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Introduction
Osteoporosis is a frequent complication of the chronic
exposure of skeletal tissue to glucocorticoids, and gluco-
corticoid-induced osteoporosis (GIO) is a common form
of secondary osteoporosis. Glucocorticoids cause rapid
bone loss leading to osteoporotic fractures [1•]. GIO is a
complex disorder since patients receiving corticosteroids
often have an underlying disease that carries a significant
risk for osteoporosis. Frequently, the disease is chronic and
debilitating, such as rheumatoid arthritis, chronic obstruc-
tive pulmonary disease, and chronic inflammatory bowel
disease. These disorders have an underlying inflammatory
component, leading to the release of cytokines, with the
potential to enhance bone resorption. These, as well as the
direct and indirect effects of glucorticoids on the skeleton,
play an important role in the bone loss observed in GIO.

The direct effects of glucocorticoids on skeletal cells
appear to be the most significant determinants of their
impact on skeletal metabolism, and glucocorticoids alter
the fate, life-span, and function of cells of the osteoblast
and osteoclast lineages [2•]. As a consequence, corticoster-

oids regulate bone formation and bone resorption.
Patients receiving glucocorticoids undergo an initial phase
of increased bone resorption, but as the disease progresses
there is an inhibition of bone formation, possibly leading
to a state of decreased bone remodeling. The increased
bone resorption is probably responsible for the rapid bone
loss that comes after the initiation of therapy with corticos-
teroids. This is reflected by a rapid decline in bone mineral
density. The decreased bone remodeling is secondary to
the loss of osteoblasts, and is probably responsible for a
steady, but slower rate of bone loss. This is reflected by a
stabilization of bone mineral density. It is important to
note that because of the complexity of the effects of gluco-
corticoids on the skeleton, the increased risk for fractures is
not reflected by marked changes in bone mineral density.

Effects of Glucocorticoids on Bone Resorption
Glucocorticoids have direct effects on bone resorbing cells.
Glucocorticoids inhibit calcium absorption in the gas-
trointestinal tract and enhance renal losses of calcium. The
exact mechanisms are not clear, but impaired gastrointesti-
nal calcium transport is secondary to vitamin D resistance,
since vitamin D levels are normal [3]. Because of the
decrease in calcium absorption and increased renal losses
of calcium, secondary hyperparathyroidism has been pos-
tulated, but it does not appear to be a major determinant
of bone resorption or skeletal loss in GIO [4]. Gluco-
corticoids increase the expression of parathyroid hormone
(PTH)/PTH-related peptide receptors, and it is possible
that enhanced sensitivity to PTH plays a role in the
observed bone resorption. If mechanisms leading to a
hyperparathyroid state are present in GIO, one should
expect consistent elevations of serum PTH and a pattern of
bone loss that mirrors that seen in hyperparathyroidism.
However, this is not the case and acute or chronic use of
glucocorticoids is not associated with serum levels of PTH
that are in the hyperparathyroidism range [5]. Bone densit-
ometric studies also suggest lack of involvement of PTH in
GIO. In primary hyperparathyroidism there is preferential
bone loss in the cortical skeleton with preservation of can-
cellous bone, whereas in GIO an opposite pattern is found
with preferential loss of cancellous bone and an increased
risk for vertebral fractures [4,6]. Histomorphometric analy-
sis of bone biopsies confirms that hyperparathyroidism
and GIO are distinct disorders. In primary hyperparathy-
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roidism, there is enhanced bone turnover with preserva-
tion of osteoblast number. In contrast, in GIO there is
suppression of bone turnover and eventual loss of osteo-
blasts. Because of these reasons, it appears that PTH does
not play a major role in the pathogenesis of GIO. Hypogo-
nadism can play a role in the bone loss observed in GIO
since glucocorticoids inhibit gonadotropin hormone secre-
tion, and often patients receiving glucocorticoid therapy
are postmenopausal.

Glucocorticoids have important direct effects on cells
of the osteoclast lineage, which can explain the increased
bone resorption. The receptor activator of nuclear factor-κ-
B ligand (RANKL) and osteoprotegerin play a central role
in osteoclast recruitment, differentiation, and bone resorp-
tion [7]. RANKL binds and activates its receptor, RANK, on
the surface of osteoclast precursors and in association with
colony stimulating factor-1 (CSF-1), induces osteoclastoge-
nesis. Osteoprotegerin binds RANKL, acting as a decoy
receptor preventing RANKL from binding to its osteoclast
receptor. Glucocorticoids increase the expression of
RANKL and CSF-1, and decrease osteoprotegerin expres-
sion in surrounding osteoblasts and stromal cells [8,9]. As
a consequence, there is an increase in osteoclast formation
and bone resorption. Glucocorticoids also alter the life-
span of osteoclasts, although increased and decreased
apoptosis have been reported [10,11]. Glucocorticoids
oppose bisphosphonate effects on osteoclastic apoptosis.
Eventually, glucocorticoids deplete the population of
osteoblasts and stromal cells, which are necessary to main-
tain osteoclastogenesis. When this occurs, patients should
exhibit a state of decreased bone remodeling.

Effects of Glucocorticoids on Bone Formation
Effects on cell differentiation
Bone histomorphometric studies suggest that decreased
bone formation is the most significant event leading to
bone loss after chronic glucocorticoid exposure [12]. A sig-
nificant consequence of skeletal exposure to glucocorti-
coids is a decrease in the number of cells of the osteoblastic
lineage [13]. Cell genesis and death are the ultimate deter-
minants of the pool of osteoblasts available to form bone
and glucocorticoids inhibit osteoblastogenesis and induce
the apoptosis of osteoblasts and osteocytes [13,14]. Both
events contribute to a decreased number of mature osteo-
blasts. Some investigators have reported that glucocorti-
coids induce osteoblastic cell differentiation [15].
Although effects of glucocorticoids may be dependent on
the stage of cell differentiation and culture conditions, an
increase in osteoblastogenesis is inconsistent with the loss
of cells of the osteoblastic lineage observed after glucocor-
ticoid exposure. Recent research has confirmed that gluco-
corticoids impair the differentiation of mesenchymal cells
toward cells of the osteoblastic lineage and prevent the ter-
minal differentiation of osteoblastic cells [16]. This results
in a decrease in the number of mature osteoblasts. Gluco-

corticoids decrease osteoblastogenesis by suppressing the
differentiation of osteoblasts and by shifting the differenti-
ation of mesenchymal cells away from osteoblasts and
toward adipocyctes [16]. The shift in the differentiation of
stromal cells toward the adipocyte lineage involves the reg-
ulation of nuclear factors of the CCAAT/enhancer binding
protein (C/EBP) family, and of peroxisome proliferator
activated receptor γ 2 (PPARγ 2) [16,17]. C/EBP α, β, and δ
play essential roles in adipogenesis and mice carrying null
mutations of C/EBP α, β, and δ exhibit impaired adipocyte
differentiation and decreased adipose tissue [17]. Further-
more, overexpression of C/EBP homologous protein
(CHOP) or DNA damage-inducible transcript 3 (DDIT 3),
a transdominant negative inhibitor of classic C/EBPs, pre-
vents adipogenesis and induces osteoblastic cell matura-
tion, suggesting that there is a shift in the population of
differentiating cells, which could play a role in the effect of
glucocorticoids [18]. The effect of glucocorticoids on adi-
pocyte differentiation involves additional signals, includ-
ing the induction of PPARγ 2 and the transcriptional
repression of preadipocyte factor-1 (pref-1), a factor that
inhibits the differentiation of preadipocytes to adipocytes
[19]. It is of interest that null mutations of pref-1 exhibit
not only accelerated adipocity, but also retarded growth
and skeletal malformations [20].

The differentiation of cells of the osteoblastic lineage is
determined by bone morphogenetic proteins (BMP) and the
Wnt family of secreted glycoproteins [21•,22•]. Wnts play a
role in cell fate and abnormal Wnt signaling is implicated in
osteoporosis and disorders of increased bone mass [22•].
Wnt signals by diverse mechanisms, but the canonical Wnt
signaling pathway is the most widely studied. After the bind-
ing of Wnt proteins to their specific Frizzled transmembrane
receptors and co-receptors, low-density lipoproteins-related
proteins (LRP) 5 and 6, there is stabilization and nuclear
translocation of β-catenin and association of β-catenin with
members of the lymphoid enhancer binding factor/T cell
specific factor (LEF/TCF) family of transcription factors
[22•]. Wnt activity is regulated by multiple intracellular and
extracellular signals and two of these, Dikkopf and Notch,
have been implicated in mechanisms of glucocorticoid
action in bone. Dikkopf inhibits Wnt signaling by binding to
LRP 5/6 and Krem resulting in the removal of the complex
from the cell membrane by endocytosis [22•]. A way that
glucocorticoids inhibit osteoblast cell differentiation is by
inducing Dikkopf expression and inhibiting Wnt signaling
[23]. Notch are transmembrane receptors that mediate cell
to cell interactions controlling cell fate decisions [24]. Their
ligands, Delta and Serrate/Jagged, are single-pass transmem-
brane proteins that induce the proteolytic cleavage of Notch,
leading to the release of the Notch intracellular domain
(NotchIC) and its translocation to the nucleus, where it com-
plexes with specific DNA binding proteins. Activated Notch
receptors prevent osteoblast differentiation and chondrocyte
maturation [25•,26]. Notch interacts with Wnt at diverse
levels of signaling. Wnt binds to the Notch extracellular
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domain and the Wnt-dependent Dishevelled, which stabi-
lizes β-catenin, binds to NotchIC [27,28]. In addition, glygo-
gen synthase kinase 3β, which inactivates β-catenin,
modulates Notch stability [29]. Furthermore, presenilins
regulate β-catenin degradation and play a role in the activa-
tion of Notch [27]. Studies from this laboratory have demon-
strated that Notch1 overexpression decreases Wnt/β-catenin
signaling in stromal cells resulting in impaired osteoblastic
maturation [25•]. Notch1 transcripts are increased by gluco-
corticoids in osteoblasts [30]. Consequently, the upregula-
tion of Notch1 expression may play a role in the inhibition
of osteoblastogenesis by glucocorticoids.

Glucocorticoids induce apoptosis of mature osteoblasts
and osteocytes, which, in association with the impairment
of cell differentiation, causes a decrease in the number of
bone forming cells [14]. The induction of apoptosis may
also involve indirect mechanisms, such as the suppression
of insulin-like growth factor (IGF) -I transcription by gluco-
corticoids, since IGF-I prevents apoptosis [31].

Effects on osteoblast function and local 
growth factors
Selected actions of glucocorticoids are secondary to the regu-
lation of the growth hormone/IGF axis [31]. IGF-I enhances
osteoblastic function and bone collagen synthesis, and its
actions are opposite to those of glucocorticoids. However,
IGF-I does not determine cell differentiation. Glucocorti-
coids suppress IGF-I transcription through a C/EBP recogni-
tion site adjacent to the third start site of transcription of
exon 1 [31]. The involvement of C/EBPs in the regulation of
IGF-I expression and adipogenesis reveals convergence on
the effects of glucocorticoids on specific cellular signals.

Glucocorticoids have the potential to regulate IGF-I
activity through their actions on the synthesis of IGFBPs. The
six known IGFBPs are synthesized by osteoblasts, and gluco-
corticoids decrease the expression of IGFBP-3, -4, and -5
messenger RNAs (mRNA) and stimulate IGFBP-6 synthesis
in osteoblasts [32]. IGFBP-5 has been reported to have ana-
bolic effects on the skeleton and the inhibitory effect on
IGFBP-5 transcription was considered relevant to the mecha-
nism of action of glucocorticoids in bone. However, trans-
genic mice overexpressing IGFBP-5 under the control of
the osteocalcin promoter are osteopenic, suggesting that
IGFBP-5 is not anabolic in the skeleton [33]. Consequently,
its suppression by corticosteroids should not be relevant to
their catabolic actions in bone.

Effects of glucocorticoids on matrix proteins
The bone matrix is composed primarily by type I collagen,
which is synthesized by osteoblasts and degraded by pro-
teases secreted by skeletal cells. Glucocorticoids inhibit
type I collagen synthesis by transcriptional and post-tran-
scriptional mechanisms, and regulate the synthesis of col-
lagenases, which are matrix metalloproteinases (MMP)
that cleave collagen fibrils, and regulate matrix breakdown
[34,35]. Collagenases also play a role in bone resorption,

and mutations of the collagenase 3 cleavage site of the type
I collagen molecule and null mutations of the collagenase
3 gene result in impaired bone resorption. Glucocorticoids
increase collagenase 3 mRNA and protease levels in osteo-
blasts by post-transcriptional mechanisms and this effect
may contribute to their effects on bone resorption [35].
The decrease in IGF-I transcription by glucocorticoids may
contribute to their effects on matrix proteins in bone, as
they do in muscle, since IGF-I increases type I collagen syn-
thesis and suppresses collagenase 3 transcription [36].

Indirect Actions of Glucocorticoids on 
Bone—Effects on Cartilage and Muscle
Glucocorticoids also have important effects on the growth
hormone (GH) IGF-I axis on the epiphyseal growth plate
[37]. Glucocorticoids decrease IGF-I expression in liver
cells, the main source of circulating IGF-I, but serum levels
of IGF-I and GH are not suppressed [38]. Glucocorticoids
impair IGF-I secretion in chondrocytes, as they do in osteo-
blasts, and blunt chondrocytic responses to GH and IGF-I
[37]. This would suggest that the direct effects of glucocor-
ticoids on IGF-I expression and actions in target tissues are
more relevant than their effects on systemic IGF-I levels.
The decreased IGF-I synthesis and cellular sensitivity to
IGF-I in chondrocytes contribute to the actions of gluco-
corticoids and explain the impaired linear growth observed
in children with GIO [39].

Rapid loss of muscle protein is the result of decreased
protein synthesis and increased degradation, and glucocor-
ticoid induced myopathy and muscular atrophy may alter
bone mass indirectly. The mechanism may involve sup-
pression of IGF-I synthesis and signaling by glucocorti-
coids in myocytes since IGF-I increases protein synthesis
and prevents proteolysis in muscle cells [40,41]. IGF-I sup-
presses the expression of the E3 ubiquitin ligand atrogin-1/
muscle atrophy F box (MAFbx), which activates protein
degradation in the proteosome by ubiquitination [41].
Glucocorticoids not only suppress IGF-I synthesis and
actions, but also increase atrogin-1/MAFbx expression
directly, counteracting the effects of IGF-I. These actions
should result in increased protein degradation and muscle
atrophy, and indirectly contribute to the bone loss that fol-
lows glucocorticoid exposure.

Target Tissue Regulation of 
Glucocorticoid Action
Pre-receptor steroid regulation is critical to steroid action
and is regulated by 11β-hydroxysteroid dehydrogenases
(11β-HSDs), which are isoenzymes that catalyze the inter-
conversion of hormonally active cortisol and inactive corti-
sone [42]. 11β-HSD1, a low affinity NADP(H)-dependent
enzyme, displays primarily reductase activity and converts
cortisone to cortisol, and can act as a pivotal determinant
of steroid responses in bone by amplifying glucocorticoid
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signaling in osteoblasts. 11β-HSD1 is expressed in gluco-
corticoid target tissues, including bone, and can facilitate
glucocorticoid action in target tissues. The activity and syn-
thesis of 11β-HSD1 in osteoblasts is glucocorticoid depen-
dent, so that it may serve as a positive local mechanism to
amplify the effect of glucocorticoids.

Conclusions
Glucocorticoids enhance bone resorption and have impor-
tant effects on cells of the osteoblastic lineage, impairing
osteoblastic cell maturation, function, and survival. Even-
tually, this leads to a state of decreased bone formation and
remodeling, and to osteoporosis.
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