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In recent years, substantial progress has been made in
understanding the mechanism for bisphosphonate suppres-
sion of bone turnover. Bisphosphonates can now be distin-
guished based on their molecular and cellular mechanisms
of action. Simple bisphosphonates such as clodronate and
etidronate inhibit bone resorption through induction of
osteoclast apoptosis. Clodronate, and perhaps etidronate,
triggers apoptosis by generating a toxic analog of adenosine
triphosphate, which then targets the mitochondria, the
energy center within the cell. For nitrogen-containing bis-
phosphonates, the direct intracellular target is the enzyme
farnesyl diphosphate synthase in the cholesterol biosyn-
thetic pathway. Its inhibition suppresses a process called
protein geranylgeranylation, which is essential for the basic
cellular processes required for osteoclastic bone resorp-
tion. Although nitrogen-containing bisphosphonates can
induce osteoclast apoptosis, this is not necessary for their
inhibition of bone resorption.

Introduction
Bisphosphonates, in particular alendronate and rised-
ronate, are the only nonhormonal agents shown so far to
reduce the risk of spinal and nonvertebral osteoporotic
fractures. They are widely used for the treatment and pre-
vention of osteoporosis in postmenopausal women, in
men, and in glucocorticoid-treated patients. Bisphospho-
nates reduce the number of bone remodeling sites where
excessive osteoclastic destruction of bone takes place. Bis-
phosphonate-induced suppression of bone turnover leads
to improvement of bone strength, reflected in a reduction
of fracture risk, which can be attributed to improvements
in bone mass, mineralization, and architecture [1e,2].
Bisphosphonates are analogs of pyrophosphate (P-O-
P) where the geminal oxygen has been substituted by car-
bon (P-C-P) (Fig. 1). A main feature of the P-C-P backbone
is that by adhering to the hydroxyapatite component of
bone, it localizes these compounds to the target tissue. The

geminal carbon, in addition to bridging the two phospho-
rus atoms, can form two additional covalent bonds (desig-
nated R! and R?) to hydrogen or substituents such as
hydroxyls (OH), methyl groups (CH3), or other more com-
plex moieties (Fig. 1). The substituents bound to the gemi-
nal carbon of the bisphosphonate can influence the
affinity for bone and the potency and efficacy in suppress-
ing bone resorption. The attachment of a hydroxyl at posi-
tion R! increases a bisphosphonate’s affinity to bone [3].
Meanwhile, at position R?, the presence of small nitrogen-
containing hydrocarbon chains, or ring structures, can
greatly enhance antiresorptive potency, provided that the
nitrogen is at a distance of approximately four positions
from the geminal carbon. Individual R?> modifications
have no effect on binding to bone ex vivo [3]. Thus, the
various carbon and nitrogen side chains can generate a
large family of compounds (Fig. 1) with different physico-
chemical and pharmacologic properties.

Bisphosphonate Uptake by the Osteoclast

To suppress osteoclastic bone resorption, bisphosphonates
must be internalized by the osteoclast in order to interact
with their intracellular target. The pharmacokinetic param-
eters of bisphosphonates are well characterized, and bio-
availability is limited to less than 1% to 2%. It may seem
surprising that such small quantities can have such strong
protective effects on bone (eg, 0.7% of once weekly dosing
of 35 to 70 mg alendronate, currently available for clinical
use). For the potent bisphosphonates, this relates, in part,
to the specific targeting of bisphosphonates to bone. Not
only does this involve rapid binding to the hydroxyapatite
component of bone, but also preferential localization to
sites of osteoclastic bone resorption, as documented for
alendronate [4-6]. In comparison, the less potent bisphos-
phonate, etidronate, showed a more diffuse distribution
over the bone surface at its higher pharmacologic relevant
dose. By inference, all of the potent nitrogen-containing
bisphosphonates (N-BPs) should exhibit selective binding
properties similar to those of alendronate, although this
has not been verified.

The exact mechanism of bisphosphonate uptake from
the bone surface into the osteoclast cytoplasm is less
clearly understood. Earlier work suggests that the acid
secreted onto the bone surface as part of the active resorp-
tion process could release the bisphosphonate from the
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bound state and enable uptake through the ruffled border
adjacent to the resorption lacuna [4]. In support of this,
others have shown that inactive oc/oc osteoclasts, which
have no ruffled border and cannot resorb bone, do not
respond to tiludronate treatment in vitro, unless the bis-
phosphonate is microinjected directly into the cell’s cyto-
plasm [7]. More recently, however, incadronate was shown
to affect osteoclast bone attachment and lifespan in vivo in
the oc/oc mouse [8], suggesting that active bone resorption
was not required. However, for these studies, incadronate
was injected at a comparatively high dose (1 mg/kg), and
thus the response may not represent the pharmacologic
action of potent bisphosphonates. For comparison, the
human oral dose of 70 mg alendronate once a week, cor-
rected for absorption, represents the injected equivalent of
less than 10 pg/kg.

Earlier work shows that after administration of phar-
macologic relevant doses of radioactive alendronate in
vivo, the bisphosphonate can be detected inside the osteo-
clast within 4 hours [4,6]. Assuming that acid secretion
onto the bone surface is a prerequisite for the osteoclast to
internalize the relatively low doses of alendronate and

other highly potent bisphosphonates, there is likely to be a
mechanism for uptake through the plasma membrane.
Osteoclasts gather the content of the resorption lacunae
through the ruffled border and translocate it through the
cell by a process of transcytosis [9]. Although internalized
vesicles are physically located within the cytoplasm, they
remain separated from cytoplasmic contents by the vesicu-
lar membrane (originally derived from the ruffled border
membrane). One process for crossing these membranes
could involve passive diffusion, although recent evidence
suggests that the process may involve active or facilitated
transport [10,11]. First, bisphosphonates’ effects on osteo-
clasts attached to nonmineralized bone are suppressed
when the active process of pinocytosis is inhibited [10].
Pinocytosis is somewhat analogous to transcytosis because
it involves the uptake of fluid by invagination and pinch-
ing off of the plasma membrane. More recently, the effects
of alendronate on its target intracellular pathway within
the osteoclast were found to be suppressed by combining
alendronate with increasing amounts of clodronate [11],
which acts through its own independent mechanism of
action. This showed that the mechanism for entry into the



Mechanism of Action of Bisphosphonates ® Reszka and Rodan 47

cytoplasm was subject to competition, suggesting the
involvement of a structure-specific process. Radiolabel
studies suggest that ibandronate uptake could be partially
suppressed by combining it with unlabeled clodronate. A
reasonable interpretation of the small but significant
reductions in ibandronate uptake is that pinocytosis
remained unaffected, whereas transmembrane transport
was inhibited by the added clodronate.

Taken together, bone resorption seems to be required for
uptake of potent bisphosphonates, likely through the ruffled
border. Once internalized in transcytotic vesicles, bisphos-
phonates may cross the vesicular membrane into the cyto-
plasm through an active process. However, because the N-
BPs, acting through their respective intracellular targets, ulti-
mately suppress resorption and the transcytotic process, this
may also limit excessive exposure to the bisphosphonate.
This could then reduce the likelihood that the osteoclast
undergoes apoptosis. For N-BPs, such as alendronate and
risedronate, this seems to be the case [12ee]. Thus, for N-BPs
there seem to be two built-in negative feedback loops for
limiting their action. These loops are the availability of
resorption surfaces to localize on, and active resorption
required for osteoclast bisphosphonate uptake. However, for
clodronate and etidronate, their different mechanism of
action precludes the sparing of the osteoclast.

Clodronate and Etidronate

Over the years, bisphosphonates have been shown to affect
several biochemical pathways, especially those involving
phosphate. Intracellular metabolism involving the phos-
phate moiety was first documented for methylenebisphos-
phonate (medronate) in dictyostelium discoideum [13].
Methylene-containing analogs of adenosine triphosphate
(ATP) and diadenosine tetraphosphate were detected
where the bisphosphonate had substituted for pyrophos-
phate. This suggested that other bisphosphonates might
also be metabolized to similar compounds. Therefore, a
most probable mechanism of action for clodronate
involves the incorporation of the P-C-P backbone into the
B,y positions of ATP, ultimately generating a toxic metabo-
lite, AppCCl,p [14]. Etidronate and tiludronate were simi-
larly metabolized, although to a far lesser degree. For
clodronate, conversion to AppCCl,p seems to be the pri-
mary mechanism. This process involves its substitution for
two of three phosphates, suggested to take place in the
reverse reaction of ATP-dependent transfer RNA (tRNA)
formation [15®e]. Recent in vivo studies have demon-
strated the presence of AppCCl,p in enriched osteoclast
preparations isolated from the bone marrow of rabbits
treated with clodronate [16]. Injection of rats with lipo-
some-encapsulated clodronate to target macrophages also
resulted in the accumulation of AppCCl,p in these cells.
Consistent with different mechanisms for different bispho-
sphonates, no metabolism of alendronate was detected in
osteoclasts or macrophages after similar administration.

Several forms of evidence suggest that the conversion
of clodronate to AppCCl,p is responsible for its induc-
tion of osteoclast apoptosis and inhibition of bone
resorption. Clodronate and etidronate have been shown
to induce apoptosis in purified osteoclast cultures
through direct action on the osteoclast itself [12ee,16-
20]. A strong link between clodronate and etidronate
induction of osteoclast apoptosis and their antiresorptive
effects has also been established [12ee]. Therefore, simply
blocking the apoptotic process can counteract the effects
of these simple bisphosphonates, but not alendronate or
risedronate, on osteoclastic bone resorption. Other evi-
dence strongly suggests that the formation of the
AppCCl,p clodronate/ATP analog is sufficient to induce
osteoclast apoptosis [15¢,16,20]. This is based on the
finding that direct delivery of AppCCl,p to osteoclasts
and macrophages results in the induction of apoptosis.
Apoptosis is likely to be induced by AppCCl,p through
inhibition of the osteoclast mitochondrial adenine nucle-
otide translocase [20]. This results in the collapse of the
mitochondrial membrane potential, leading to the
release of cytochrome-C, caspase activation, and other
steps of the apoptotic program.

Several forms of evidence suggest that clodronate acts
through formation of a toxic ATP analog, AppCCl,p,
which disrupts the mitochondrial membrane potential
and induces osteoclast apoptosis. The subsequent loss of
viable osteoclasts leads to a net reduction in bone turnover
and an increase in bone mass. Etidronate may act through
a similar mechanism, but further evidence is needed.

Farnesyl Diphosphate Synthase

As the Molecular Target of the
Nitrogen-containing Bisphosphonates
Approximately 15 years ago, it was shown that certain bis-
phosphonate derivatives (isoprenoid [phosphinylmethyl]
phosphonates) could inhibit the cholesterol biosynthetic
enzyme, squalene synthase [21]. Since then, numerous stud-
ies have described the search for more potent bisphospho-
nate inhibitors of this enzyme or capitalized on squalene
synthase inhibitory activity to measure N-BP levels in clinical
serum samples. Despite that all bone-active N-BPs suppress
the mevalonate/cholesterol biosynthetic pathway (Fig. 2),
squalene synthase is not the relevant target for inhibition of
bone resorption because repletion of cholesterol does not
block N-BP (or statin) effects on osteoclasts [22ee]. Instead, a
number of studies suggest that an enzyme upstream in this
pathway controlling both cholesterol synthesis and isopreny-
lation is the critical target of the N-BPs in the osteoclast
[120e,19,220¢,23 240]. This led to the identification of FPP
synthase as the relevant molecular target [25-27]. This
molecular action has recently been confirmed in vivo for sev-
eral N-BPs, including alendronate, risedronate, and iban-
dronate, but not for the simple bisphosphonates, clodronate
and etidronate [16,28ee].
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Figure 2. Schematic of the cholesterol biosyn-
thetic pathway. Sites of inhibition for the nitro-
gen-containing bisphosphonates (N-BPs;
farnesyl diphosphate [FPP] synthase) and statins
(3-hydroxy-3-methylglutaryl coenzyme A
[HMG-CoA] reductase) are indicated. The basic
structures of FPP and geranylgeranyl diphos-
phate (GGPP) are also shown. DMAPP—dime-
thyallyl diphosphate; GTPase—guanosine
triphosphate; IPP—isopenteny! diphosphate.

Farnesyl diphosphate (FPP) synthase is an enzyme of
the cholesterol biosynthetic pathway (Fig. 2) responsible
for producing the isoprenoid lipids FPP (15 carbon) and
geranylgeranyl diphosphate (GGPP; 20 carbon). While the
FPP isoprenoid can be condensed to form squalene and
ultimately cholesterol, its conversion to GGPP is the criti-
cal step for N-BP suppression of osteoclastic bone resorp-
tion. Isoprenylation involves the transfer of a farnesyl
(farnesylation) or geranylgeranyl (geranylgeranylation)
lipid group onto a cysteine amino acid residue in charac-
teristic carboxy-terminal motifs (eg, Cys-Ala-Ala-X). N-BPs
suppression of FPP synthase causes a decline in the levels
of FPP and consequently GGPP. The subsequent loss of
protein geranylgeranylation leads to osteoclast inactiva-
tion. Most of the isoprenylated proteins identified to date
are small geranylgeranylated regulatory proteins, named
guanosine triphosphatases (GTPases), and these are
important for the control of a variety of cell processes
required for osteoclast function, including cytoskeletal reg-

ulation, formation of the ruffled border, and regulation of
cell survival.

Bisphosphonate inhibition of FPP synthase and its
relation to protein isoprenylation provide the best docu-
mentation for a cause-effect relationship between a molec-
ular target and a functional consequence in the osteoclast.
Because FPP synthase is required for the synthesis of
metabolites that are further processed and modified by
downstream enzymes, simply replenishing the missing
metabolites can restore the isoprenylation system. Among
the various downstream metabolites, only GGPP, which
can be replenished by the addition of the lipid alcohol,
geranylgeraniol, prevents inhibition of osteoclast forma-
tion and bone resorption by the N-BPs [12e¢,220¢,24e].
The geranylgeraniol effect to prevent N-BP inhibition of
bone resorption has been demonstrated in the presence of
inhibitory concentrations of alendronate, ibandronate, or
risedronate. Furthermore, N-BP effects can be mimicked by
the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
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reductase inhibitors, lovastatin and mevastatin (upstream
of FPP synthase), and this too can be blocked by addition
of geranylgeraniol [22ee,29]. Meanwhile, mevalonate, a
metabolite that feeds into this pathway between sites of
statin and N-BP action, can completely rescue inhibition of
resorption by the statins but not the N-BPs. N-BPs compet-
itively inhibit FPP synthase [30], suggesting that increasing
amounts of upstream metabolites could have some effect
on restoring osteoclast function. Consistent with this,
some partial effects of mevalonate have been reported
[22e¢,31]. Taken together, these observations strongly sug-
gest that N-BP inhibition of bone resorption is a conse-
quence of competitive FPP synthase inhibition with
resulting loss of protein geranylgeranylation.

Substantial evidence has accumulated to link the loss of
geranylgeranylation to induction of osteoclast apoptosis, dis-
ruption of the actin cytoskeleton, and altered membrane traf-
ficking [ 12#9,19,32,33]. It was reported that bisphosphonates
induce osteoclast apoptosis, both in vitro and in vivo, in nor-
mal mice and in mice with increased bone resorption [17].
Induction of apoptosis in purified osteoclast cultures by alen-
dronate and risedronate (not clodronate or etidronate) can be
blocked by the addition of geranylgeraniol, but not farnesyl,
suggesting that, like with bone resorption responses, only ger-
anylgeranylation was critical [12e,19]. Geranylgeraniol was
also effective in blocking statin-induced osteoclast apoptosis.
Consistent with this, an inhibitor of geranylgeranylation
(GGTI-298), but not farnesylation (FI1-277), can induce
osteoclast apoptosis in vitro [32].

The signaling pathways involving geranylgeranylated
small GTPases that are affected by bisphosphonates and
that lead to osteoclast apoptosis remain to be determined.
Perhaps most proximal to the GTPases is the mammalian
target of rapamycin (mTOR)/ribosomal protein S6 kinase
(S6K) signaling pathway [34]. Signaling through this path
is suppressed when geranylgeranylation is blocked in the
osteoclast. Furthermore, specific inhibition of mTOR by
rapamycin causes induction of osteoclast apoptosis over a
similar time course to that of the N-BPs. Downstream con-
sequences of N-BP or rapamycin treatment include activa-
tion of caspases, pro-apoptotic kinase, and mammalian
sterile-zo-like kinase (MST1). MST1 was identified as a
pro-apoptotic signaling intermediate downstream of the
bisphosphonates that is activated during apoptosis by N-
BPs, lovastatin, and clodronate [19]. MST1 kinase acts as a
substrate for caspases 3, 7, and 9 and as an activator of
these caspases [35,36]. MST1 is thus responsive to and an
inducer of the apoptotic process. Caspase cleavage of MST1
results in the formation of an endogenously, highly active
kinase species. This is most likely mediated through
caspase 3, the major effector caspase activated in osteo-
clasts undergoing apoptosis following treatment with a
range of bisphosphonates in vitro [37].

Although induction of apoptosis will lead to a decrease
in the number of osteoclasts and thus suppress resorption,
this is usually seen only after longer treatment with bis-

phosphonates. Brief 48-hour treatments with alendronate,
risedronate, or ibandronate, but not clodronate and eti-
dronate, were found to increase osteoclast number in vivo
[28e¢]. In vitro, N-BP suppression of resorption is seen
prior to reductions in osteoclast number [12ee,33], sug-
gesting direct inhibition of osteoclast function. Suppres-
sion of the apoptotic process had no effect on N-BP
disruption of the cytoskeleton or on their inhibition of
bone resorption [12ee]. It was reported that following bis-
phosphonate administration, osteoclasts show changes in
morphology and appear inactive [38]. The changes are
numerous and include alterations in the cytoskeleton,
including actin and vinculin and disruption of the ruffled
border [4,38,39,40]. In comparison with their effects on
survival, N-BPs were shown to disrupt the actin cytoskele-
ton and vesicular trafficking in vitro prior to or separately
from induction of apoptosis [12ee,33].

Based on these observations, means of suppressing
osteoclastic bone resorption, other than apoptosis, seem
more likely for the N-BPs when administered at clinically rel-
evant doses. Based on our understanding of the functions of
geranylgeranylated proteins, we suggest that regulation of
vesicular trafficking (eg, formation of the ruffled border) and
cytoskeletal structures are the primary targets. The ruffled
border is a convoluted membrane that faces the bone surface
and acts as a hallmark of active osteoclasts. Disappearance of
the ruffled border provides morphologic evidence for mech-
anism-based osteoclast inactivation and could explain the
lack of acid extrusion caused by alendronate in isolated
osteoclasts [41]. Ruffled border formation is a process that is
highly dependent on cytoskeletal function and strongly regu-
lated by geranylgeranylated GTPases, such as Rac and Rho.
Moreover, the vesicles normally located above (that disap-
pear after nitrogen bisphosphonate treatment) are needed
for the formation of the ruffled border, and the trafficking of
these vesicles is largely under the control of the Rab GTPases,
which are also geranylgeranylated. Because the ruffled border
and vesicles disappear after alendronate treatment, several
GTIPases could be implicated in the response.

Although our understanding of the roles of geranylger-
anylated GTPases is limited, several have been shown to
play a functional role in the osteoclast. The Rabs play a key
role in controlling vesicular trafficking, and at least seven
different Rab proteins have been identified in rat osteo-
clasts. These GTPases are physically associated with the ruf-
fled border and vesicular structures [42]. Suppression of
one of these (Rab7) by blocking expression within the
osteoclast disrupts the targeting of vesicles to the ruffled
border with ultrastructural changes remarkably similar to
those seen after treatment with alendronate [4,43]. The
functional consequence of this is a reduction in the num-
ber and size of bone resorption pits. With respect to cyto-
skeletal organization and migration, three Rho family
proteins, Cdc42, Rac, and Rho, have been shown to play a
regulatory role in the osteoclast. Inactive mutants of either
Rac or RhoA suppress bone resorption, associated with dis-
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ruptions in osteoclast morphology, motility, and cytoskele-
tal organization [44-46].

The loss of function of either Rab or Rho family proteins
caused by N-BPs should correlate with their normal rate of
turnover within the cell because there is no evidence to sug-
gest that the lipid component can be lost before the protein
is degraded. As each geranylgeranylated protein is synthe-
sized, it is processed to include one or two geranylgeranyl lip-
ids. Therefore, effects of lost geranylgeranylation depend on
the normal lifespan of each affected protein. For RhoA, the
half-life of the protein has been estimated at 31 hours [47],
suggesting that effects of N-BPs, if mediated through this pro-
tein, should be observed within a similar or longer time
frame. However, time-course analyses suggest that, at least for
alendronate, suppression of bone resorption is much
quicker, with effects seen within the first 24 hours of treat-
ment [12e¢,33]. For Cdc42, the half-life is shorter, approxi-
mately 15 hours, which could suggest a role for this protein
in the overall response, and overexpression of Cdc42 has
been shown to alter cytoskeletal structure in the osteoclast
[46]. Less is known about the respective half-lives of other

geranylgeranylated proteins with known function in the
osteoclast. We speculate that the identification of the rate-
limiting geranylgeranylated protein with the shortest half-life
could lead to the identification of the protein(s) involved in
the earliest responses to N-BP treatment.

Conclusions

With recent advances in basic research tools, we have gained
substantial information regarding the molecular and cellular
mechanisms of action of bisphosphonates. Simple bisphos-
phonates such as clodronate and etidronate act at the cellular
level by inducing osteoclast apoptosis (Fig. 3). The conse-
quent reduction in viable osteoclast number results in a net
reduction in bone turnover. At the molecular level, strong
evidence suggests that clodronate acts as a sort of “pro-drug”
that is metabolized intracellularly to form AppCCl,p, a toxic
ATP analog that inhibits the mitochondrial adenine nucle-
otide translocase, thus inducing osteoclast apoptosis. The
molecular mechanism for etidronate induction of apoptosis
remains to be firmly established.
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In stark contrast to the simple bisphosphonates, N-BPs
do not require apoptosis in order to suppress osteoclastic
bone resorption. Substantial data show inhibition of bone
resorption in the absence of any apoptotic response (Fig.
3). Inhibition of osteoclast function seems to be the conse-
quence of GTPase inactivation and is achieved through loss
of protein geranylgeranylation. While we wait for further
information regarding exactly which GTPases are responsi-
ble, vesicular and cytoskeletal analyses suggest that the
responsible agents may be GTPases of the Rho and Rab
families. The process of narrowing the possibilities to one
or few GTPases is hampered by the fact that the N-BPs
inhibit FPP synthase, with a resulting broad inhibition of
geranylgeranylation, along with farnesylation and choles-
terol synthesis. To that extent, the major advances over the
past few years have related to the identification of this met-
abolic pathway, specifically FPP synthase, as the target of
the N-BPs and the identification of geranylgeranylation as
the key downstream process suppressed by these agents.
Future identification of key GTPase targets that lie further
downstream may provide additional possibilities for the
development of novel osteoporosis therapies.
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