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Introduction
Over the past several years in the field of osteoporosis
clinical management, no area has been more hotly
debated than the following controversial issues—To what
degree adding bone mineral to an osteoporotic skeleton
with pharmacologic agents used to treat osteoporosis
increases bone strength and reduces the risk for fracture?;
To what degree reducing bone turnover by pharmacologic
agents used to treat osteoporosis increases bone strength
and reduces the risk for fracture independent of adding
bone mineral?

While this paper will examine these two issues in
depth, the fundamental point must be made that were it
not for serial measurements of bone mineral density
(BMD) and bone turnover markers (BTM), the clinical
practice of osteoporosis would be relegated to guess-work.

Surrogate Markers
There are many chronic diseases where surrogate markers are
used to assess the efficacy of therapy, even though the most
important endpoint for treatment is the reduction in the risk
for the specific clinical event. For example, the reduction in
the risk for myocardial infarction is the most important out-
come for the use of therapies designed to lower serum cho-
lesterol concentrations. However, if clinicians waited for a
myocardial infarction as the endpoint to assess therapeutic
efficacy of pharmacologic agents designed to reduce the level
of elevated serum cholesterol, one of the major risk factors
for heart attacks, without measuring the reduction in the sur-
rogate endpoint (serum cholesterol), no patient would take
the medication, no health care plan would pay for the medi-
cation, and no physician would prescribe the medication.
The trust in the surrogate marker as providing evidence for
modifying the clinical outcome depends on the strength
(power) of the pharmacologically-induced change in the sur-
rogate marker as reflecting the change in the risk for the clini-
cal event. In this regard, the field of osteoporosis therapies is
rich in the accumulation of data that have examined the util-
ity of two surrogate markers: BMD and BTM.

Basal BMD in the postmenopausal population has more
power to predict the risk for a fragility fracture than elevated
cholesterol has to predict myocardial infarction [1].

In addition, the change in antiresorptive-induced BMD
may be a stronger predictor of a reduction in fragility fracture
risk than is provided by the reduction in serum cholesterol
mediated by anti-cholesterol lowering medications to reduce
the risk for myocardial infarction [2••]. Changes in BMD
and biochemical markers of BTM that are mediated by
antiresorptive agents are, therefore, the two surrogate mark-
ers that have been utilized in clinical trials and in clinical
practice to measure changes in bone strength [3–6].

Surrogate markers in clinical medicine provide a useful 
means to assess therapeutic response to pharmacologic 
therapy in a wide range of chronic disease states. In the 
area of osteoporosis, the surrogate markers of change in 
bone mineral density (BMD) and bone turnover markers 
(BTM) provide the clinician with a means of assessing the 
biologic response to osteoporosis-specific pharmacologic 
agents. Increases in BMD and/or reductions in BTM can 
independently be correlated to reductions in vertebral and 
nonvertebral fracture risk. In managing osteoporosis 
patients, the BTM change at an earlier point of time after 
initiation of therapy and a change in BTM can provide ear-
lier feed-back to the patient and clinician regarding issues 
such as compliance and a bone biologic response. An 
increase in BMD at 12 or 24 months after initiation of ther-
apy is also evidence of an improvement in bone strength 
though with antiresorptive agents no change in BMD may 
also be associated with risk reduction within clinical trial 
sets. In this regard, changes in BMD and BTM are compli-
mentary in their application to patient management.
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In the pivotal clinical trials that have led to the Food
and Drug Administration (FDA) registration of all anti-
resorptive agents for the treatment of postmenopausal
osteoporosis, the primary endpoint has been vertebral frac-
ture risk reduction over 3 years as compared with the pla-
cebo group. For the foreseeable future this most important
endpoint will continue to be the primary endpoint for
osteoporosis-specific pharmacologic registration, espe-
cially for agents that have novel mechanisms of action [6].
Alternatively, for agents that have already achieved FDA
registration for fracture risk reduction within a class of
agents (eg, the bisphosphonates), surrogate markers are
accepted by the FDA and The United States Surgeon Gen-
eral’s Office as evidence of improvements in bone strength
[6,7]. As a result, weekly alendronate and risedronate
along with monthly ibandronate were FDA approved for
the treatment of postmenopausal osteoporosis on the evi-
dence of surrogate marker data, not fracture data, because
of the trust that exists for accepting these two surrogate
markers as providing evidence for fracture risk reduction
within the bisphosphonate class [8,9,10••].

Nonacceptance of BMD and BTM as 
Surrogate Markers
Why have BMD and BTM not been universally endorsed as
providing evidence of improvements in bone strength with
the use of antiresorptive agents? [11,12].

First, for individual patient management, no surrogate
marker change mediated by any therapy for any chronic con-
dition provides the clinician with the perfect ability to predict
risk reduction. Therefore, many patients will still suffer a
myocardial infarction even though a statin medication has
significantly reduced their serum cholesterol concentration.

Second, analysis in non–head-to-head antiresorptive
therapeutic studies that analyze the magnitude of change
in BMD and the magnitude in fracture risk reduction

between antiresorptive agents suggests that some anti-
resorptive agents reduce vertebral fracture incidence with
little or no change in axial BMD (Table 1) [13••,14].
These analyses are non-scientific, since they are non–
head-to-head analysis and the populations are not com-
parable [13••]. The randomization criteria for all of the
antiresorptive clinical trials are different (Table 2). In
addition, comparing antiresorptive agents to one
another that have different mechanisms of action to
inhibit bone resorption is irrational. A selective estrogen
receptor modulator does not have the same mechanism
of action as calcitonin or a bisphosphonate [15,16]. Even
within the bisphosphonate class, there may be sufficient
differences in their cellular as well as their bone–bind-
ing-affinity and pharmacokinetics to create a scenario
where the mechanisms whereby bisphosphonates
improve bone strength are also dissimilar [17••,18]. The
result, however, of this type of inadequate scientific
methodology comparing changes in BMD and bone
strength in non–head-to-head clinical trials has been the
explosion of scientific debate and scientific development
that tries to explain why bone strength improves with the
use of antiresorptive agents independent of adding bone
mineral. There has been improvement in the science that
has helped to explain how bisphosphonates improve
bone strength independent of adding bone mineral
[19•,20–23]. In addition, changes in crystal size and col-
lagen orientation also independently contribute to bone
strength (Table 3) [24–29]. Yet, we have no clinical tools
available to measure these other contributions to bone
strength and, therefore, must rely on the surrogate mark-
ers of BMD and BTM to assess the skeletal response to
osteoporosis treatments.

Without head-to-head fracture endpoints, we will never
know for certain if small differences in BMD achieved
between different bisphosphonates translate into differ-
ences in fracture reduction.

The best we can achieve is using different statistical
analysis to explain these relationships between the magni-
tude of change in BMD and the magnitude of fracture risk
reduction; or to use comparison of surrogate markers
within head-to-head clinical trials to provide insight into
potential differences between agents. Both approaches are
imperfect and have some degree of scientific merit along
with some scientific flaws [30–34].

Analysis
Using statistical analysis (meta-analysis—summary statis-
tics of many clinical trials) and statistical analysis of any
given clinical trial (eg, Freedman’s analysis) have provided
evidence that there is a relationship between measurable
increases in axial or appendicular (eg, hip) BMD measured
by dual-energy x-ray absorptiometry (DXA) and the predic-
tion of fracture risk reduction in groups of patients [2••,3,
11, 30–32].

Table 1. Non–head-to-head comparisons between 
changes in spinal BMD by DXA and 3-year 
incident fracture reduction between the 
antiresorptive agents

Trial
Increase in spine 

BMD, %
Decrease in 

vertebral Fx, %

FIT II 8.3 44
FIT I 7.9 47
RVE 7.1 49
RVN 5.4 41
MORE 2.6 40
PROOF 1.2 36

(Adapted from Faulkner [13••].)
BMD—bone mineral density; DXA—dual-energy x-ray 
absorptiometry; FIT—Fracture Intervention Trial; MORE—Multiple 
Outcomes for Raloxifene Evaluation; PROOF—Prevent Recurrence of 
Osteoporotic Fractures; RVE—Risedronate Vertebral European; 
RVN—Risedronate Vertebral North America. 
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Meta-analysis shows more of a linear relationship
(Fig. 1) [30,31] for changes in axial BMD and reduction in
vertebral fracture risk and an exponential relationship
between changes in hip BMD and reduction in nonverte-
bral fracture risk (Fig. 2) [32].

Individual (Freedman-type) analysis has shown a
wide range of relationships between the magnitude of
change in axial BMD and the magnitude of vertebral
fracture risk reduction [2••]. Even within the bisphos-
phonate class, the degree to which the change in axial
BMD induced by bisphosphonates to the magnitude of
axial fracture risk reduction ranges from 18% to 28%.
This relationship is neither proportional nor linear. Nev-
ertheless even within this type of statistical analysis
(Freedman analysis), there is agreement that some rela-
tionship exists—adding bone mineral by use of anti-
resorptive therapy adds strength to bone. This is accom-
plished by first reducing the remodeling space and sec-
ond by secondary mineralization. Both mechanisms add
more mineral to bone contributing to the increase in
bone strength.

Clinical Practice
In clinical practice it is not fair to extrapolate results derived
from meta-analysis to individual (Freedman analysis) to
comparator trials (Fosamax vs Actonel [FACT] I—alendronate
vs risedronate or FACT II—teriparatide vs alendronate)

[35••,36••]. The fundamental scientific basis which provides
the power of evidence derived from meta-analysis is that all
data-points are included (eg, all data must be included in the
meta-analysis that is available to compare the relationship
between the two comparators) [37]. In the case of BMD and
fracture risk, all clinical trials that have data for the change in
BMD and the change in risk must be included to validate the
strength of a meta-analysis. Extrapolating the results of a well-
designed meta-analysis to individual or comparator trials
undermines the scientific principle on which meta-analysis
results rest. As soon as one removes from a meta-analysis two
clinical trials to make a comparison of those clinical trials and
make the same conclusion(s) that were made within the
meta-analysis that included all the available data-points, the
conclusion(s) become invalid.

Therefore, conclusions derived from meta-analysis can-
not be extrapolated to individual clinical trial data or com-
parator trial data. In the same manner, data analyzed from
individual clinical trials (Freedman analysis) also cannot
be used to make clinical management decisions because of
the highly variable results reported in Freedman analysis,
even within the same dataset, depending upon the choice
of covariates and site of BMD measurement chosen to cal-
culate risk reduction [2••,34].

In clinical practice, the most important reason for
serial BMD measurement is not to necessarily see an
increase in BMD but to be certain the BMD does not
decline beyond the least significant change (LSC)
[38,39]. In most clinical trials, few treated participants
lost BMD; yet, in clinical practice, patients do lose bone
on treatment. Clinical trial patients are different from
clinical practice patients [40]. Clinical trial patients are
highly pre-selected not to have secondary conditions
that are seen in many clinical practice patients that may
mitigate the BMD response to osteoporosis-specific
pharmacologic therapies (eg, celiac disease, vitamin D
deficiency, and so on) [41]. Clinical trial patients are
highly compliant and see specialized research personnel
very frequently. Clinical practice patients have none of
these selections or extra encouragement. Measuring
BMD and finding a loss of BMD in treated clinical prac-
tice patients uncovers a host of possible unrecognized

Table 2. Differences in populations in the antiresorptive clinical trials

Trial
Change in spine 

BMD, %
Reduction in 

vertebral Fx, % Spine T score
Baseline vertebral 

Fx, %

FIT II 8.3 44 -2.1 0
FIT I 7.9 47 -2.1 100
RVE 7.1 49 -2.8 100
RVN 5.4 41 -2.4 100
MORE ~3.0 30 -2.6 37
PROOF ~1.2 36 ≤  -2.0 100

(Adapted from Faulkner [13••].)
FIT—Fracture Intervention Trial; MORE—Multiple Outcomes for Raloxifene Evaluation; PROOF—Prevent Recurrence of Osteoporotic Fractures;  
RVE—Risedronate Vertebral European; RVN—Risedronate Vertebral North America. 

Table 3. Components contributing to 
bone strength

Structural properties*
Geometry—size, shape
Microarchitecture—trabecular architecture, cortical 

thickness/porosity
Material properties*

Mineral—mineral-to-matrix ratio, crystal size
Collagen—type, crosslinks
Microdamage/microfracture

*Affected by bone turnover rate.
(Adapted from Jarvinen et al. [20].)
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medical conditions in addition to compliance and per-
sistent issues; and, a loss of BMD on therapy leads to a
greater risk for future vertebral fractures than maintain-
ing BMD [4].

The same fundamental principles regarding the useful-
ness of BMD in fracture risk prediction and/or predicting risk
reduction with treatment can be said of the use of BTM. Base-
line BTM that are elevated predict a greater risk for hip, verte-
bral, and nonvertebral fracture in the postmenopausal
population [42,43] ; and reductions in BTM with antiresorp-
tive agents predict in groups of patients, fracture risk reduc-
tion independent of changes in BMD [44•,45•].

If BTM are elevated in postmenopausal women, and
may be associated with higher rates of bone loss and
greater risk for fracture than a postmenopausal woman
with normal bone resorption markers, it must also be kept
in mind that there are other causes of high BTM beyond
postmenopausal rapid bone loss. High bone turnover can
be seen in hyperthyroidism, hyperparathyroidism, multi-
ple myeloma, Paget’s disease, metastatic cancer to bone,
recent bone fracture, immobilization, and space travel. An
elevated bone formation marker, such as bone specific
alkaline phosphatase is also seen in osteomalacia but not
in myeloma. For unclear reasons there is an uncoupling
between the high bone resorption seen in myeloma (nor-
mal resorption markers) and the elevated bone formation
markers. Therefore, high levels of BTM require a differen-
tial diagnosis but then if felt to be a result of high bone
turnover related to estrogen deficiency, then the implica-
tions are higher rates of loss and greater risk for fracture.

Bone Turnover
As our understanding of bone turnover has increased, so
has the data that as postmenopausal women age, their

bone turnover increases and that this greater increase in
turnover may be associated with a greater degree of bone
fragility [46]. In addition, evidence has accumulated that
the goal of antiresorptive pharmacologic therapy is to
reduce bone turnover into the normal pre-menopausal
range, if not into the lower half of the normal pre-meno-
pausal range. In this regard there is current debate about
the relationship between the magnitude of suppression of
bone turnover induced by antiresorptive agents and the
magnitude of fracture risk reduction. Data from the risedr-
onate clinical trials have suggested that below a certain
level of reduction in bone turnover measured by the
resorption marker, N-telopeptide, there is no greater reduc-
tion in incident vertebral fracture risk (eg, a threshold level
exists) [44•]; while data from the alendronate clinical trials
suggest that the greater the reduction in the bone turnover
marker, bone specific alkaline phosphatase, the greater the
reduction in incident vertebral fracture risk [45•]. Why the
discrepancies? Part of the answer lies into why it is scientif-
ically unsound to compare changes in BMD with changes
in fracture risk reduction without head-to-head fracture tri-
als—randomized populations are not the same and surro-
gate markers only reflect part of the bone strength story.
Part of the answer lies in the low frequency of fracture
events at the lower ranges of bone turnover levels (eg,
reduced statistical power to detect true threshold or no-
threshold effects). Nevertheless, it is clear that there is
some relationship between the magnitude of reduction in
bone turnover markers and the magnitude of fracture risk
reduction—both incident vertebral fracture and nonverte-
bral fracture events [32,43].

In clinical practice the advantages of serial BTM deter-
minations are that they provide earlier assessment of a
bone biological effect of the osteoporosis-specific pharma-
cologic agent that has the effect on bone turnover. In addi-

Figure 1. Relationship between changes in spinal BMD and incident 
vertebral fracture risk reduction in clinical trials—a meta-analysis. 
BMD—bone mineral density.

Figure 2. The relationship between antiresorptive induced increases 
in hip BMD and incident reduction of nonvertebral fractures. 
BMD—bone mineral density.
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tion a certain magnitude of biomarker change is needed to
insure that the biomarker change is greater than the LSC
for the biomarker assay precision-error, and once such a
change is seen, it implies that the patient is taking the med-
ication, the medication is being absorbed, and that the
drop in BTM beyond the LSC is predictive, to some degree,
of a reduction in fracture risk. Alternatively, if there is no or
little change in the bone turnover marker, the clinician
should raise the questions surrounding poor compliance,
proper dosing instructions being followed, adequate
absorption of (especially) the fastidiously absorbed oral
bisphosphonates, or some secondary process that could
mitigate the bone biological effect of the drug (vitamin D
deficiency, and so on). Patients like early feed-back that a
medication is being effective, especially for often an
asymptomatic disease requiring chronic intervention.

Parathyroid Hormone
The issue(s) of the utilization of bone density and bone
turnover for determining the efficacy of the anabolic
agent, low dose daily parathyroid hormone (PTH) are
even more uncertain. Most of the data acquired has been
with the use of teriparatide (1-34 recombinant human
PTH) in clinical trials of postmenopausal women and
elderly men [47–52].

Administering PTH induces an impressive increase in
axial BMD, and in a head-to-head comparator trials exam-
ining teriparatide (20 µg/day) to alendronate (10 mg/day)
there was a significantly greater increase in spinal BMD as
measured by DXA with teriparatide than the increase
induced by alendronate [36••]. Nevertheless, just as in the
FACT trial, there are no prespecified fracture data, so it
remains unknown in this PTH versus alendronate study
translates into differences in bone strength.

The hip BMD as measured by DXA increases as well as
with PTH, though as in most osteoporosis-specific phar-
macologic trials, the magnitude of the hip BMD increase is
less than the more cancellous bone of the axial skeleton.
Hip BMD increases with PTH are generally more than
observed with agents that have not been shown to reduce
the risk for nonvertebral fractures (raloxifene and calcito-
nin). The forearm BMD as measured by DXA declines with
the administration of teriparatide [48]. Yet, forearm bone
strength increases. Why? PTH increases bone strength in
part by increasing bone size due to its effect to add new
bone to the periosteum [53–55, 56••], and thereby,
increasing the cross-sectional moment of inertia [56••].
BMD as measured by DXA is a derived equation: BMD =
bone mineral content (BMC)/Area. Therefore, as bone area
increases the calculated areal BMD may decline even
though BMC also increases with PTH. In studies in cyn-
omegalus monkeys where peripheral quantitative com-
puted tomography (QCT) was measured, the bone
volumetric area increases and biomechanical testing of
bone strength shows that strength also increases [57].

Therefore, areal BMD by DXA may be misleading in moni-
toring the effect of PTH on bone, especially cortical bone
sites where the increase in bone area may be greater than
the PTH-induced increase in BMC. In the future, we may
utilize central as well as peripheral QCT technologies as
the preferred technology to monitor response to PTH.

With regard to BTM in clinical practice and their use-
fulness in monitoring PTH there is growing evidence
that certain biochemical markers of bone formation
(BFM) may provide evidence of an early anabolic effect
of PTH [58•,59]. Bone formation markers such as bone
specific alkaline phosphatase and serum osteocalcin rise
early (within 1 month) of PTH administration. Perhaps
even more sensitive as a BFM is serum P1NP or P1CP
(procollagen 1 N-Telopeptide and C-Telopeptide). P1NP
is the most robust BFM that increases rapidly with PTH
administration and there is preliminary evidence that
the rise in P1NP is correlated (r = 0.6) with an increase
in BMD 6 or 12 months after PTH initiation; and, is
associated with an improvement in bone formation as
assessed by double tetracycline-labeled quantitative
bone histomorphometry [51,59].

BFM use in monitoring PTH may provide the clinician
and his/her patient early feed-back as to a “response” to
PTH much in the manner that the early drop in bone
resorption markers may provide early feedback in the utili-
zation of antiresorptive (anti-remodeling) pharmacologic
agents. There is no data as of this paper that has correlated
any change in PTH-mediated increases in BMD or BFM to
fracture risk reduction.

There has been preliminary data that have also exam-
ined the bone effects of PTH in combination with anti-
resorptive agents that may offer some insight into the inter-
actions between PTH as an anabolic agent and antiresorp-
tive agents. Most of the data that is published on this issue
is preliminary-observational or short-term, without any
fracture data [48–51,60]. Most of the data that suggests that
prior or concomitant use of raloxifene or alendronate may
mitigate the bone biologic response to PTH relies heavily
on BFM changes (increases) that are consistently mitigated
by the presence of an antiresorptive agent. However,
changes in BMD measured by DXA in the two prospective
studies [49,50] have indicated no mitigation of the axial
BMD response by combination therapy and in the study by
Black et al. [50], there was a significantly greater increase in
total hip BMD with combination therapy. In the study by
Finkelstein et al. [49] there was a significantly greater
increase in total body BMD with combination therapy.
Both of these studies showed greater effects with PTH
monotherapy as measured by central (axial) QCT; yet there
is no data in any osteoporosis literature that has examined
what pharmacologically induced changes in BMD as mea-
sured by QCT mean relative to changes in bone strength.
There are preliminary prospective raloxifene data that sug-
gest that combination therapy with raloxifene and alendr-
onate in treatment naive postmenopausal women causes a
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significantly greater increase in total hip BMD than mono-
therapy [61]. Therefore, it is too soon to know if there is
any mitigation of PTH effect by prior or concomitant use of
an antiresorptive agent and these interactions merit in
depth additional investigations. One thing seems to be
clear, after discontinuation of PTH, an antiresorptive agent
is needed to retain the gains in BMD that are induced by
PTH [62,63].

Glucocorticoid-induced Osteoporosis
Though the focus of this paper has been on postmeno-
pausal osteoporosis postmenopausal osteoporosis, a few
brief comments are pertinent about glucocorticoid-induced
osteoporosis (GIOP).

Basal BMD is a poor indicator about the risk for frac-
ture in acute, high-dose GIOP or chronic low-dose GIOP
[64–66]. In fact the World Health Organization criteria
used for the diagnosis of osteoporosis cannot be applied to
GIOP and the well recognized and quantified relationship
between low BMD and fracture risk defined in postmeno-
pausal osteoporosis also cannot be applied to GIOP.
Patients may fracture with normal BMD and/or T-scores
who receive glucocorticoids as opposed to the well-defined
risk relationship observed in postmenopausal osteoporosis
or age-related bone loss. Bisphosphonates have very favor-
able effects in the treatment of glucocortocoid-induced
bone loss [67-72]. Therefore, guidelines provided by The
American College of Rheumatology are correct in their
strategies to reduce fracture risk in patients receiving high
dose or chronic low-dose glucocorticoids [73••]. The same
type of usefulness of BTM previously outlined for post-
menopausal osteoporosis also cannot be used to guide
clinical management decisions for GIOP. BTM are very
inconsistent in their predictability of rates of bone loss,
fracture risk prediction, or response to therapeutic agents
utilized for the treatment of GIOP as they may be for post-
menopausal osteoporosis [74••].

Conclusions
Both BMD measurements as well as measurements of bio-
chemical markers of bone turnover (BTM) provide highly use-
ful information for clinicians managing patients with
postmenopausal osteoporosis.

Neither surrogate marker is perfect in its application of
individual clinical patient management, for diagnosis or for
decisions regarding therapeutic response. Nevertheless, just
as the development of a new incident fracture on treatment
may not necessarily represent “treatment-failure”, changes in
surrogate markers may not always reflect changes in bone-
strength that might be mediated by treatment.

It is how the clinician interprets any change in a surro-
gate marker in deciding if an osteoporosis-specific phar-
macologic agent is effective. All are imperfect sciences—as
is bone biology in its essence. Nevertheless, not to utilize

surrogate markers in clinical practice management in
osteoporosis would remove the only methods clinicians
have to assess therapeutic response and engage in con-
structive patient dialogue.
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