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Abstract
Purpose of review  This review provides a comprehensive update on recent advancements in melanoma treatment by high-
lighting promising therapeutics with an aim to increase awareness of novel interventions currently in development.
Recent Findings  Over the last decade there has been considerable expansion of the previously available treatment options 
for patients with melanoma. In particular, novel immunotherapeutics have been developed to expand on the clinical advance-
ments brought by BRAF targeting and immune checkpoint inhibitors.
Summary  Despite the success of checkpoint inhibitors there remains an unmet need for patients that do not respond to 
treatment. This review delves into the latest advancements in novel checkpoint inhibitors, cytokines, oncolytic viruses, vac-
cines, bispecific antibodies, and adoptive cell therapy. Preclinical experiments and early-stage clinical trials studies have 
demonstrated promising results for these therapies, many of which have moved into pivotal, phase 3 studies.
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Abbreviations
LAG-3	� Lymphocyte-Activation Gene 3
TIGIT	� T cell immunoreceptor with immunoglob-

ulin and ITIM domain
TIM3	� T cell immunoglobulin and mucin 

domain-containing protein 3
CTLA-4	� Cytotoxic T-lymphocyte associated pro-

tein 4
PD-L1	� Programmed death-ligand 1
gp100	� Glycoprotein 100
PRAME	� PReferentially expressed Antigen in 

MElanoma
TCR-T	� T cell receptor-engineered T cell
GM-CSF	� Granulocyte-macrophage colony-stimulat-

ing factor
IL	� Interleukin
GALV-GP-R-	� Gibbon ape leukemia virus

MHC-II	� Major Histocompatibility Complex Class 
II

TLR9	� Toll-like Receptor 9

Introduction

The advent of modern therapeutics targeting BRAF and 
immune-checkpoint blockade has driven clinical improve-
ment for patients with melanoma. Prior to the introduction 
of immune checkpoint inhibitors (ICIs) and targeted ther-
apy, metastatic melanoma was associated with an expected 
median survival of approximately six to nine months [1]. 
Outcomes have improved significantly since then with 
median survival in clinical trials demonstrated as exceeding 
six years [2, 3]. Despite these improvements unfortunately 
at least half of patients do not obtain long term survival, and 
emphasizes the need for novel therapeutics.

While the field is optimistic, there have been a series of 
setbacks in seminal trials that have brought sobriety to the 
field. Bempegaldesleukin, a beta/gamma selective IL-2 ago-
nist, showed promise in a phase 2 trial but failed to improve 
progression-free survival (PFS) or overall survival (OS) in 
a phase 3 trial [4]. Similarly, epacadostat, an indoleamine 
2,3-dioxygenase-1 (IDO1) inhibitor used in combination 
with pembrolizumab suggested anti-tumor activity in a 

 *	 Jason J. Luke 
	 lukejj@upmc.edu

1	 UPMC Hillman Cancer Center and the University 
of Pittsburgh, 5150 Centre Ave. Room 1.27C, Pittsburgh, 
PA 15232, USA

2	 University of Pittsburgh Medical Center, 3459 Fifth 
Ave. Room W‑927, Pittsburgh, PA 15213, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11912-024-01551-4&domain=pdf


827Current Oncology Reports (2024) 26:826–839	

phase 1/2, but failed to improve PFS or OS in a phase 3 
trial [5, 6].

Despite this, many intriguing mechanism-based emerging 
therapies hold monotherapy promise, as well as in combina-
tion with ICIs or targeted therapy. Here, we highlight and 
overview emerging approaches with potential to improve 
outcomes for patients with melanoma (Fig. 1).

Novel Immune‑Checkpoint Inhibitors: 
Adjuvant/Neoadjuvant Therapy

While the majority of patients diagnosed with melanoma 
present with resectable disease, many remain at high risk 
of recurrence. Anti-programmed cell death protein 1 (PD-
1) therapy has demonstrated improvement in recurrence-
free survival (RFS) for patients with resectable IIIA-IV 
melanoma, which has since been expanded to patients 
with IIB-IIC melanoma [7, 8•, 9]. Neoadjuvant approaches 
have also emerged, notably including the phase 2 SWOG 
S1801 trial demonstrating improved event-free survival for 

neoadjuvant-adjuvant pembrolizumab compared to adju-
vant (72% vs 49%) without a significant increase in adverse 
events [10••].

Beyond PD1, other immune-checkpoints have been 
implicated in immune evasion and are being explored in 
clinical trials. Lymphocyte-Activation Gene 3 (LAG-3) is an 
immune checkpoint found on the surface of T cells, B cells, 
dendritic cells, and NK cells. Due to its structural similar-
ity to CD4, LAG-3 is capable of binding to Major Histo-
compatibility Class II (MHC-II), which generates inhibitory 
intracellular signaling within T cells and inhibits binding 
of MHC-II to CD4. Persistent T cell activation results in 
upregulation of LAG-3 and T cell dysfunction [11–14]. This 
shift towards an exhausted T cell phenotype within tumor-
infiltrating lymphocytes (TILs) results in immune evasion of 
tumor cells and blockade of LAG-3 results in upregulation 
of CD8+ T cell activity and restoration of immune surveil-
lance [15].

Relatlimab is a LAG-3 inhibitor that received FDA 
approval in 2022 for the treatment of advanced melanoma 
following the results of RELATIVITY-047, a phase 2/3 clin-
ical trial that demonstrated improved PFS in patients treated 

Fig. 1   Overview of novel therapeutic strategies in melanoma
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with relatlimab and nivolumab compared to nivolumab alone 
[16•]. Relatlimab is under investigation for the treatment of 
melanoma in both the neoadjuvant and adjuvant settings. 
A phase 2 trial of neoadjuvant relatlimab in combination 
with nivolumab demonstrated high rates of pathologic 
response with a 57% complete pathologic response and 
70% overall pathologic response rates [17]. The phase 3 
RELATIVITY-098 trial is underway to investigate the effi-
cacy of nivolumab plus relatlimab versus nivolumab alone 
in the stage III adjuvant setting [18]. Another anti-LAG-3 
monoclonal antibody, fianlimab is also being studied in 
combination with the anti-PD-1 antibody cemiplimab in 
the neoadjuvant, adjuvant, and metastatic settings. A phase 
3 trial is underway comparing fianlimab and cemiplimab 
to pembrolizumab monotherapy in the adjuvant setting for 
IIC-IV melanoma [19] A phase II neoadjuvant-adjuvant trial 
is also planned [20].

T cell immunoreceptor with immunoglobulin and ITIM 
domains (TIGIT) is present on CD8+ T and CD4+ T cells, 
natural killer (NK) cells, regulatory T cells (Tregs), and fol-
licular T helper cells [21]. Dual PD-1 and TIGIT inhibi-
tion augments proliferation and function of antigen-specific 
CD8+ T cells and TILs isolated from patients with mela-
noma [22]. Vibostolimab is an anti-TIGIT antibody that 
has been investigated in the neoadjuvant setting phase 1/2 
KEYMAKER-U02 trial investigating pembrolizumab com-
bined with investigational agents including vibostolimab vs 
pembrolizumab alone [23, 24]. The phase 3 KEYVIBE-010 
trial is underway to explore the use of adjuvant vibostolimab 
in combination with pembrolizumab compared to pembroli-
zumab monotherapy in patients with IIB-IV melanoma [25].

T cell immunoglobulin and mucin-domain contain-
ing-3 (TIM-3) is an immune checkpoint that is selectively 
expressed on the surface of interferon-gamma (IFN-γ) pro-
ducing TH1 cells [26]. Similar to PD-1, TIM-3 expression is 
a marker of T cell exhaustion. Inhibition of TIM-3 results in 
T cell hyperactivation and increased IFN-γ production [15, 
27]. TIM-3 also plays a role in innate immunity as TIM-3 
blockade has been shown to improve NK cell cytotoxic 
activity [28]. TIM-3 expression on tumor-antigen specific T 
cells is associated with T cell dysfunction, which has given 
rise to the hypothesis that TIM-3 blockade may restore 
immune surveillance [29] Specifically for melanoma, high 
expression of TIM-3 is a marker of poor prognosis [30]. 
A phase 2 neoadjuvant trial is comparing the PD-1 inhibi-
tor dostarlimab to the PD-1/TIM-3 inhibitor combination 
dostarlimab and cobolimab [31].

Novel Immune‑Checkpoint Inhibitors: 
Advanced Melanoma

There is an unmet need for patients with PD-1 refractory 
advanced melanoma where outcomes continue to be poor 
[32]. As anti-PD-1 and anti-CTLA-4 ICIs have demonstrated 
efficacy in both the adjuvant setting and advanced disease, 
the novel immune checkpoints LAG-3, TIM-3, and TIGIT 
are of great conceptual interest for advanced disease as well.

The combination of fianlimab and cemplimab have shown 
meaningful results in advanced disease in a phase 1 trial, 
with an objective response rate of 63.8% in anti-PD-1 naïve 
patients [33]. Efficacy of the combination is also favorable in 
advanced disease that recurs after adjuvant PD-1 treatment 
with an ORR of 60.9% [34•]. These early promising results 
have led to the initiation of two phase 3 trials in patients with 
advanced disease. One trial is comparing the combination to 
pembrolizumab monotherapy and the other comparing the 
combination to relatlimab and nivolumab [35, 36].

Trials are exploring anti-TIGIT and TIM-3 antibodies in 
advanced melanoma as well. A phase 1 trial of cobolimab 
as monotherapy and in combination with anti-PD-1 therapy 
included 46 patients with advanced melanoma. The treat-
ment was well tolerated with a grade 3/4 adverse event rate 
of 4.3%. A phase 2 trial is planned to further evaluate effi-
cacy [37]. A phase 2 trial is currently recruiting patients 
with PD-1 refractory advanced melanoma to determine the 
efficacy of the anti-TIGIT antibody domvanalimab in com-
bination with anti-PD-1 zimberelimab [38].

Novel CTLA‑4 Antibodies

CTLA-4 is expressed on CD8+ cytotoxic T cells as well 
as immunosuppressive CD4+ Tregs including intratumoral 
Tregs [39]. Preclinical murine models have indicated that 
administration of ipilimumab results in a reduction of intra-
tumoral Tregs by antibody-dependent cell-mediated cytotox-
icity (ADCC). However, in human tumor samples, no such 
reduction of Treg occurs after anti-CTLA-4 administration 
[40]. As Tregs have shown to impair anti-tumor immune 
response, Treg depletion may improve clinical response to 
anti-CTLA-4 therapy [41]. ADCC is dependent on bind-
ing of the Fc region of antibodies to the Fcγ receptors on 
NK cells, neutrophils, monocytes, and macrophages [42, 
43]. Recognition of the importance of ADCC in the mecha-
nism of CTLA-4 antibodies’ depletion of Tregs and subse-
quent increase in the CD8/CD4 ratio has led to the devel-
opment of CTLA-4 antibodies with Fc regions that have 
increased binding affinity to Fcγ receptors. Botensilimab is 
an Fc-enhanced CTLA-4 antibody that has demonstrated 
an ability to increase the CD8/CD4 ratio within the tumor 
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microenvironment [44]. A phase 2 trial is currently under-
way investigating botensilimab in patients with advanced 
melanoma as monotherapy and in combination with the anti-
PD-1 antibody balstilimab [45].

Although CTLA-4 antibodies have resulted in clini-
cal improvements for patients with melanoma, they carry 
a significant risk of autoimmune-like toxicity [46]. One 
approach to preserving the efficacy of CTLA-4 inhibi-
tion while limiting its toxicity is to develop tumor-specific 
CTLA-4 antibodies. ONC-392 is an acid-sensitive CTLA-4 
antibody that dissociates from CTLA-4 in the acidic envi-
ronment of endosomes allowing for CTLA-4 to be recycled 
to the cell surface. Preservation of CTLA-4 on the surface of 
Tregs protects against immune-related adverse event (irAE) 
development seen with anti-CTLA-4 antibodies such as ipili-
mumab [47]. The phase 1/2 PRESERVE-001 trial is under-
way investigating ONC-392 alone and in combination with 
anti-PD-1 therapy in patients with advanced solid tumors 
including melanoma [48]. Although the efficacy of ONC-
392 is still under investigation, a low rate of irAEs was seen 
in the initial dose-finding portion of the trial [49].

Vaccines

Increasing evidence suggests that anti-tumor adaptive 
immune responses are neoantigen specific and this may out-
line a novel path for drug development in cancer immuno-
therapy. Vaccines have long been used to stimulate adaptive 
immunity to fight infectious diseases but have yet to make a 
major impact in cancer. Early investigations into therapeu-
tic vaccines focused on overexpressed self-antigens such as 
gp100. However, these vaccines were unsuccessful clinically 
[46]. As self-antigens are present in non-malignant tissues, 
they are subject to immune tolerance and carry a risk of 
autoimmune toxicity [50]. Neoantigens provide increased 
specificity as they arise due mutations within tumor tissue. 
Because neoantigens vary from patient to patient, they must 
be targeted using personalized an individualized approach. 
Personalized vaccines utilize whole exome sequencing of 
tumor tissue to identify tumor neoantigens, which are then 
analyzed for immunogenicity either via a bioinformatics 
prediction platform or directly using an IFN-γ release assay 
[51].

The first personalized vaccines used in the treatment of 
melanoma were peptide vaccines, which use short neoanti-
gen peptides to stimulate an anti-tumor immune response. 
NEO-PV-01 is one such peptide vaccine that consists of up 
to 20 peptides that are 14–35 amino acids long. A phase Ib 
trial of NEO-PV-01 in combination with anti-PD-1 therapy 
demonstrated favorable side effect profile with no serious 
treatment-related adverse events in patients with advanced 
melanoma. NEO-PV-01 treatment also induced an immune 

response to neoantigens not targeted by the vaccine known 
as epitope spread [52•]. Peptide vaccines have also been 
combined with adjuvants to improve the immune response. 
EVX-01 is a personalized vaccine that consists of neoantigen 
peptides in combination with a novel liposomal adjuvant 
(CAF09b) [53]. The phase 2 KEYNOTE-D36 trial is under-
way to evaluate the efficacy of this therapy in combination 
with pembrolizumab for patients with advanced melanoma 
[54].

An alternative to peptides vaccines are mRNA vaccines, 
which rely on uptake of mRNA into antigen-presenting 
cells leading to expression of tumor-specific neoantigens 
and subsequent MHC presentation. The resulting antigen 
presentation stimulates CD8+ and CD4+ T cells directed 
against these neoantigens [55]. The mRNA-4157 (V940) 
vaccine, also known as an individualized neoantigen ther-
apy, is synthesized using mRNA from up to 34 neoantigens 
[56]. The phase 2 mRNA-4157-P201/KEYNOTE-942 trial 
demonstrated improvements in RFS and distant metastasis-
free survival (DMFS) in patients with resectable IIIB-IV 
melanoma compared to pembrolizumab alone [57••, 58]. 
An adjuvant phase 3 trial for mRNA-4157/V940 is currently 
underway in resected stage IIB-IV melanoma.

Therapeutic mRNA vaccines are also being investigated 
for the treatment of advanced melanoma. BNT122 is an 
mRNA vaccine that encodes for up to 20 neoantigens and is 
administered intravenously. A phase 2 study is underway to 
evaluate the efficacy of BNT122 in combination with pem-
brolizumab in patients with advanced melanoma [59].

Immunomodulatory vaccines utilize a different strategy 
than those targeting tumor neoantigens. These vaccines tar-
get immunosuppressive cells that allow for immune evasion 
by tumor cells. IDO1 and PD-L1 are expressed by immuno-
suppressive cells and are associated with T cell exhaustion 
[60, 61]. IO102/IO103 is a first-in-class immunomodula-
tory vaccine that targets both IDO1 and PD-L1. Results 
from a phase 1/2 trial of IO102/IO103 in combination with 
nivolumab demonstrated an objective response rate of 80% 
in patients with advanced melanoma [62]. A phase 3 trial 
is underway.

Bispecific Antibodies

ICIs have brought significant clinical benefits but do not help 
all patients and can have dose limiting toxicities, especially 
in combination. Patients with insufficient tumor-specific 
CD8+ T cells or neoantigen expression may not respond 
to ICI therapy [63]. As such, an opportunity for therapies 
that increase the population of tumor-reactive T cells has 
emerged. One such therapy involves the use of bispecific 
T cell engagers (BiTEs). BiTEs are comprised of a T cell 
targeting antibody, usually CD3, linked to an antibody tar-
geting a tumor-associated antigen. Binding of both arms of 
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the BiTE leads to activation of the T cell resulting in cyto-
toxic activity. However, the utility of BiTE therapy has been 
limited by the requirement of a cell surface antigen target 
with sufficient specificity to limit on-target, off-tumor toxic-
ity. Additionally, upregulation of immune checkpoints has 
been shown to occur after exposure to BiTE therapy [64]. 
An alternate platform for T cell engagers is the Immune 
mobilizing monoclonal T cell receptors against cancer 
(ImmTACs). ImmTACs are composed of an engineered T 
cell receptor with an activating anti-CD3 effector domain. 
The engineered T cell receptor has enhanced affinity for 
specific peptide-HLA complexes on cell surfaces [65, 66]. 
Targeting the peptide-HLA complex allows for targeting of 
intracellular proteins. The resulting action of ImmTACs is 
T cell activation and colocalization within the tumor micro-
environment. The cytotoxic activity of T cells leads to lyses 
of target cells and increased antigen exposure capable of 
stimulating a further immune response [67].

Tebentafusp is a gp100 peptide-HLA directed ImmTAC 
that received FDA approval in 2022 for the treatment of 
metastatic uveal melanoma after a phase 3 trial demonstrated 
an overall survival benefit [68, 69]. Uveal melanoma has a 
relatively low amount of neoantigen expression and inter-
tumoral CD8+ T cells compared to cutaneous melanoma, 
which contributes to the relatively lower response rate to 
ICIs [70]. Gp100 is highly expressed in both uveal and cuta-
neous melanomas leading to the exploration of tebentafusp 
as a potential therapeutic for patients with PD-1 refractory 
advanced melanoma [71]. TEBE-AM is an ongoing phase 
2/3 multi-center trial enrolling PD-1 refractory patients uti-
lizing tebentafusp as monotherapy and in combination with 
pembrolizumab [72].

Beyond gp100, another promising target for TCR based 
therapy is Preferentially expressed Antigen of Melanoma 
(PRAME). PRAME is commonly overexpressed in mela-
noma but only expressed at low levels in some non-neoplas-
tic tissues [73]. This differential expression profile similar 
to gp100 has led to its recognition as a target for ImmTACs. 
IMC-F106C is PRAME-targeting ImmTAC currently under 
investigation for the treatment of advanced melanoma. Ini-
tial results from an ongoing phase I trial revealed a grade ¾ 
adverse event rate of 31% of which the most common were 
lymphopenia (14%) and AST increase (7%). Although only 
3 patients with melanoma were enrolled, two had partial 
responses [74]. The phase 3 PRISM-MEL-301 trial will 
investigate the IMC-F106C in combination with nivolumab 
in untreated advanced melanoma [75]. One notable limita-
tion of ImmTACs is that their binding to HLA-peptide com-
plexes is dependent on the HLA subtype, which vary from 
person to person. Both IMC-F106C and tebentafusp are spe-
cific to HLA-A*02:01. HLA-A*02:01 is present in ~ 50% of 

Caucasians, but only ~ 35% of patients of Asian or African 
descent [76–78].

Bispecific antibodies targeting multiple immune check-
points have been developed. These antibodies are capable 
of inhibiting immune checkpoints that have been upregu-
lated on tumor cells and T cells while co-localizing the two. 
Alternatively, two immune checkpoints expressed on T cells 
may be targeted leading to inhibition of two immune check-
points on the same T cells, which has been shown to result 
in greater T cell activation [79–81]. XmAb23104 is a bispe-
cific antibody targeting PD-1 and the immune checkpoint 
Inducible T cell costimulatory (ICOS). XmAb22841 targets 
CTLA-4 and LAG-3. Both XmAb23104 and XmAb22841 in 
being investigated as combination therapy in patients with 
ICI-refractory melanoma in an ongoing Phase 1b/2 trial [82].

Adoptive Cell Therapy

Adoptive cell therapy (ACT) consists of identifying anti-
tumor lymphocytes, growing them ex vivo and infusing them 
into the patient after a lymphodepleting chemotherapy regi-
men. The patient is then given an infusion of interleukin-2 
(IL-2) to stimulate T cell growth and activity [83]. Tumor-
Infiltrating Lymphocyte (TIL) therapy is a form of ACT that 
utilizes lymphocytes extracted from the tumor microenvi-
ronment. TIL therapy as a treatment of melanoma has been 
reported as far back 1988 [84] with the process undergoing 
a series of optimizations. A lymphodepleting chemotherapy 
regimen of cyclophosphamide and fludarabine was eventu-
ally discovered as associated with improved TIL engraft-
ment and this has remained the standard conditioning regi-
men [83, 85, 86]. In addition, TILs from responding patients 
were eventually observed to have longer telomeres leading 
to optimization and minimization of culturing time in the 
development of TIL cell products [87]. More recently, TIL 
therapy was compared to ipilimumab in a randomized phase 
3 trial of 168 patients with advanced melanoma, 86% of 
whom had progressed on prior anti-PD-1 therapy. TIL ther-
apy was associated with significantly longer progression-free 
survival than ipilimumab [88•].

Lifileucel is a commercially available TIL platform that 
is capable of producing billions of TILs from the patient’s 
tumor tissue in a 22-day manufacturing process. A phase 2 
study of Lifilucel was conducted in patients with advanced 
melanoma who had progressed despite PD-1 therapy and 
BRAF therapy if BRAF V600 positive. The results demon-
strated robust activity in this PD-1 refractory cohort with an 
ORR of 41% and a disease control rate of 81%. The adverse 
events observed are consistent with those seen with prior use 
of IL-2 and lymphodepleting chemotherapy [89••]. Lifileu-
cel is now FDA approved for the treatment of PD-1 refrac-
tory advanced melanoma. The phase 3 TILVANCE-301 
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trial is underway to investigate Lifileucel combined with 
pembrolizumab compared to pembrolizumab alone in a 
treatment-naïve population [90, 91].

TIL therapy utilizes tumor-specific CD8+ lymphocytes 
found within the tumor microenvironment, which are react-
ing to a variety of tumor-specific neoantigens. Novel bio-
informatics platforms are capable of identifying patient-
specific clonal neoantigens which in turn can be used to 
expand these populations of clonal neoantigen reactive T 
cells (cNeT). The use of cNeTs aims to expand the efficacy 
of TIL therapy. A phase 1/2a trial of ATL001, autologous 
cNeTs, is underway for patients with advanced melanoma 
alone and in combination with nivolumab [92].

Antigens can be targeted directly with T cell engineered 
T cell therapy (TCR-T), which involves modifying the T cell 
receptor on autologous T cell receptors to recognize a spe-
cific tumor-associated antigen. As with other forms of ACT, 
the cellular product is infused after lymphodepleting chemo-
therapy and followed by IL-2 infusion. IMA-203 is a TCR-T 
directed against PRAME and is being developed alongside 
IMA-203CD8, a second generation PRAME TCR-T with 
an added CD8αβ co-receptor aimed at improving antigen 
recognition and T cell activation. Both IMA-203 and IMA-
203CD8 are currently undergoing phase I study alone and 
in combination with nivolumab [93•]. In an interim analysis 
IMA-203 demonstrated an ORR of 62% (8/13) in patients 
with cutaneous melanoma all of whom had progressed on 
prior checkpoint inhibitor therapy. Median durability of 
response had not yet been reached at 14.4 months [94, 95].

Another approach to improve the efficacy of TIL is to 
remove genes that negatively regulate T cell activity. As the 
name implies, Suppressors of Cytokine Signaling 1 (SOCS1) 
decreases the intracellular signaling that results from the 
binding of cytokines to extracellular receptors. KSQ-001 
is an engineered TIL product that utilizes CRISPR/Cas9 
to remove the SOCS1 gene from TIL isolated from patient 
tumor samples. The goal of this approach is to generate TIL 
with increased anti-tumor activity [96, 97]. A phase 1/2 trial 
is planned to evaluate KSQ-001 [98].

Oncolytic Viruses

Oncolytic viruses lead to lysis of the cancer cells facilitat-
ing antigen presentation and a host immune response. The 
use of oncolytic viruses first emerged as a standard of care 
option for melanoma following the development of talimo-
gene laherparepvec (T-VEC). T-VEC is a genetically modi-
fied herpes virus that expresses GM-CSF. T-VEC received 
FDA approval for the treatment of unresectable melanoma 
in 2015 following the results of a phase 3 trial demonstrat-
ing improved objective response rates compared to intral-
esional GM-CSF [99, 100•]. Preclinical data has indicated 
the potential for synergic activity between oncolytic virus 

therapy and checkpoint inhibition, but these results have 
not been seen clinically for patients with melanoma. MAS-
TERKEY-265 was a phase 3 trial investigating MASTER-
KEY-265/KEYNOTE-034 pembrolizumab with vs without 
T-VEC in patients with unresectable IIIB-IV melanoma, 
which failed to show a difference in PFS between the two 
groups [101].

Following the demonstration of the efficacy and safety 
of the HSV-1 based T-VEC, novel oncolytic viruses are an 
emerging therapy for the treatment of melanoma. RP-1 is 
developed from a strain of HSV-1 expressing both GM-CSF 
and the fusogenic envelope protein of the gibbon ape leu-
kemia virus (GALV-GP-R-) [102]. GALV-GP-R- allows for 
cell–cell fusion and subsequently improved viral transmis-
sion [103]. In the phase 1/2 IGNYTE trial the combination 
of RP-1 and nivolumab is being studied in patients with 
PD-1 refractory advanced melanoma. The initial results in 
91 patients from the ongoing trial demonstrated an encour-
aging objective response rate of 37.4% and a complete 
response rate of 18.7% [102].

Cytokines

Interleukin-2 (IL-2) was the first molecularly cloned 
cytokine and saw its first clinical application as an early 
immunotherapy for patients with cancer. High-dose (HD) 
IL-2 therapy has demonstrated the ability to produce durable 
results in a subset of patients with metastatic melanoma. 
Despite the efficacy in these patients, the clinical utility has 
been limited by severe toxicity [104]. Bempegaldesleukin, 
a CD122-preferential IL-2 pathway agonist, attempted to 
address the toxicity concerns of HD IL-2 and demonstrated 
promise in a phase 1 trial with a favorable side effect profile 
compared to IL-2. However, bempegaldesleukin failed to 
improve PFS or OS in the phase 3 PIVOT IO-001 trial in 
advanced melanoma [4, 105]. Several novel cytokine thera-
pies are being developed that aim to preserve clinical effi-
cacy while minimizing the dose-limiting toxicities seen in 
earlier trials. As there are numerous IL-2 therapeutics under 
investigation in this area, the discussion of specific agents is 
beyond the scope of this manuscript.

One approach to limiting toxicity is the use of tumor-
activated prodrugs that exist in an inactivated state until 
they are converted to fully active IL-2 in the tumor micro-
environment. In this approach WT IL-2 is tethered to an 
inactivation domain with a tumor protease-sensitive linker. 
The tumor-associated proteases cleave the linker leading to 
dissociation of the inactivation domain resulting in activated 
IL-2 within the tumor microenvironment. As IL-2 increases 
vascular permeability leading to a severe capillary leak syn-
drome, limiting systemic circulating IL-2 is meant to ame-
liorate this toxicity [106]. Preclinical data has shown that 
this type of IL-2 construct can achieve significant amounts 
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of detectable active IL-2 within tumor tissues with almost 
no detectable active IL-2 in the serum suggesting successful 
conditional activation [107]. IL-2 can also be targeted to the 
tumor microenvironment by fusion of IL-2 to a monoclonal 
antibody targeting tumor-associated antigens [108].

Another approach to improve the efficacy of IL-2 has 
been to target specific immune cell populations using 
selective IL-2-based compounds. The IL-2 receptor exists 
in trimeric and dimeric forms. Binding of IL-2 to the tri-
meric IL-2 receptor results in expansion of Tregs while 
binding of IL-2 to the IL-2R dimer consisting of CD122 
and CD132 stimulates naïve effector T cells and NK cells. 
This observation has led to the development of next gener-
ation IL-2 therapeutics that preferentially bind the dimeric 
form of IL-2R. Binding specificity can be achieved using 
modified forms of IL-2 with reduced binding to the trim-
eric form of the receptor [109]. Alternatively, the blocking 
the CD25 binding site on IL-2 results in selectivity for the 
CD122/CD132 dimeric form of the receptor [110].

Interleukin-12 (IL-12) production is typically triggered 
by pathogen-associated molecular pattern (PAMP) or 
danger-associated molecular pattern (DAMP) recognition 
by the innate immune system. IL-12 leads to recruitment 
of T and NK cells thereby coordinating activity between 
the innate and adaptive immune systems [111•]. Similar 
to IL-2, intravenous IL-12 is capable of producing clini-
cal responses in patients with melanoma, but with high 
rates of adverse events [112]. Tavokinogene telseplasmid 
(Tavo) is an IL-12 encoding plasmid that is administered 
via intratumorally injection followed by electroporation 
resulting in intracellular uptake and subsequent expres-
sion of IL-12 in the tumor microenvironment. A phase 2 
trial of Tavo in 30 patients with advanced melanoma with 
two or more injectable lesions demonstrated an objective 
response rate of 35.7% and a complete response rate of 
17.9% [113]. Tavo is under investigation in combination 
with anti-PD-1 therapy in both the neoadjuvant and meta-
static settings [114, 115].

Interluekin-18 (IL-18) is a proinflammatory member of 
the IL-1 cytokine family that stimulates the differentiation of 
CD4+ T cells into Th1 cells and acts together with IL-12 to 
cause IFN-γ secretion by T cells and NK cells [116]. Despite 
promise in preclinical models, recombinant human IL-18 
monotherapy was not associated with significant responses 
in a phase 2 clinical trial of patients with advanced mela-
noma [117]. IL-18 signaling is further regulated after secre-
tion by binding to decoy IL-1Ra and IL-18BP instead of 
the IL-18R responsible for its proinflammatory activity. 
Recognition of this regulatory mechanism has led to the 
development of a “decoy-resistant” IL-18 with reduced 
binding affinity for IL-1Ra and IL-18BP [118]. ST-067 is 
a decoy-resistant IL-18 currently in phase 1/2 clinical trial 

being investigated in patients with advanced solid tumors 
including melanoma [119].

Immunocytokines are antibody-cytokine fusions that 
consist of a targeting antibody linked to a cytokine payload. 
This approach combines elements of both prior approaches 
to localize the cytokines to target effector cells while also 
carrying a selective cytokine payload. PD1-IL2v is an immu-
nocytokine that delivers IL-2 via PD-1 binding of CD8.+ T 
cells as well as utilizing an IL-2 variant defective in binding 
to IL-2Rα [120]. A phase 1 clinical trial of PD1-IL2v is 
currently underway. Immunocytokines provide the oppor-
tunity to utilize different cytokine payloads as well. PD-1 
binding immunocytokines have also been developed with 
IL-7, IL-18, and IL-21 payloads. [121]

Innate Immune Stimulators

Most of the currently approved immunotherapy treatments 
for melanoma focus on enhancing the anti-tumor activity of 
T cells. However, the anti-tumor adaptive immune response 
is influenced by signaling from cells of the innate immune 
system including dendritic cells (DCs) and NK cells. The 
uptake and presentation of tumor antigens by APCs of the 
innate immune system results in further priming of tumor-
specific CD8+ T cells [122]. Professional APCs can be acti-
vated by several different mechanisms including agonism 
of the MHC-II and CD40 surface receptors via binding to 
their ligands LAG-3 and CD40L, respectively. Alterna-
tively, stimulation of toll-like receptors results in activation 
of APCs, which in turn generate enhanced adaptive immune 
responses [123].

Eftilagimod alpha is a soluble LAG-3 protein that binds 
to and activates MHC-II found on immature DCs leading 
to their activation [124]. Eftilagimod alpha in combination 
with pembrolizumab is currently under investigation in the 
phase 1 TACTI-mel trial as a novel therapeutic for the treat-
ment of advanced melanoma. Among the initial 18 PD-1 
refractory patients enrolled, the overall response rate (ORR) 
was 33%. The cohort was expanded to include six patients 
without prior PD-1 exposure of whom half had a response. 
The treatment was generally well tolerated with only one of 
24 patients having a serious adverse reaction (anaphylaxis) 
thought to be secondary to eftilagimod alpha [125].

CD40 is a costimulatory receptor in the TNF superfamily 
that is part of the activation pathways for dendritic cells, T 
cells and B cells. CD40 signaling results in the maturation of 
dendritic cells allowing them to effectively activate T cells 
[126, 127]. The broad immunomodulatory capabilities of 
CD40 agonism have led to its identification as a potential 
target for novel immunotherapies. Sotigalimab is an anti-
CD40 antibody that binds with high affinity to the CD40 
ligand domain resulting in the maturation of dendritic cells, 
activation of NK cells, and IL-12 secretion. A phase 2 trial 
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of sotigalimab in combination with nivolumab in patients 
with PD-1 refractory melanoma demonstrated an objective 
response rate of 15%. Sotigalimab was relatively well toler-
ated with a grade 3/4 adverse event rate of 13% [128].

Toll-like receptors (TLR) recognize common patterns like 
the pathogen-associated (PAMPs) and danger-associated 
molecular patterns (DAMPs) of produced by microorgan-
isms. While tumors do not produce DAMPs or PAMPs, this 
pathway can be exploited to activate the innate immune sys-
tem, which in turn can activate the adaptive immune sys-
tem. SD-101 is a synthetic oligonucleotide TLR-9 agonist 
consisting of cytidine-phospho-guanosine (CpG) motifs that 
was studied in combination with pembrolizumab in a phase 
Ib trial. Results demonstrated a ORR of 78% in anti-PD-1 
naïve patients and 15% in patients with prior anti-PD-1 treat-
ment [129]. However, no further clinical investigation into 
SD-101 for the treatment of advanced melanoma is ongoing 
at this time.

Vidutolimod, formerly CMP-001, is a virus-like particle 
containing a CpG-A oligodeoxynucleotide TLR9 agonist 
[130]. Vidutolimod was studied alone and in combination 
with pembrolizumab in a phase Ib trial of patients with 
advanced melanoma that progressed or had stable disease 
after > 12 weeks of anti-PD-1 therapy. The combination was 

well tolerated with an ORR of 23.5%. A phase 2/3 trial of 
vidutolimod in combination with nivolumab in patients with 
advanced melanoma [131]. Vidutolimod has also been stud-
ied as neoadjuvant therapy in combination with nivolumab 
in a phase 2 trial. Results showed demonstrated promising 
activity with 47% pCR rate and 57% MPR rate [132].

Conclusion

The past decade has seen a considerable expansion in the 
treatment options available for the treatment of melanoma 
(Table 1).

These new therapeutics have brought with them dra-
matic improvements in the outcomes for patients with mela-
noma. Despite this, there continue to be patients that do not 
respond to available therapies and melanoma remains the 
leading cause of skin cancer-related death. As such, there 
is an ongoing need to identify additional effective therapies 
for these patients, particularly those with PD-1 refractory 
disease. Novel ICIs, bispecific antibodies, ACT, vaccines, 
oncolytic viruses, and immunocytokines all are promising 
avenues to further improve the standard of care for patients 
with melanoma.

Table 1   Mechanisms of Novel Immunotherapeutics and Associated Clinical Trials

Type of Treatment Target/Mechanism Treatment Trial Identifiers

Novel ICI LAG-3 Relatlimab NCT03470922, NCT05002569
Novel ICI LAG-3 Fianlimab NCT06246916, NCT05608291
Novel ICI TIGIT Vibostolimab NCT05665595
Novel ICI TIGIT Domvanalimab NCT05130177
Novel ICI TIM3 Cobolimab NCT04139902
Novel ICI Fc-enhanced anti-CTLA-4 Botensilimab NCT05529316
Novel ICI Acid-sensitive anti-CTLA-4 ONC-392 NCT04140526
Immunomodulatory Vaccine Neoantigen Peptide Vaccine NEO-PV-01 NCT02897765
Immunomodulatory Vaccine Neoantigen Peptide Vaccine EVX-01 NCT05309421
Immunomodulatory Vaccine mRNA Neoantigen Vaccine mRNA-4157/V940 NCT03897881
Immunomodulatory Vaccine mRNA Neoantigen Vaccine BNT122 NCT03815058
Immunomodulatory Vaccine IDO1/PD-L1 Vaccine IO102-IO103 NCT05155254
ImmTAC​ gp100 Tebentafusp NCT05549297
ImmTAC​ PRAME IMC-F106C NCT06112314
Adoptive Cell Therapy Tumor Infiltrating Lymphocytes Lifileucel NCT05727904
Adoptive Cell Therapy PRAME TCR-T IMA-203 NCT03686124
Adoptive Cell Therapy Tumor Infiltrating Lymphocytes KSQ-001 NCT06237881
Oncolytic Virus HSV-1 expressing GM-CSF and 

GALV-GP-R-
RP-1 NCT03767348

Cytokine IL-12 Tavokinogene telseplasmid NCT03132675, NCT01502293
Cytokine IL-18 ST-067 NCT04787042
Innate Immune Stimulators MHC-II Eftilagimod alpha NCT02676869
Innate Immune Stimulators CD40 Sotigalimab NCT04337931
Innate Immune Stimulators TLR9 Vidutolimod NCT04695977
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