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The collagen network in bone provides resistance 
against fracture and may be susceptible to changes with 
aging and disease. This review identifies the changes 
in quality of collagen matrix as contributors to bone 
fragility. With aging and in diabetes, cross-links accu-
mulate in bone collagen as a result of nonenzymatic 
glycation and consequently impair matrix properties, 
increasing bone fragility. Cell-culture and animal 
studies suggest that the accumulation of cross-links 
induced by nonenzymatic glycation may be related to 
a reduction in bone turnover resulting from the altered 
responses of osteoblasts and osteoclasts to advanced 
glycation end products.

Introduction
Age-related nontraumatic fractures are a major health 
problem in the United States and elsewhere, resulting in 
morbidity, mortality, and substantial economic costs [1]. 
Historically, only bone mass was considered to be a signifi-
cant predictor of fracture risk, but the current consensus 
is that bone loss is necessary but not a sufficient condition 
to cause fracture [2]. It has been demonstrated that, for a 
given bone mass, an individual’s risk of fracture increases 
with age [3], and mechanical variables directly related to 
fracture risk are either independent of bone mass or are 
not totally accounted for by bone mass [4]. Furthermore, 
the epidemiologic evidence shows a considerable overlap 
in bone density values between groups with and without 
fracture, suggesting that low bone quantity alone is insuf-
ficient to cause fragility fractures [5]. Thus, factors other 
than the loss of bone mass may be of crucial importance 
to the understanding of age-related skeletal fragility. These 
factors include changes in the quality of bone material [6] 
and increased frequency of falls related to reduced proprio-
ceptive efficiency and impaired reflexes [7].

Bone Quality and the Extracellular Matrix 
of Bone
Bone quality can be altered by a number of factors, 
including the changes in its extracellular matrix caused 
by the variations in the composition, arrangement, and 
interaction of its organic (collagen and noncollagenous 
matrix proteins) and inorganic (hydroxyapatite) con-
stituents [6]. Senescent human bone is characterized 
by an increasing heterogeneity of aspects at ultrastruc-
tural and microstructural levels. At the ultrastructural 
level, there is an age-related decrease in bone collagen 
content [8] and an increase in high-density mineralized 
bone [9]. Furthermore, both the chemical composition 
and the physiochemistry of mineral and collagen change 
with age [10,11•]. At the microstructural level, the aver-
age size of an osteon decreases with age, but the number 
of osteons, the size of haversian canals and resorption 
pores, and the amount of interstitial bone increase 
[12,13]. The microstructural arrangement of aging bone 
is therefore characterized by greater porosity and greater 
proportion of cement line interfaces. Additionally, bone 
accumulates microdamage with aging because its ability 
to target and repair microcracks is reduced [14,15]. It is 
noteworthy that all of the above changes except porosity 
reflect changes in the extracellular matrix quality and 
not the quantity of bone.

Some of the above determinants of bone quality 
have been implicated in enhanced skeletal fragility, 
but the role of others remains to be investigated. For 
example, although a number of studies have determined 
the influence of mineralization, osteon morphology, 
and porosity [12,16,17], the role and magnitude of age-
related alterations in the quality of the organic matrix 
and their relationships with fracture risk remain poorly 
understood. One of the reasons for the lack of research 
into organic-level modifications and their relationships 
with the measures of bone fracture is the widely held 
belief that brittle bone results from increased mineral-
ization. However, the lack of correlation between the 
measures of bone mineralization and bone fracture 
indices [17], as well as the growing body of evidence 
showing that collagen-level modifications can also 
introduce brittle bone behavior [6,18,19], has motivated 
researchers to explore the role of the collagen modifica-
tions in promoting skeletal fragility.
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Collagen in Bone
Type I collagen is the principal structural protein of 
bone; it accounts for 90% of the organic matrix. 
Type I collagen consists of tropocollagen molecules that 
contain three polypeptide chains. Each chain is a left-
hand helix characterized by the occurrence of a unique 
amino acid sequence involving glycine-proline-X or gly-
cine-X-hydroxyproline, where X is another amino acid 
(eg, lysine, arginine). The unique amino acid sequence 
makes it possible for the three polypeptide chains to 
wrap around each other in a right-hand sense and form a 
triple helix in which glycine lies at the center. The other 
amino acids are present at the triple helix surface. The 
amino acids present on the triple helix surface and at 
the N- and C-telopeptide terminals participate via two 
different biochemical pathways to form covalent cross-
links with their neighboring tropocollagen molecules 
and facilitate the aggregation of molecules in fibrils.

Cross-linking of Bone Collagen
The first pathway of cross-linking requires the action of an 
enzyme, lysyl oxidase, to produce lysyl and hydroxylysyl 
aldehydes by oxidative deamination of lysyl or hydroxy-
lysyl residues in the nonhelical telopeptide regions of the 
collagen molecules. The aldehydes between adjoining 
collagen molecules subsequently condense and eventually 
convert to more mature, trivalent, intrafibrillar or interfi-
brillar cross-links, which are detectable as pyridinolines 
(HL-Pyr, L-Pyr) and pyrrolic cross-links [20].

In contrast, the second cross-linking pathway does 
not require the action of an enzyme and is accordingly 
categorized as nonenzymatic. Under this scheme, an alde-
hyde of the open-chain form of glucose reacts with the 
ε-amino group of lysine or hydroxylysine and the resul-
tant aldimine (glucosyl-lysine) undergoes a rearrangement 
to form a Schiff base adduct and/or an Amadori product 
[21]. Both the Schiff base adduct and the Amadori prod-
uct undergo further reactions with other amino groups 
to form advanced glycation end products (AGEs). To 
date, the intermolecular cross-links identified from AGEs 
include, among others, pentosidine [22], vesperlysine 
[23], and nonfluorescent component-1 (NFC-1) [24]. Pen-
tosidine and vesperlysine, fluorophores consisting of an 
imidazo-pyridinium ring containing lysine and arginine 
side chains [22–25], are the commonly measured nonen-
zymatic cross-links. NFC-1 is a nonfluorescent compound 
composed of lysine and arginine moieties; its exact struc-
ture is currently unknown [24].

Collagen Cross-linking and Bone Fracture
Cross-links formed by both pathways are known to 
change and affect bone fragility in a number of diseases. 
For example, Knott et al. [26] demonstrate that the 
introduction of osteoporosis in an avian model is char-

acterized by an increase in lysyl hydroxylation, which, in 
turn, results in decreased pyrrolic cross-link content and 
a consequent decrease in the mechanical strength of bone. 
Similar changes have been found recently in biopsy speci-
mens from the iliac crest of patients with osteoporotic and 
multiple spontaneous fractures [27•]. Mutations in the 
collagen gene responsible for osteogenesis imperfecta have 
also been shown to result in decreased collagen content, 
altered cross-link profile, and decreased bone ductility 
[18]. Saito et al. [28] demonstrated that the introduction 
of diabetes in rats results in increased collagen-linked 
fluorescence (a measure of AGEs) and a corresponding 
decrease in bone strength.

Despite this evidence of the extent of alterations in 
collagenous proteins and their influence on bone fragility, 
the role of collagen modifications in age-related skeletal 
fragility remains unclear. To date, only a limited number 
of studies have investigated the effect of organic matrix 
modifications on age-related bone fragility [8], and all 
these studies have been limited to enzymatic cross-links. 
Furthermore, as enzymatic cross-links were not found to 
accumulate with age, no correlation could be made between 
the cross-link content and the mechanical characteristics 
of the organic network or of the whole bone. However, 
consistent with the changes in other collagenous tissues 
in the human body, evidence is now emerging that bone 
collagen is also susceptible to age-related accumulation of 
AGEs and that such modifications may play a significant 
role in age-related skeletal fragility [11•,29,30].

The accumulation of cross-links mediated by nonenzy-
matic glycation (NEG) in bone collagen in vitro is highly 
correlated with the stiffness of the organic matrix of bone 
[31], and the increased stiffness of the organic matrix has 
been shown to reduce measures of collagen deformation 
and microcracking [31,32]. Bone derives its resistance 
against fracture from collagen deformation [33] and from 
its ability to form microcracks during crack propagation 
[34]. Collagen deformation and microcracking are the 
primary mechanisms of toughening in bone [35••], and 
any alteration in toughening mechanisms will alter bone 
toughness. Thus, it is likely that in vivo accumulation of 
NEG cross-links in collagen [11•,29] may explain age-
related loss of bone toughness based on a stiffer collagen 
network and loss of collagen-based and microcrack-based 
toughening mechanisms.

Until recently, approaches to measure the toughening 
magnitude were lacking in bone mechanics. Vashishth et al.  
[34] applied an experimental fracture mechanics 
approach, which not only allows for the characterization 
of the toughening behavior but also elucidates the frac-
ture processes occurring in the postyield region. In this 
approach, crack growth resistance (KR) is continuously 
monitored as a function of crack extension (Δa), and the 
slope of resistance curve (KR vs √Δa) is used as a measure 
of bone toughness. In contrast to the initiation approach 
used previously, this new approach successfully differ-
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entiates a tough bone like antler from bovine bone [36]. 
Unlike yield-based, initiation-based approaches, this new 
approach uses a postyield parameter (slope of resistance 
curve) to characterize toughness and hence can fully 
account for any energy-dissipating mechanisms during 
crack propagation, including (but not limited to) collagen 
deformation [33] and microcracking [34].

The new crack-propagation approach described above 
is also more appropriate to measure age-related changes 
in bone quality than previously described cyclic fatigue 
crack growth approaches [37]. Cyclic loading tests simu-
late fatigue fractures commonly seen in young athletes. 
Such tests typically involve slow crack propagation (maxi-
mum 1E-6 m/s [37]) and deceleration due to the opening 
and closing of the cracks. In contrast, the resistance 
curve–based approach utilizes quasistatic loading, which 
more closely approximates a fall, the most common cause 
of fractures in the elderly [7]. Quasistatic loading results 
in a rapid increase in the crack tip strains, causing a crack 
to initiate. This crack continues to accelerate (from 20E-6 
m/s to 1200E-6 m/s) unless the material behavior slows 
the crack by forming additional microcracks in the vicin-
ity of the crack tip [38]. Consequently, any alterations 
in bone quality related to age and disease, including the 
NEG-mediated cross-links that alter the microcrack-
forming potential of bone [31], could be readily identified 
by measuring the slope of the resistance curve. A material 
with a steep resistance curve is less likely to experience 
unstable crack growth and catastrophic fractures. The 
applications of this technique demonstrate that the 
resistance-curve approach can indeed identify age-
related changes in bone’s fracture resistance [35••]. 

A fracture-mechanics approach to the toughness of 
cancellous bone, unlike cortical bone, has not been devel-
oped. Postyield and damage behavior of cancellous bone 
is a relatively new area. Failure energy (area under the 
stress/strain curve up to the ultimate point) and energy 
absorption (area under the force-deformation curve) have 
been used in the past to estimate cancellous bone tough-
ness [39], but these measures are not specifically related 
to fracture. Keaveny et al. [40] developed postyield 
approaches that characterize the degradation of apparent 
mechanical properties in the postyield region, including 
percent-modulus and strength reductions as a measure 
of damage. The unloading and reloading of specimens in 
conjunction with the measurement of the loss of appar-
ent mechanical properties and the characterization of 
microdamage have demonstrated that the damage behav-
ior of cancellous bone is similar to that of cortical bone 
[40,41]. When loaded in the postyield region, both corti-
cal and cancellous bones form microcracks at the tissue 
level and display a similar profile of modulus loss [40,41]. 
More significantly, by simulating the effects of trabecular 
microfracture and microdamage on apparent modulus 
reduction, Yeh and Keaveny [42] found that “extensive 
microdamage” was the primary reason for the loss of 

apparent mechanical properties in the postyield region, 
strikingly similar to what happens in cortical bone, where 
crack propagation and fracture involve extensive micro-
cracking [34]. Thus, it seems likely that any modifications 
in the microcracking potential of cancellous bone, includ-
ing the age-related and NEG-mediated stiffening of the 
organic matrix, will have considerable effects on its dam-
age and fracture behavior.

When postyield strain energy and the rate of change of 
postyield modulus have been used to characterize cancel-
lous bone toughness, the results have demonstrated that 
NEG alters both these variables in a manner consistent with 
increased bone fragility [11•,43,44•]. Again, these results 
are consistent with the current notions of loss of toughness 
in cortical bone and can be explained by the NEG-medi-
ated stiffening of the organic matrix [11•].

Collagen Cross-linking and Bone Turnover
The evidence that AGEs accumulate in tissue with low 
turnover, including cartilage and tendons [24], has moti-
vated a number of recent studies on the effect of AGEs on 
osteoblast and osteoclast behavior and on the relationship 
between tissue turnover and AGE accumulation. Consis-
tent with the accumulation of AGEs in diabetic animals 
and a consequent decrease in bone healing [45], AGEs 
have been shown to impair osteoblast proliferation and 
differentiation [46] while increasing [47] or decreasing 
[48••] osteoclastic bone resorption.

An increase in osteoclastic bone resorption combined 
with decreased bone formation would indicate that AGEs 
will not accumulate in vivo. In contrast, reductions in 
both resorption and formation will result in reduced 
removal of AGEs and their consequent accumulation. The 
accumulation of AGEs with reduced bone turnover seen in 
bisphosphonate-treated animals [49], as well as in humans 
with aging [11•,29] and diabetes [28], seem to support this 
possibility, but further work is necessary to identify the 
mechanism by which AGEs accumulate in bone. Both the 
above scenarios would result in increased bone fragility, 
however. Increased osteoclastic bone resorption combined 
with decreased bone formation will cause osteopenia-
induced bone fragility, whereas decreased osteoclastic 
bone resorption combined with decreased bone formation 
will cause bone fragility due to impaired bone matrix 
properties and reduced fracture resistance.

Conclusions
The literature reviewed here identifies changes in the 
quality of the collagen matrix that contribute to bone fra-
gility. With aging or diabetes, NEG-induced cross-links 
accumulate in bone collagen and consequently impair 
matrix properties, causing increased bone fragility. Cell-
culture and animal studies suggest that the accumulation 
of NEG-induced cross-links may be related to a reduc-
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tion in bone turnover resulting from altered responses of 
osteoblasts and osteoclasts to AGEs.
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