thrombo-
spondins (TSPs) are depicted as monomers of the homopentameric
TSP3-5 or the homotrimeric TSP1/2. TSP1/2 trimerize through the
von Willebrand factor/procollagen domain (vWc). All five TSPs share
homology in the type II repeats, type III repeats, and the C-terminal
globular domain (CTD). TSP1/2 also contains three thrombospondin
type I repeats (TSRs), a domain that is also found conserved in many
non-TSP family proteins, including R-spondins. The hexagonal inset
shows the most conserved portion of the amino acid sequence and
alignment of the TSR domains. The TSR consensus sequence is

shown in red at the top with conserved amino acids also shown in red
below. The blue text indicates a conserved amino acid change. The
WSxW sequence shown (dashed box) has been shown to bind to cells,
heparin, and the latent complex of transforming growth factor-β. The
blue box indicates the basic amino acid–rich sequence that is found
inserted in all R-spondins into an otherwise conserved CSxTC
sequence. COMP—cartilage oligomeric matrix protein; huRSP—
human R-spondin; huTSP—human thrombospondin; NLS—nuclear
localization; NTD—N-terminal domain
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Most importantly, mutations in TSP5 are responsible for
pseudoachondroplasia (PSACH) [11, 12].

R-spondins are a recently identified TSR-containing
protein family that play a role in skeletal biology [13]. R-
spondins are secreted proteins that contain a single TSR
and contain furin repeats (Fig. 1). There are four R-spondin
family members and all are expressed in the skeleton. R-
spondins have not been widely studied, but initial work
suggests that R-spondins may function to increase Wnt
signaling through interactions with LRP5/6 and frizzled
receptors [13].

Thrombospondin-2

TSP2 expression in the developing skeleton has been studied
using in situ hybridization and immunohistochemistry [14,
15]. TSP2 is detected starting at E14 in the mouse and
localizes to the proliferating and hypertrophic chondrocytes

of growth plate, perichondrium, and intramembranous ossifi-
cation centers of skull bones. TSP2 is also detected in the
femoral periosteum of 8-week-old mice. In a tibial fracture
model, TSP2 expression is highest in undifferentiated mesen-
chyme 5 days post fracture and decreases in mature fracture
calluses [16•]. TSP2 expression increases when marrow
stromal cells (MSCs) are induced to undergo osteogenic
differentiation and decreases as committed osteoblasts
undergo terminal differentiation and mineralization (Shitaye
and Hankenson, unpublished observations) [17•, 18]. The
promoter structure of TSP2 contains multiple activator
protein-1 (AP-1) elements. Transgenic mice overexpressing
the AP-1 family member, Fos-related antigen-1 (Fra-1), have
decreased TSP2 expression in calvarial osteoblasts and long
bones, suggesting that AP-1 family members play an
important role in regulating TSP2 expression [18].

Analysis of the TSP2-null skeleton revealed that TSP2
plays an important role in bone homeostasis (Table 1) [18].
TSP2-null mice have increased cortical bone thickness due

Table 1 Overview of skeletal phenotypes of TSP family and Rspo family mutant mice

Appendicular skeleton phenotype Axial skeleton phenotype Other phenotypes of interest

TSP1 No reported defects Spinal lordosis. Craniofacial
dysmorphism that is more
pronounced in compound
TSP1/2-null mice

Altered rates of wound healing/tissue
remodeling in various injury models

TSP2 Excess cortical bone mass attributed
to increased bone formation

Moderate spinal lordosis Increased skin and tail flexibility due to
improper fibrillar collagen organization.
Increased vascularization. Altered wound
healing.

TSP3 Early ossification of femoral head
and growth plate chondrocyte
disorganization in TSP1/3/5
compound knockout mice

None reported None reported

TSP4 No mutant mouse has been reported

TSP5/COMP Mutations: shortened long bones,
disproportion short stature, early OA,
joint abnormalities.

Mutations: lumbar lordosis, scoliosis,
vertebral abnormalities that resolve
in adolescence

Mutations cause skeletal dysplasias
(PSACH and MED/EDM1)

Null: growth plate chondrocyte
disorganization and mild exercise-
induced articular cartilage flattening

Rspo1 No reported skeletal phenotypes Required for appropriate ovarian and
mammary gland development. Mutation
in mice and humans causes XX sex
reversal

Rspo2 Required for maintenance of the apical
ectodermal ridge. Extensive skeletal
defects

Cleft palate; craniofacial malformation Lethal E18.5, day 1 post-natal. Pulmonary
defect, cleft palate, kidney defect

Rspo3 No reported skeletal phenotypes Knockouts lethal E10. Attributed to
placental hemorrhage and inappropriate
vasculature. Promotes angiogenesis
through regulation of VEGF

Rspo4 No reported skeletal phenotypes Mutation in the furin region of Rspo4 is
attributed to loss or malformation of nails
in human familial anonychia [54]

COMP cartilage oligomeric matrix protein, MED multiple epiphyseal dysplasia, OA osteoarthritis, PSACH pseudoachondroplasia, Rspo R-
spondin, TSP thrombospondin, VEGF vascular endothelial growth factor
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to enhanced endocortical bone formation. The increase in
bone formation in TSP2-null mice is most likely due to higher
numbers of osteoprogenitors (MSCs) obtained from the
marrow of TSP2-null long bones. Furthermore, these MSCs
show increased proliferation in vitro. Paradoxically, mineral-
ized matrix formation is delayed in MSCs from TSP2-null
mice and RNA interference (RNAi)–mediated knockdown of
TSP2 in preosteoblasts (MC3T3-E1) decreases mineralized
matrix formation [17•]. Therefore, the function of TSP2 in
mesenchymal lineage cells appears to be highly contextual,
and the overall effect of the presence or absence of TSP2 on
bone formation is likely dependent on the cell type present
and stage of differentiation.

Findings from studies in which bone homeostasis is
perturbed in TSP2-null mice further supports the hypothesis
that the TSP2 role in bone formation is highly contextual
(Table 2) [1, 18]. For instance, mechanical loading in
TSP2-null mice results in an atypical pattern of bone
formation. [1, 18] In wild-type mice, the normal response to
bending load is deposition of bone at the periosteum with
relatively little endocortical new bone formation; however,
in TSP2-null mice, this envelope-specific pattern of bone
formation is reversed [1, 18]. In the absence of TSP2,
periosteal osteoblasts produce less bone matrix in response to
mechanical loading, whereas at the endocortical surface,
increased osteoprogenitor proliferation results in increased
osteoblast numbers and thus increased bone formation.
Similarly, TSP2-null mice are protected from ovariectomy-
induced bone loss due to an increase in bone formation at the
endocortical surface with a concomitant reduction in new
periosteal bone [1, 18]. Also, ovariectomized TSP2-null mice
show decreased bone resorption. A potential explanation for
the altered phenotype in ovariectomized TSP2-null mice is
that endocortical MSC numbers, as determined using a
colony-forming unit—fibroblastoid (CFU-F) assay, increase
four-fold in TSP2-null mice after ovariectomy.

TSP2-null mice also show altered fracture healing
following semi-stabilized closed fractures of the tibia
[16•]. TSP2-null fracture calluses contain more bone and
less cartilage 10 days post fracture. Analysis of the fracture

callus at 5 days post fracture shows an increase in vascular
density and a decrease in VEGF and Glut-1 (two markers of
hypoxia-inducible factor signaling). Because oxygen ten-
sion influences chondrogenesis and osteogenesis [19], the
alteration in the proportion of cartilage and bone in TSP2-
null mice relative to wild-type mice may arise from
differences in oxemic status between TSP2-null and wild-
type fractures.

The molecular mechanism through which TSP2 influences
MSC proliferation and differentiation is not currently known.
A recent study by Meng et al. [20•] found that TSP2
physically interacts with Notch receptors and ligands and
modulates activation of the signaling pathway in lung cancer
cell lines and primary smooth muscle cells. Inactivating
Notch signaling in MSCs results in premature differentiation
and depletion of the osteoprogenitor pool [21]. We have
recently shown that Jagged-1 (a ligand for Notch)–mediated
activation of Notch signaling is increased in TSP2-null
MSCs relative to wild-type controls (Shitaye and Hankenson,
unpublished results). Interestingly, Jagged-1 increases MSC
proliferation and inhibits their osteogenic differentiation.
Therefore, in the absence of TSP2, Notch signaling could
be increased, resulting in an expansion of the osteoprogenitor
pool while decreasing osteogenic differentiation.

Thrombospondin-1

The role of TSP1 in bone has not been examined as
extensively as TSP2. In the developing skeleton, TSP1 has
a broader pattern of expression than TSP2 [5]. TSP1 is
detected in mesenchymal condensations that give rise to rib
bones at E13 and in the ECM of chondrocytes at E14 in
mice. TSP1 expression can also be detected in cartilage
proper and in resting and proliferating chondrocytes of
growth plate cartilage. TSP1 expression colocalizes with
TSP2 in ossification centers of skull bones formed by
intramembranous ossification.

TSP1-null mice have no apparent defect in bone mass, as
determined by radiographic studies, but show a mild

Table 2 Remodeling phenotype of TSP2-null mice

Pathophysiologic challenge Phenotype

Ovariectomy TSP2-null mice show resistance to ovariectomy-induced bone loss. There is an increase in endocortical bone
formation and MSC number, and reduction in periosteal bone formation

Mechanical loading TSP2-null mice show differential surface responsiveness to mechanical loading

Fracture healing TSP2-null mice show increased bone formation and reduced chondrogenesis in response to fracture

Aging TSP2-null mice show alterations in bone mass and geometry associated with aging. At advanced age, an
absence of TSP2 appears to protect against age-associated bone lossa

a (Terkhorn and Hankenson, unpublished results.)

MSC marrow stromal cell, TSP2 thrombospondin-2
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lordotic curvature of the spine (Table 1) [10]. Similar to
TSP2, TSP1 expression is decreased in calvarial osteoblasts
and long bones of Fra-1–overexpressing mice [18]. Inter-
estingly, TSP1-null mice have craniofacial dysmorphism
similar to Fra-1 transgenic mice (Table 1). The craniofacial
phenotype is more pronounced in TSP1/TSP2 double-null
mice, indicating that the two proteins may have overlapping
roles in cranial bone development.

The role of TSP1 in osteogenic differentiation in vitro
has been examined in MC3T3-E1 preosteoblast cell lines
and, rather surprisingly, shows the opposite effect of TSP2.
TSP1 knockdown in MC3T3-E1 cells results in increased
alkaline phosphatase activity, increased osteocalcin expres-
sion, and accelerated mineralization, whereas stable over-
expression, or treatment with purified TSP1 protein, results
in a decrease in mineralized matrix formation. Subcutane-
ous implantation of collagen sponges loaded with cells
stably overexpressing TSP1 (E1 cells) in immunocompro-
mised mice results in less bone formation than control cells.
Therefore, in MC3T3-E1 cells, TSP1 appears to inhibit
osteogenic differentiation [22].

Thrombopsondin-3

TSP3 expression has been detected in the developing
skeleton of several species (chick, frog, and mice) and in
a variety of nonskeletal tissues [5]. Specifically, in situ
hybridization in the developing chick shows TSP3 expres-
sion in proliferative and hypertrophic chondrocytes in
cartilage. During mouse development, TSP3 is expressed
early in the outer layer of extra-embryonic mesoderm and
later in developing cartilage, calcified cartilage (developing
bone), and neuronal tissue. Although there are no published
studies that detail the regulation of TSP3 expression level in
bone tissue, a microarray study to identify genes related to
osteosarcoma tumor progression showed that high levels of
TSP3 after chemotherapy treatment are associated with a
poor prognosis and metastasis [23].

To characterize the role of TSP3 in vivo, a knockout
mouse was generated and skeletal and growth parameters
were measured [24]. Skeletal development was not per-
turbed before birth; however, by 9 weeks of age, trabecular
bone is present in the secondary ossification center (femoral
head) in the TSP3-null but not in the wild-type mice [24].
By 15 weeks of age, the femoral head in TSP3-null male
mice is completely ossified, whereas the wild-type mice
have no trabecular bone in the secondary ossification center
at this stage [24]. Additionally, the TSP3-null mice have an
increase in femoral cortical bone periosteal circumference
and parameters of mechanical strength at 9 and 15 weeks of
age. The phenotype of the TSP3-null mouse shows that
TSP3 is involved in ossification of cartilage anlagen and

perhaps influences the timing of bone maturation; however,
the molecular mechanisms involving TSP3 regulation of
ossification are unknown [24]

The high degree of homology and structural similarity
between TSP3 and TSP5 proteins led the authors to
generate a TSP3-TSP5 double-null mouse line [24]. The
mechanical and geometric properties of the double-null
femur were similar to that of the TSP3-null, suggesting that
these two TSPs are functionally distinct in modulation of
bone geometry [24]. Further studies of the double-null
growth plate demonstrated that both TSP3 and TSP5
contribute to columnar organization of chondrocytes in
the growth plate and mild shortening (8%) of the hind limbs
at 1 month of age [25•]. These growth plate studies of the
TSP3-TSP5 double-null are consistent with TSP3 being
involved in endochondral ossification and bone growth.

Thrombospondin-4

TSP4 is expressed in a variety of tissues during develop-
ment and adulthood [5]. In chick, TSP4 is expressed in the
periosteum of developing bone at the beginning of
osteoblast differentiation. In the developing Xenopus
embryo, TSP4 is present in the skeletal muscle and somitic
mesoderm, which gives rise to many tissues rich in ECM,
including bone, muscle, connective tissue, reproductive
system, and urinary tract.

Currently, there are no genetic models for TSP4, and TSP4
has received very little attention in studies of skeletal biology.
In vitro, TSP4 has been shown to support myoblast
attachment and promote adhesion and neurite outgrowth
indirectly through interaction with laminins. Cellular adhesion
is mediated through the interaction with ECM components.
The C-terminal domain of TSP4 binds to collagens I, II, III,
and V, as well as laminin, fibronectin, and matrilin-2 [5].

Thrombospondin-5/COMP

TSP5/COMP, once thought to be cartilage-specific, has
been detected in other tissues, including tendon, ligament,
smooth muscle, synovium, and osteoblasts [5]. TSP5 is
expressed during early limb development, and expression is
particularly high in growth plate cartilage [26]. The
proximal 375 bp of the human TSP5 promoter is sufficient
to drive cartilage expression in vivo, and sequence elements
between 1.0 and 1.7 kb upregulate TSP5 expression [27].

During skeletal growth, cartilage turnover is rapid and,
therefore, higher levels of serum TSP5 are detected in
children under 16 years of age compared with adults [28].
Lower serum levels of TSP5 are associated with growth
deficiencies observed in juvenile arthritis [28]. High levels
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of TSP5 in serum/synovial fluid of adults indicate cartilage
erosion and are associated with adverse long-term outcome
for injured or arthritic joints [11]. Chondrocytes close to the
cartilage defect express high levels of TSP5, suggesting that
TSP5 may contribute to joint resurfacing [29]. Tendon
studies show that weight-bearing tendons have more TSP5
than tendons not under strain, indicating that TSP5 may be
expressed in response to loading [30].

Mutations in TSP5 cause PSACH, a dwarfing condition
associated with early-onset osteoarthritis [11, 31]. Irregular
epiphyses and metaphyses are observed in radiographs [31].
PSACH-associated abnormalities are limited to the skeletal
system and include disproportionate short stature, shortened
fingers, extremely lax joints, scoliosis, lumbar lordosis, and
osteoarthritis beginning in the second and third decades of
life [11, 32].

TSP5 mutations disrupt the three-dimensional structure
of the protein and inhibit protein export, leading to
pronounced accumulation of TSP5 in rough endoplasmic
reticulum (rER) cisternae of chondrocytes [33]. This
accumulation is cytotoxic and causes premature chondro-
cyte death [11]. Decreasing the number of growth plate
chondrocytes decreases linear growth of long bones [34].
Additionally, mutant TSP5 impedes the export of type IX
collagen and matrillin-3 and together these ECM proteins
form an intracellular matrix network that may decrease
degradation of the intracellular material exacerbating rER
accumulation [35]. The decrease of these proteins in the
ECM causes disorganization and results in joints that are
easily eroded translating into early onset osteoarthritis [11].

Initial studies of TSP5-null mice reported no phenotypic
abnormalities [36]. However, a more detailed study of the
growth plate of these mice showed that loss of TSP5
decreases chondrocyte columnar organization (Table 1)
[25•]. Mild exercise-induced flattening of the articular
cartilage superficial cap was observed in the TSP5
knockout mice [25•]. Complex crosses of knockouts for
TSP5 in combination with TSP1-null and TSP3-null result
in significantly altered growth plate organization and limb
length, suggesting that TSP may be redundant in growth
plate function [25•]. Recent work describing a mouse line
that expresses mutant TSP5 (D469del) shows a dramatic
phenotype mimicking the PSACH growth plate pathology
[37••]. Mice expressing mutant TSP5 had intracellular
retention of TSP5, types II and IX collagens, and
matrillin-3, and premature intracellular ECM assembly
[37••]. Additionally, less type IX collagen and matrillin-3
are observed in the ECM reminiscent of the PSACH ECM
and, most importantly, apoptosis is upregulated by expres-
sion of mutant TSP5 in the growth plate [37••].

TSP5 interacts with collagenous and noncollagenous
components of the ECM. TSP5 binds to integrins,

aggrecan, heparin, heparin sulfate, and chondroitin sulfates,
and calcium depletion of TSP5 decreases binding [38].
TSP5 expression enhances chondrogenesis perhaps by
regulating proliferation and attachment [39]. The EGF
domain of TSP5 binds to an autocrine growth factor,
granulin-epithelin precursor, stimulating chondrocyte pro-
liferation [40]. The RGD motif of TSP5 interacts with
integrins and supports chondrocyte attachment [41]. Mutant
COMP (D469del) supports less chondrocyte attachment
most likely due to changes in three-dimensional calcium
dependent structure [41].

Type I, II, and IX collagens bind to the C-terminal globular
domain of TSP5 [42, 43] and both types II and IX collagens
are co-retained in the rER of PSACH chondrocytes [35].
Pentameric TSP5 promotes collagen fibril assembly, whereas
the monomeric form inhibits collagen fibrillization [44]. The
TSP5 pentamer may catalyze fibril formation by increasing
the effective concentration of free collagen molecules [44].
TSP5 only interacts with immature collagen fibrils, which is
consistent with the interaction of TSP5 and other ECM
protein in the endoplasmic reticulum of PSACH chondro-
cytes [44]. Additionally, the ECM that surrounds PSACH
chondrocytes is disorganized and fibril diameter is altered,
suggesting that TSP5’s role in collagen fibril formation
contributes to the PSACH ECM pathology [45].

R-spondins

Among the newest identified members of the TSR
superfamily are the R-spondins (Rspo). In mammals, the
R-spondin family includes four proteins, which are encoded
by separate genes. Rspo homologues have also been
identified in non-mammalian vertebrates and invertebrate
species [13]. The first Rspo gene (Rspo3) was identified in
a fetal brain cDNA library, although it was named only
after the discovery of Rspo1. Rspo1 was isolated from a
screen of genes expressed in a cell line derived from spinal
cord/neuroblastoma cells (NSC-19) [46]. In situ hybridiza-
tion demonstrated expression of Rspo1 in the roof plate;
thus, the protein was named for both the roof plate
localization (R) and the TSR (spondin) [46].

All four R-spondins are comprised of a signal sequence,
two sequential cysteine-rich furin domains, a single TSR,
and a nuclear localization signal [13]. The signal sequence
and the nuclear localization signal have been functionally
verified as R-spondins are detected both extracellularly in
293 cells and within the nucleus of COS7 cells [46]. The
furin domains are required for activation of the Wnt
signaling pathway [47, 48]. The Rspo TSR binds to heparin
and heparin sulfate proteoglycans [48] and loss of that
domain significantly reduces Wnt signaling. Both the furin
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domains and the TSR are required for cell surface binding
of Rspo2 [48].

In a thorough assessment of expression of all four mouse
R-spondins, Nam et al. [49] demonstrated that R-spondins are
expressed throughout development but each R-spondin
expression pattern is unique. All R-spondins are detected in
the developing limb bud of wildtype mice during embryonic
stages E9–10.5. Rspo2 is tightly associated with the apical
ectodermal ridge (AER), whereas Rspo4 is seen in the zone
of polarizing activity and along the anterior region of the
limb bud. Rspo3 occupies a region of the limb bud framed
by the dual expression patterns of Rspo2 and Rspo4.
Expression of Rsop1 is restricted to a small zone in the
most proximal region of the limb bud [49]. Only in the
spinal cord and developing skeleton (including long bones
and calvaria) are all four R-spondins detected across
embryonic stages 12.5–17.5. In addition, Rspo2 and Rspo4
are expressed at the most distal tip of the digits, whereas only
Rspo2 is expressed in presumptive dentin.

Because of similarities between Wnt and Rspo1 expres-
sion in the limb bud, Rspo1 expression was evaluated in
Wnt-1, Wnt-3a, and Wnt-1/3a knockout mice [46]. In all
three mice, Rspo1 expression was greatly diminished,
suggesting a link between Rspo proteins and Wnts. More
recent studies have demonstrated that all four Rspo proteins
appear to regulate Wnt signaling through blocking of Dkk
interactions with LRP or promoting Wnt-LRP interactions
[47]. Wnt family members are expressed throughout
skeletal development and, more recently, mechanistic
studies have implicated Wnts as critical regulators of bone
formation, maintenance, and healing [50].

Knockout studies of all four Rspos have been reported,
but only Rspo2-deficient mice appear to have a skeletal
defect. Footless mice, generated by random insertional
transgene mutagenesis, have a disruption in Rspo2 [48].
Rspo2 nulls were also generated by three additional groups
[51–53]. Both the Rspo2-null mice and the footless mutant
mice (which are also Rspo2-null) demonstrate that Rspo2 is
required for maintenance of the AER and that the loss or
disruption of the Rspo2 gene results in severe distal
hindlimb defects, loss of some digits and all fingernails of
the forelimbs, cleft palate, lung hypoplasia, craniofacial
malformation, and death at birth. Interestingly, a mutation
in the human Rspo4 gene is responsible for familial
anonychia, characterized by the loss or malformation of
finger and toenails, a phenotype similar to that seen in the
digits of the Rspo2-null mice [54].

As with the Rspo1 knockout mouse, Rspo2-null mice have
a loss of Wnt3 gene expression within the AER [49]. In
addition, Rspo2 regulation of skeletal development through
Wnt signaling was further demonstrated by investigating the
canonical Wnt signaling coreceptor, LRP6. The phenotype of

the footless mutant mice closely resembled that of the LRP6-
null mice, and a cross of the LRP6-null and Rspo2-null mice
resulted in exacerbated limb phenotypes with forelimb
skeletons completely ablated in the LRP6-null/Rspo2-null
mouse [48].

Although skeletal defects seen in the Rspo2-null mice
are attributed to a disrupted AER and resultant loss of distal
skeletal structures, we recently published evidence that
Rspo2 can also directly affect the maturation and mineral-
ization of osteoblasts through the regulation of bone
morphogenetic protein (BMP) signaling [55]. In vitro,
overexpression of Wnt11 in BMP-2–treated MC3T3-E1
cells upregulates expression of Rspo2 as well as increasing
expression of osteoblast-associated genes and matrix
mineralization. The regulation of Wnt-11 and Rspo2
expression appears to be somewhat reciprocal because
knockdown of Rspo2 expression via microRNAi abrogates
the ability of Wnt-11 to increase osteoblast differentiation
and mineralization in response to BMP-2. Similar to results
with Rspo2, Rspo1 also appears to regulate osteoblast
differentiation. Rspo1 synergizes with Wnt-3a to promote
expression of osteocalcin and alkaline phosphatase in
C2C12 cells and primary murine osteoblasts [56•].

Conclusions

TSP family members and TSR-containing proteins are
widely expressed in skeletal tissues during development,
growth, modeling, remodeling, and aging. Although the
physiologic significance of TSP, other than TSP5, in human
bone biology is still being pursued, studies with knockout
mice, and other mutant mice, suggest that these extracellu-
lar, matricellular proteins play important modulatory roles
in skeletal development and function. Importantly, com-
pound deficiencies in these proteins likely exacerbate
functional deficits, which suggest that in some cases these
proteins may be functionally redundant in the skeleton.
Studies of the TSR-containing R-spondins are more recent
and show that R-spondins likely modulate bone develop-
ment, but similar to TSP2, also increase osteoblast activity.
Because Rspo2 mice die at birth, functional in vivo studies
of the role of Rspo2 in bone maintenance and healing have
not yet been published; however, given the role of Rspo2 in
the regulation of bone formation in vitro, it seems likely
that conditional or localized knockdown of in vivo Rspo2
expression will demonstrate a role for Rspo regulation of
postnatal bone remodeling. More work is required to fully
understand the significance of the TSR domain in the pro-
osteoblastic effects of TSP2 and R-spondins, and to determine
whether there are molecular parallels in the function of TSR-
containing molecules in osteoblastogenesis.
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