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Introduction
The osteoclast is the exclusive bone resorbing cell in the
body. Postmenopausal osteoporosis stems from estrogen
deficiency, causing an upregulation in osteoclastic bone
resorption relative to formation. The mechanisms by
which estrogen deficiency drives bone loss are complex
and poorly understood. Most of the bone sparing activity
exerted by sex steroids occurs through modulation of bone
cell life-span and decreased cytokine-driven osteoclastoge-
nesis. While it is now accepted that estrogen deficiency dis-
rupts bone homeostasis by acting on multiple cytokine
cascades and cell types, it is only recently that the depth of
estrogen action and its intercalation into the immune
response has begun to be appreciated.

Recent studies in animal models of estrogen deficiency
(ovariectomized mice or rats) now suggest that bone loss

may ultimately stem from a pathologic realignment of the
adaptive immune response driving up the production of
osteoclastogenic cytokines and stimulating bone resorp-
tion, while simultaneously limiting the magnitude of the
compensatory increase in bone formation necessary to
require bone homeostasis. This paper explores the most
recent concepts that have emerged from in vivo and in
vitro models of postmenopausal osteoporosis that support
a clear role for pathologic immune activation in the mech-
anism of estrogen deficiency induced bone loss. The rele-
vance of these concepts for human disease is still largely
unknown, and is only now beginning to be investigated.
However, a considerable body of circumstantial evidence
now exists to support a role for immune activation in the
bone destruction associated with postmenopausal
osteoporosis. These tantalizing links between animal mod-
els and human disease will be discussed.

Role of Tumor Necrosis Factor-α in 
Ovariectomy Induced Bone Loss
It has long been recognized that the cytokine tumor necro-
sis factor (TNF)-α plays a critical role in ovariectomy
induced bone destruction in humans and animals. Early
studies have found elevated levels of TNFα and interleukin
(IL)-1 produced by mononuclear cells derived from ova-
riectomized women, but not from ovariectomized women
receiving hormone replacement therapy, or from hysterec-
tomized women with intact ovaries. These elevated levels
of TNFα and IL-1 paralleled enhanced biochemical indices
of in vivo bone resorption [1]. These findings in humans
have been verified and replicated in numerous animal
studies using the standard experimental model for post-
menopausal osteoporosis, the ovariectomized mouse, or
rat. In mice and rats, antagonists of TNFα and IL-1 prevent
ovariectomy induced bone loss [2,3]. Consistent with these
findings transgenic mice over-expressing a soluble TNFα
decoy receptor that inhibits TNFα action in vivo, are pro-
tected from ovariectomy induced bone loss [4].

Although a role for TNFα in estrogen deficiency medi-
ated bone destruction has long been suspected, the sources
of TNFα and the mechanisms by which TNFα stimulates
osteoclastogenesis have only recently begun to be clarified.
The preponderance of evidence now suggests that TNFα
potently synergizes with the key osteoclastogenic cytokine,
receptor activator of nuclear factor kappa-B ligand
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(RANKL) to augment RANKL induced osteoclastogenesis
[5••,6,7,8••]. TNFα also stimulates the bone resorbing
activity of mature osteoclasts [9] and acts in part by upreg-
ulating RANKL production by bone marrow osteoblasts
[10]. Finally, TNFα has been reported to suppress bone for-
mation in vitro [11] and in vivo [3] exacerbating bone loss.

Under physiologic conditions monocytes and mac-
rophages represent a major cellular source of TNFα in the
bone marrow micro-environment. However, monocytes
and macrophages do not appear to be the basis of elevated
TNFα concentrations after ovariectomy. Instead, T cells
have been identified as the source of the enhanced levels of
TNFα necessary to upregulate bone destruction. Interest-
ingly, estrogen deficiency does not lead to an upregulation
of T cell TNFα production per cell, but instead stimulates
the expansion of the population of TNFα producing Th1
T cells [5••,12••].

How T cells are induced to proliferate after estrogen abla-
tion, involves a complex cascade of interacting cytokines and
suppression of any one of these cytokine cascades is capable
of preventing ovariectomy induced bone loss in mice.

Interleukin-7—A Key Player in Ovariectomy 
Induced Bone Loss
Much of the realignment of the adaptive immune response
that occurs during ovariectomy appears to center around
IL-7, a potent lymphopoietic cytokine that stimulates bone
destruction when injected into mice in vivo [8••,13]. IL-7
was originally suggested to mediate bone loss through cells
of the B lineage [13]. However, recent studies now demon-
strate that it is predominantly the action of IL-7 on T cells
that precipitates bone destruction [8••,14,15••]. In a
human in vitro culture system IL-7 was shown to stimulate
the secretion of soluble RANKL from T cells, and therefore
promoted osteoclast formation [14]. In contrast, IL-7 may
also be capable of suppressing osteoclast formation in
vitro through inhibitory actions on early pluripotent osteo-
clast precursors [16]. Such negative feedback loops appear
to be a common theme of cytokines involved in osteoclas-
togenesis and may be critical to limit pathologic bone
destruction. However, the net balance of IL-7 action in vivo
is strongly pro-osteoporotic [8••,13]. IL-7 potently stimu-
lates bone destruction when injected into intact wild type
mice, but fails to induce bone loss in T cell deficient nude
mice. Reconstitution of nude mice with T cells, by means
of adoptive transfer, rescues IL-7 induced bone destruction
demonstrating that IL-7 dependent bone resorption is a T–
cell-mediated phenomenon. In these studies IL-7 was dem-
onstrated to stimulate bone resorption by a mechanism
that involved T–cell-derived RANKL induced osteoclasto-
genesis, amplified by TNFα [8••].

The capacity of estrogen deficiency and IL-7 to mediate
bone loss by stimulating RANKL and TNFα in T cells is
more than just coincidental. In fact IL-7 is significantly
upregulated after ovariectomy [15••]. Importantly, the in

vivo neutralization of IL-7 completely prevents ovariec-
tomy induced bone loss in mice [15••], by blocking the
expansion of TNFα producing T cell populations [17]. In
addition, suppressing the rise in IL-7 levels after ovariec-
tomy also leads to upregulated bone formation [15••].
Together the data suggest that IL-7 is a key mediator of
estrogen deficiency induced bone destruction acting by
upregulation of osteoclastic bone resorption, through a
mechanism involving T cells, and like TNFα, exacerbating
bone loss by suppressing the magnitude of the compensa-
tory increase in bone formation known to occur in
response to estrogen deficiency.

The mechanism by which IL-7 drives T cell proliferation
and activation is extremely complex. New studies suggest
that IL-7 promotes proliferation of lymphoid hematopoietic
stem cells in the bone marrow, T cell differentiation within
the thymus, enhanced thymic output, and peripheral T cell
expansion of naïve and memory T cells. Consequently,
thymectomy is partially effective in blunting ovariectomy
induced bone loss (Unpublished data), while IL-7 neutral-
ization completely suppresses osteoclastogenesis and bone
destruction [15••]. The finding that the thymus plays an
important role in ovariectomy induced bone loss could be
particularly relevant for the osteoporosis sustained by
younger women undergoing surgical menopause. However,
in the case of postmenopausal women the role of the thy-
mus, if any, is presently unclear. Age-associated thymic atro-
phy results in a decline in T lymphocyte output concurrent
with decreased IL-7 production [18], suggesting that IL-7
may play a role in the maintenance of the thymus. Consis-
tent with this notion, administration of IL-7 has been shown
to partially reverse age-associated declines in thymopoiesis
[19]. It is consequently possible that during estrogen defi-
ciency elevated levels of IL-7 may reactivate thymic function
and contribute to the expansion of circulating T cells. Recent
data suggest that the adult thymus can indeed contribute to
T cell reconstitution as the increase in naïve T cell numbers in
adult patients receiving anti-retroviral therapy for HIV/AIDS
is largely derived from the thymus [20]. This provides direct
evidence for the functional capacity of the adult thymus. It is
also possible that an age-related decrease in thymic T cell
output could mitigate the stimulatory effects of sex steroid
deprivation on osteoclastogenesis, and may explain in part
why the rate of bone loss in postmenopausal women dimin-
ishes with age [21]. For now however, a role for increased thy-
mic output in postmenopausal bone loss in humans awaits
further investigation.

In addition to the trophic effects of IL-7 on T cells, high
levels of IL-7 also lead to a breakdown of tolerance [22]
whereby normally tolorogenic physiologic self-antigens and
foreign antigens such as peptide by-products of digestion and
antigens of bacterial origin that are routinely absorbed in the
gut, become potent stimulators of T-cell activation. This
autoimmune like condition is greatly exacerbated by another
action of IL-7, the promotion of a Th1 T cell phenotype that
leads to the copious secretion of interferon (IFNγ )  [23•].
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Interferonγ —A Potent Stimulator of Inducible 
Antigen Presentation and Bone Loss
Interferonγ  is a potent stimulator of inducible antigen pre-
sentation and acts by upregulating the class II transactivator
(CIITA), a key transcription factor necessary for major histo-
compatibility complex II expression by professional anti-
gen-presenting cells (APCs) [24]. The engagement of
antigen bearing major histocompatibility complex II mole-
cules with T cell receptors is a major physiologic mecha-
nism for the activation and expansion of naïve and memory
T cells. Surprisingly, recent data demonstrate that a signifi-
cant part of the T cell expansion process after ovariectomy is
indeed driven by enhanced antigen presentation [25••].
Consequently, it is proposed that elevated levels of IL-7
after ovariectomy lead to induction of IFNγ , which stimu-
lates CIITA and inducible antigen presentation in macro-
phages. These events cause an upregulation in antigen
presentation to T cells whose tolerance to weak antigens
may have already been degraded by enhanced concentra-
tions of IL-7 after ovariectomy. This APC-driven T-cell acti-
vation and expansion further drives up additional IFNγ
production that feeds back on APC activity sustaining the
response. In line with this concept new unpublished studies
from our laboratory demonstrate that in vivo neutralization
of IL-7 after ovariectomy in mice completely prevents the
upswing in IFNγ , CIITA, and antigen presentation after
ovariectomy. These data are consistent with reports describ-
ing the pro-resorptive properties of IFNγ  in vivo [25••,26].
Interestingly, like IL-7, IFNγ  also has the capacity to miti-
gate its destructive actions on bone by suppressing osteo-
clastogenesis through direct inhibitory actions on
osteoclast differentiation [27]. IFNγ  action is extremely
complex and recent in vitro studies demonstrate that pre-
exposure of osteoclast precursors to RANKL renders them
resistant to the suppressive effects of IFNγ  [28]. Conse-
quently, as levels of RANKL increase the more likely IFNγ  is
to overcome its direct suppressive effects on osteoclastogen-
esis, in favor of its indirect pro-osteoclastogenic effects
mediated through enhanced APC activity.

Transforming Growth Factor-β—A Potent 
Mediator of Estrogen Action in Bone 
and Immunity
The mechanisms by which estrogen suppresses IL-7 and how
IL-7 is stimulated after ovariectomy are not presently known.
However, one candidate cytokine is transforming growth fac-
tor-β (TGFβ). TGFβ is an estrogen regulated cytokine with
anti-osteoclastogenic properties [29,30] and whose concen-
tration declines after ovariectomy [31••]. TGFβ has been
reported to antagonize IL-7 production [32], and IL-7 to
antagonize that of TGFβ [33]. In addition TGFβ represses the
production of IFNγ  by directly targeting T cells and inhibit-
ing their proliferation [34]. In addition to its effects on IFNγ
production, TGFβ acts on bone marrow macrophages to
decrease the responsiveness of the CIITA gene to IFNγ  [35].

Consistent with this notion, mice with a T–cell-specific
blockade of TGFβ signaling are completely insensitive to
the bone-sparing effects of estrogen. This results from a
failure of estrogen to repress IFNγ  production, which, in
turn, leads to increased T cell activation and T cell TNF pro-
duction. Furthermore, overexpression of TGFβ in vivo pre-
vents ovariectomy-induced bone loss [31••].

Because of its capacity to repress antigen presentation
through modulation of CIITA expression, its direct sup-
pressive effect on T cell proliferation and differentiation,
and its ability to blunt the production of IL-7, TGFβ may
be a pivotal upstream mediator of estrogens protective
action in bone.

Role of Interleukin-1 in Bone Loss
While the upregulation of IL-1 after ovariectomy in
humans and mice has long been recognized [1], and sup-
pression of IL-1 shown to be partially effective in prevent-
ing ovariectomy induced bone loss in mice and rats
[2,3,36], the mechanism of IL-1 action is still not well
understood. IL-1 has been reported to have the capacity to
stimulate RANKL from osteoblastic cells [10] providing
one potential mechanism to explain how IL-1 may pro-
mote bone loss. Recently, it has been reported that the
capacity of TNFα to stimulate osteoblastic RANKL produc-
tion is mediated by IL-1 and that IL-1 may directly stimu-
late the differentiation of osteoclast precursors [37]. This
effect of IL-1 on osteoclast precursors is consistent with
earlier studies showing that IL-1 synergizes with other
cytokines including IL-3 and granulocyte macrophage-col-
ony stimulating factor (GM-CSF) to promote the differen-
tiation of human peripheral blood mobilized precursor
cells into osteoclasts in vitro [38].

The proposed mechanism by which estrogen regulates
immune functions involved in bone turnover is summa-
rized in Figure 1.

From Animal Models to Human Disease
Because of the inherent difficulties associated with human
experimentation, the majority of studies presented in this
paper represent investigations in animals. Consequently,
their applicability to human disease, in particular post-
menopausal osteoporosis, remains uncertain. However, a
number of lines of evidence suggest that pro-osteoclastoge-
nic immunologic perturbations are not uncommon in
estroprevic humans and evidence is beginning to accumu-
late to suggest that T cells play a relevant role in regulating
bone resorption in humans. It has recently been reported
that RANKL-expression on lymphocytes and bone marrow
stromal cells is significantly elevated during estrogen defi-
ciency in humans and correlates directly with increases in
bone resorption markers and inversely with serum estro-
gen levels [39]. The production of increased levels of TNFα
and IL-1 in the conditioned media of peripheral blood
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cells derived from postmenopausal women is well estab-
lished [1], while the number of CD3+ CD56+ T cells (a
TNFα producing adherent T cell population) is reported to
show a highly significant negative correlation with femoral
and lumbar bone density in estroprevic postmenopausal
women [40].

Furthermore, animal models of postmenopausal
osteoporosis show striking similarities to autoimmune dis-
eases. A significant body of evidence now suggests that estro-
gen is indeed a relevant player in autoimmune disease in
humans. Firstly the majority of autoimmune diseases have a
gender bias toward the female population. In particular
Sjögren’s syndrome, systemic lupus erythematosus, autoim-
mune thyroid disease (Hashimoto’s thyroiditis as well as
Graves’ disease), and scleroderma, in which the patient pop-
ulation is greater than 80% women, and rheumatoid arthritis
(RA), multiple sclerosis, and myasthenia gravis, in which the

sex distribution is 60% to 75% women [41]. Secondly,
puberty, menopause, and pregnancy all alter the incidence
and the course of many autoimmune diseases further sug-
gesting a role for sex hormones in autoimmunity. These
modifications of disease activity by sex steroids have been
suggested to involve the generation of a hormonal environ-
ment that favors a Th2 response. In multiple sclerosis and
RA, this environment may suppress the ongoing Th1
responses to central nervous system and joint antigens
whereas in systemic lupus erythematosus a Th2 environment
would enhance antibody production and possibly exacerbate
disease progression [41]. Recent evidence therefore impli-
cates a role for sex hormones in modulating the incidence,
course, and severity of autoimmune diseases.

Bone Loss in Rheumatoid Arthritis
Some of the most compelling evidence to suggest that
estrogen suppresses immunologic activation and bone loss
driven by inflammatory cytokines in humans comes from
human studies of RA. RA is a debilitating chronic inflam-
matory autoimmune disease [42] with complex etiology
and uncertain cause. Among the major clinical manifesta-
tions of RA is local and systemic bone loss [43]. In many
aspects this bone loss bears striking similarities to the bone
loss mediated by estrogen deficiency. Indeed, several stud-
ies suggest that estrogen mitigates the clinical manifesta-
tions of RA suggesting a common mechanism. RA typically
manifests at the time of menopause as estrogen levels
decline [44]. RA typically remits during pregnancy, in par-
allel with increasing levels of corticosteroids, estrogens,
and progesterone [45]. This is again consistent with sex ste-
roid deficiency playing a role in the onset of disease. Oral
contraceptives, which generate a condition of pseudo-preg-
nancy, also decrease the risk for RA [45]. In addition, RA is
ameliorated by treatment with estrogen-containing oral
contraceptives and by hormone therapy [46,47]. Most
importantly, recent studies now suggest a common molec-
ular basis for the systemic bone loss sustained in RA and
the bone destruction mediated by estrogen deficiency.
Studies in humans and animals have identified common
cytokine cascades shared between these two disease states.
The most important of these cytokines are RANKL, TNFα,
IFNγ , and IL-7.

The Role of Estrogen Regulated Cytokines 
IL-7, TNFα,  and IFNγ  in Rheumatoid 
Arthritis
Elevated levels of IL-7 have long been associated with RA
and juvenile RA. Increased levels of circulating IL-7 have
been identified in the plasma and synovial fluid of patients
with juvenile RA [48] and increased IL-7 messenger RNA
and protein secretion have been identified in human syn-
oviocytes isolated from RA patients [49]. Increased levels of
IL-7 not only increase antigen-driven proliferative responses

Figure 1.  A model describing the role of the adaptive immune 
response in estrogen deficiency mediated bone loss. Estrogen is a 
potent inducer of the anti-inflammatory cytokine TGFβ which directly 
represses T cell activation, APC activity, and IL-7 production. IL-7 is a 
key cytokine in this cascade and acts to stimulate T cell expansion 
and activation leading to a predominantly Th1 T cell phenotype. 
Th1 cells are characterized by high levels of IFNγ , TNFα,  and RANKL 
production. In addition IL-7 lowers the threshold of tolerance of T 
cells to prevailing antigens which together with an IFNγ  driven upreg-
ulation in APC activity, further drives up T cell activation and antigen 
presentation. TNFα, through IL-1 further upregulates RANKL pro-
duction by osteoblasts, while TNFα together with IL-7 concurrently 
represses the magnitude of the compensatory increase in bone forma-
tion, further exacerbating bone destruction. APC—antigen presenting 
cells; CIITA—class II transactivator; IFN—interferon; IL—interleukin; 
MHC—major histocompatibility complex; RANKL—receptor activator 
of nuclear factor kappa-B ligand; TGF—transforming growth factor; 
TNF—tumor necrosis factor.
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to high-affinity antigen but also, convert otherwise tolero-
genic or non-immunogenic antigens into proliferative stim-
uli. In this regard, IL-7 has been found to be a critical
modulator of low affinity peptide induced proliferation, a
feature central to the homeostatic regulation of T cell popu-
lations [22]. This ability of IL-7 to increase the sensitivity of
T cells to weak or non-immunogenic stimuli may be of great
importance in the break down of self-tolerance, setting the
stage for autoimmune diseases such as RA. IL-7 may there-
fore play an important role in the initiation of autoimmune
disease, although this notion remains speculation.

Importantly, a recent clinical study has verified a signifi-
cant five-fold increase in levels of IL-7 in vivo in the serum of
34 RA patients compared with 32 healthy controls. Impor-
tantly, as observed in the murine ovariectomy model [17], IL-
7 was found to potently stimulate IFNγ , TNFα, and RANKL
production by CD4+ T cells derived from RA patients [23•].
RANKL is the master regulator of osteoclast formation and
IL-7 is known to stimulate T cells to secrete RANKL in vitro
[14] and in vivo [8••]. In line with these data, studies con-
ducted in vivo in a rat adjuvant arthritis model have demon-
strated that RANKL production by activated T cells is central
to the systemic bone loss associated with RA [50•].

Tumor necrosis factor-α is a factor that has now been
definitively implicated in RA inflammation and whose neu-
tralization in human patients by soluble decoy receptor
(etanercept) or monoclonal antibody (infliximab) is now
used clinically to control the progression and symptoms of
RA and arrest bone destruction. Together the data suggests
that IL-7 plays a critical role in sustaining the inflammatory
levels of TNFα which are necessary for driving inflamma-
tion and bone loss in human patients with RA.

Taken together the available data now suggests that RA
and postmenopausal osteoporosis are two sides of the
same biologic coin. Although postmenopausal osteoporo-
sis stems from estrogen deficiency and RA from autoim-
munity, both diseases lead to bone destruction through an
upregulation of T cells and appear to involve the same cas-
cades of pro-inflammatory and pro-osteoclastogenic cytok-
ines, including IL-7, TNFα, IFNγ , and RANKL.

Conclusions
Current data now suggests  that  postmenopausal
osteoporosis bears much of the hallmarks of a classic
inflammatory autoimmune disease like RA. An interacting
cascade of pro-inflammatory cytokines including IL-7,
IFNγ , IL-1, RANKL, and TNFα appears to drive bone
destruction by upregulating osteoclastic bone resorption
and repressing compensatory responses in osteoblastic
bone formation. The recognition of postmenopausal
osteoporosis as a form of autoimmunity may lead to new
perspectives on the treatment of this malady should trans-
lational studies presently underway in humans bear out
the wealth of knowledge now assembled from animal
studies. Future therapies for postmenopausal osteoporosis

may need to also involve agents targeting the immune sys-
tem to fully regulate disease progression in addition to
agents that target the final mediators of bone turnover,
osteoclasts, and osteoblasts.
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