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Abstract
Purpose of Review  The neuro-oncology team faces a unique challenge when assessing treatment response in patients diag-
nosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring thera-
peutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are 
not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor 
patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-
related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhance-
ment giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged 
to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of 
the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and 
future directions for assessing treatment response in neuro-oncology.
Recent Findings  Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many 
challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these 
challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response 
criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. 
In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric 
segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation 
algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of 
other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glio-
blastoma response to therapies.
Summary  Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the estab-
lishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More 
recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm 
shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable 
progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. 
Further research will be critically important for the development of impactful breakthroughs in this area of the field.
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Introduction

Neuroimaging using MRI remains the standard imaging 
modality in the management of patients with glioblastoma. 
MRI is useful for establishing the initial diagnosis and for 
assessing response to conventional therapies (i.e., surgery, 
radiation, chemotherapy) and experiential agents. However, 
response assessments following treatment can be trouble-
some because of tumor heterogeneity, which is character-
ized by varying degrees of enhancement, infiltrating tumor 
patterns, cellular densities, distinct and indistinct borders, 
necrotic core regions, and vasogenic edema on neuroimag-
ing. Additionally, treatment-related changes on MRI often 
mimic progressive disease, making interpretations particu-
larly challenging for even the most experienced radiolo-
gists. Moreover, supportive therapies such as antiangiogenic 
medications and corticosteroids can dramatically decrease 
contrast enhancement due to changes in vascular permeabil-
ity, suggesting a reduction in tumor burden radiographically 
when in reality that may not be the case. In this scenario, 
clinical decision-making requires the treating physician to 
use judgment to reconcile a potential discrepancy between 
improved imaging findings and clinical progression. These 
limitations of MRI assessment have spurred investigations 
of novel ancillary imaging biomarkers and nonimaging 
approaches to augment and improve visual interpretation 
of glioblastoma responses to standard and novel therapies. 
Herein, we summarize and discuss the general framework 
for response assessment to therapies in adults with glioblas-
toma as well as complementary and emerging techniques in 
the era of precision medicine that are poised to modernize 
our methods for measuring disease response.

Response Assessment in Neuro‑Oncology

The expansion of novel efficacious therapies for patients 
with glioblastoma requires reliable criteria for objec-
tively assessing response to treatment. This requisite has 
been particularly difficult in neuro-oncology because 
contrast enhancement on MRI is an imprecise surrogate 
marker for tumor viability and volume. Additionally, the 
intensity of enhancement is influenced by medications that 
decrease brain tumor-associated vascular permeability and 
may give a false impression of response to therapy. Fur-
thermore, glioblastoma is poorly marginated and charac-
terized by histopathological heterogeneity, posing a signif-
icant challenge when assessing infiltrative non-enhancing 
tumor [1]. Historically, the gold standard for assessing 
treatment response was the Macdonald criteria from 1990 
[2]. The Macdonald criteria incorporated two-dimensional 

tumor measurements on computed tomography (CT) in 
conjunction with neurological findings and corticosteroid 
dose but were later extrapolated to MRI-based diagnos-
tic imaging. Objective response to treatment included 
four response categories: complete response (CR), par-
tial response (PR), stable disease (SD), and progressive 
disease (PD) [2]. These criteria allowed comparisons of 
response rates in clinical trials. Still, they fell out of favor 
a decade later when MRI became the standard imaging 
modality for assessing glioblastoma.

The Macdonald criteria had several limitations, includ-
ing challenges with measuring irregularly shaped lesions, 
substantial interobserver variability, lack of assessment of 
the non-enhancing tumor component, lack of guidelines for 
assessing multifocal disease, and the difficulty in measuring 
enhancing lesions in the wall of cystic or surgical cavities 
[3–5]. The RANO working group was created to address 
these pitfalls and harmonize the criteria used to assess dif-
ferent central nervous system (CNS) tumors, specifically in 
the clinical trial context [6]. This multidisciplinary, interna-
tional working group includes representatives from varied 
disciplines, including neuro-oncology, medical oncology, 
neuroradiology, neurosurgery, radiation oncology, neu-
ropsychology, and experts in clinical outcomes assessments, 
all working in collaboration with government and indus-
try to integrate a fundamental framework of radiographic 
parameters to classify therapeutic outcome in patients 
with glioblastoma. The RANO criteria defined measurable 
disease as bidimensional contrast-enhancing lesions with 
clearly defined margins, with two perpendicular diameters 
of at least 10 mm, visible on ≥ 2 axial slices [6]. Nonmeas-
urable disease included unidimensional measurable lesions, 
masses with margins not clearly defined as frequently noted 
in the surgical margins, or lesions with maximal perpen-
dicular diameters of < 10 mm [6]. T2/FLAIR hyperintense 
lesions were also considered nonmeasurable and typically 
represented infiltrating tumor extending from the tumor 
core into adjacent tissue. When multiple contrast-enhanc-
ing lesions exist, a minimum of two target lesions must 
be selected, representing the tumor burden. In addition, 
the sum of the products of the perpendicular diameters of 
these lesions must be determined [6]. The RANO crite-
ria defined radiographic progression as a greater than or 
equal to 25% growth in the contrast-enhancing tumor bur-
den when compared to the baseline MRI (i.e., pre-therapy 
or best imaging response timepoint) and/or the appearance 
of a new lesion(s). The working group defined CR as the 
complete disappearance of all enhancing measurable and 
nonmeasurable disease sustained for at least 4 weeks and 
PR as a greater than or equal to 50% decrease in the con-
trast-enhancing tumor burden when relative to the base-
line assessment MRI. As a final point, the time between 
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the completion of the radiation therapy and the imaging 
acquisition should also be considered when interpreting 
posttreatment imaging [7]. The group acknowledged the 
high incidence of increased contrast enhancement and per-
ilesional edema on posttreatment (i.e., chemoradiotherapy) 
imaging simulating progressive disease, a phenomenon 
referred to as pseudoprogression (PsP). Because of this, the 
RANO criteria defined radiographically progressive disease 
within the first 12 weeks after completion of chemoradia-
tion as new enhancement outside the radiation field (beyond 
the high-dose region or 80% isodose line) [6]. Pseudopro-
gression occurs, on average, in 36% of patients with glio-
blastoma following chemoradiotherapy with the alkylating 
agent temozolomide [8]. However, the phenomenon occurs 
more frequently in patients with hypermethylation of the O 
[6]-methylguanine DNA methyltransferase (MGMT) pro-
moter gene [9]. The RANO working group also considered 
the pseudoresponse observed with antiangiogenic therapies, 
such as bevacizumab, that rapidly reduce vascular perme-
ability and contrast enhancement [6]. These agents target 
and neutralize secreted vascular endothelial growth factor 
(VEGF) and block its signal transduction through both the 
vascular endothelial growth factor receptor 1 (VEGFR-1) 
and vascular endothelial growth factor receptor 2 (VEGFR-
2), and dramatically decrease contrast enhancement after 
the initiation of therapy, masquerading as a reduction of 
tumor burden [10].

Generally, the efficacy of antineoplastic agents is deter-
mined by the drug’s ability to improve overall survival (OS) 
in large randomized, phase III trials. However, the use of 
OS as a primary clinical endpoint is often impractical due 
to several drawbacks. OS is limited by long trial times and 
confounding effects of post protocol events, such as salvage 
therapies [11]. As a result, clinical trials rely heavily on sur-
rogate endpoints, such as objective response rates (ORR) 
and progression-free survival (PSF) to gauge efficacy. Sev-
eral studies have demonstrated that ORR and PFS corre-
late with OS [11–13]. These radiographic endpoints can be 
assessment quickly and are vitally important in glioblastoma 
response assessment because they are not confounded by 
salvage therapies and other variables that may affect OS [14, 
15]. Moreover, PSF offers greater statistical power at the 
time of analysis [11]. Validation of the surrogacy of PFS in 
glioblastoma clinical trials has been established [11].

While the RANO criteria addressed the limitations of 
the Macdonald criteria, significant drawbacks of these 
guidelines were identified. For instance, the RANO criteria 
require bidirectional measurement of contrast-enhancing 
tumor size that overestimates MRI defined tumor size [16]. 
Additionally, thresholds for defining response and progres-
sion were arbitrarily assigned [17]. Furthermore, the RANO 
criteria defines the post-operative MRI as the baseline for 
treatment response evaluation; however, this scan is not a 

reliable reference for accurately determining radiographic 
changes for several reasons. First, post-surgical MRI is gen-
erally obtained prior to histomolecular confirmation, a fun-
damental prerequisite for clinical trial participation. There-
fore, the baseline post-surgical MRI technique may not be 
consistent with the clinical trial imaging protocol leading to 
a dissimilarity with subsequent follow-up imaging [17]. Sec-
ondly, the timing of the post-operative MRI can be highly 
variable and often reveal the temporal development of surgi-
cally induced reactive contrast enhancement and blood prod-
ucts, rendering the radiographic assessment difficult [18]. 
Furthermore, corticosteroid dose can be extremely variable 
in the immediate post-operative period and not well docu-
mented since patients are usually not yet enrolled in clinical 
trials at this time [17]. The RANO criteria incorporated the 
evaluation of nonenhancing (T2/FLAIR) abnormality which 
is subjective and does not accurately predict overall survival 
[19]. Because of these pitfalls, the RANO criteria were later 
modified [17] and included a suggestion for consideration 
of the use of volumetric measurements for response evalu-
ation (a proposal that has not come to pass). The modified 
RANO (mRANO) criteria also provided a clearer definition 
of non-measurable disease and advocated for the use of a 
post-radiation MRI as the baseline for response evaluation 
in patients with newly diagnosed glioblastoma. Other RANO 
working groups including the RANO-low grade glioma 
[20], immunotherapy RANO [21], RANO leptomeningeal 
metastases [22], RANO brain metastases [23], and RANO-
corticosteroids [24] have emerged to provide guidance and 
assessment of response and end points in other areas of 
neuro-oncology clinical trials.

In 2021, the World Health Organization published an 
updated classification for brain and spinal tumors and for 
the first time introduced the role of molecular data for central 
nervous system tumor classification, building on the 2016 
updated fourth edition and the work of the Consortium to 
Inform Molecular and Practical Approaches to CNS Tumor 
Taxonomy [25]. Accordingly, astrocytic tumors are strati-
fied as those that harbor the isocitrate dehydrogenase 1 gene 
mutation (IDH) and those without the mutation (wildtype), 
designated as glioblastoma IDH-wildtype. The WHO 
observed that IDH-wildtype astrocytomas ascribed to grade 
2 or 3 by morphology-based criteria exhibit and an aggres-
sive phenotype much like glioblastoma. As such, molecular 
aberrations that confer an aggressive behavior of an IDH-
wildtype diffuse astrocytoma including EGFR amplifica-
tion, TERTp mutations, gain of chromosome 7 and loss 
of chromosome 10 were evaluated [26]. Consequently, an 
IDH-wildtype diffuse astrocytoma with at least one of these 
genetic signatures establishes the diagnosis of glioblastoma 
IDH-wildtype CNS WHO grade 4 even in the absence of 
the histopathological features of glioblastoma. In response, 
the RANO working group proposed an updated response 
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criteria (RANO 2.0) for the evaluation of all grades of glial 
tumors regardless of IDH status or therapies being evalu-
ated [27••, 28••]. Data showing PFS obtained by RANO 
and modified RANO criteria correlated similarly with OS 
in patients with newly diagnosed and recurrent glioblastoma 
was another impetus for RANO 2.0 [29••]. Similar to the 
mRANO, RANO 2.0 advocates using the post-radiation MRI 
as the baseline scan for response evaluation in patients with 
newly diagnosed glioblastoma. Because the incidence of 
pseudoprogression is high within the first 12 weeks follow-
ing chemoradiotherapy, to confirm radiographic progression 
when equivocal lesions are encountered during this interval, 
the working group proposed a repeat MRI (in 4–8 weeks) 
to determine true progression in clinically stable patients 
[28••]. However, confirmation scans are not mandatory after 
this period or for recurrent tumors since these scans do not 
appear to improve reliability in determining progression. 
On the contrary, for agents with a high likelihood to induce 
pseudoprogression, for instance immunogenic cell death-
inducing therapies, a mandatory confirmation of progres-
sion with a repeat MRI is an option. RANO 2.0 will employ 
two-dimensional tumor analysis like the RANO criteria but 
will allow volumetric acquisition. The steering committee 
recognized the fact that non-enhancing progression does 
not improve correlation of PFS with survival in patients 
with enhancing glioblastomas [30, 31], and proposed the 
elimination of measuring non-enhancing tumor in agreement 
with the mRANO criteria. Finally, the group also noted that 
the application of immunotherapy RANO in patients who 
received immune checkpoint blockade monotherapy did not 
increase the correlation between PFS and OS when com-
pared to RANO and mRANO.

Advances in Neuroimaging Approaches 
in Glioma

The poor specificity of T1-gadolinium enhancement changes 
is a well-recognized challenge in radiographic monitoring of 
gliomas [32]. Multipronged efforts are made to address this 
problem through standardizing routine clinical neuroimag-
ing, improving image postprocessing and analysis methods, 
as well as developing advanced MRI acquisition techniques 
and amino acid radiotracers. For instance, multidiscipli-
nary consensus recommendations called the Brain Tumor 
Imaging Protocol (BTIP) were published in 2016, setting 
minimum and ideal specifications used for the acquisition 
of 3D T1-weighted pre-gadolinium, 2D FLAIR, and diffu-
sion-weighted images (DWI), as well as post-gadolinium 
2D T2-weighted and 3D T1-weighted images [33]. Stand-
ard specifications for the commonly used MRI perfusion 
method, dynamic susceptibility contrast (DSC) imaging, 
were subsequently published [34]. These efforts aimed to 

reduce inter-scanner and inter-institutional variability in 
MRIs and address the extreme inconsistencies in the diag-
nostic performance of perfusion MRI.

Advanced image assessment techniques are being devel-
oped, such as histogram analysis, primarily applied in 
apparent diffusivity coefficient (ADC) maps. This approach 
utilizes changes in a summary characteristic, for instance, 
the reductions in the diffusivity on the lowest 5th percentile 
of voxels, which was shown to identifying true progression 
with 89% accuracy [35]. Although relatively easy to perform 
in a clinical setting, the main limitation of histogram analy-
ses is the loss of spatial information that may mask focal 
tumor progression in an otherwise necrotic background [36]. 
Parametric response maps (PRMs) use imaging at pre- and 
post-intervention timepoints to map out voxel-wise changes 
to detect early responses, or identify PsP [37]. PRMs can be 
applied to virtually any single or a combination of imaging 
modalities. For example, in PRMs of ADC, an increase in 
high-diffusivity areas was associated with fivefold longer 
survival [38], or identified pseudoprogression with an 86% 
accuracy [39], or predicted a 1-year OS advantage when 
bevacizumab is used [40]. PRMs of relative cerebral blood 
volume (rCBV) maps also showed a successful identifica-
tion of true progression by a reduction in the proportion of 
voxels with low rCBV, while the difference between PsP 
and true progression (TP) were obscured when whole-tumor 
changes were measured [39]. However, significant barriers 
to the routine clinical implementation of PRMs include not 
only the need for two scans ideally performed on the same 
scanner, but also the significant expertise and effort required 
in image pre-processing (co-registration, normalization, seg-
mentation, etc.) that would require nearly full automation to 
conform to the clinical workflow.

Advances in automated tumor segmentation as dem-
onstrated annually by the Radiological Society of North 
America-American Society of Neuroradiology (RSNA-
ASNR) Brain Tumor Segmentation (BraTS) challenge [41] 
may offer the most accurate method for tumor measurement 
by enabling rapid volumetric monitoring of gliomas, an 
approach suggested to be especially helpful to detect sub-
tle and often slowly emerging responses to IDH-inhibitor 
therapy [42, 43]. In terms of special image acquisition, MR 
spectroscopy (MRS) and chemical exchange saturation 
transfer (CEST) stand out. MRS detects nuclear magnetic 
resonance signals produced by variations in the chemical 
composition of tissues, such as lactate content, which was 
shown to be a highly sensitive marker of PsP when nor-
malized to the neuronal marker N-acetyl-aspartate (NAA); 
however, its specificity appears limited [44•]. An emerging 
role of MRS is to serve as a pharmacodynamic biomarker for 
metabolically targeted therapies such as dichloroacetate ther-
apy against glioma (hypothesized to decrease lactate) [45], 
or potentially detecting changes in 2-hydroxyglutarate levels 
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in the context of emerging IDH-inhibitor therapies that tend 
to be linked to slow and subtle responses on conventional 
MRI [42, 43]. CEST imaging is a special MRI technique that 
allows the quantification of endo- or exogenous molecules 
by using radiofrequency signals to saturate the protons these 
molecules exchange with surrounding water and thus ampli-
fying their signal to MRI detectable levels. Amide proton 
transfer-weighted imaging (APTw) is a CEST technique that 
provides contrast based on tissue protein and peptide con-
tent, which is increased in neoplasms such as gliomas [46]. 
APTw was recently demonstrated to differentiate PsP from 
TP with a high resolution and accuracy in a histopathologi-
cally confirmed cohort [47].

Amino acid PET tracers have also been heavily 
researched for disease monitoring in gliomas. These are 
especially advantageous in neuro-oncology due to their low 
uptake in normal brain and extremely high contrast between 
normal and tumor tissue. In 2019, joint recommendations 
from the European Association of Neuro-Oncology and 
RANO committees extended the standardization efforts to 
PET acquisition and analysis approaches as well [48, 49]. 
Among the tracers listed is [18F]Fluoro-ethyl tyrosine (FET), 
which showed high accuracy for detecting early as well as 
late progression following radiotherapy [50]. Another amino 
acid tracer [18F]FDOPA, preferentially studied in North 
America, performs similarly well in glioma monitoring. In 
a prospective trial assessing its spatial sensitivity/specific-
ity to identify true progression, FDOPA far exceeded the 
performance of conventional MRI (76%/100% vs 52%/50%, 
respectively) [32]. Fluciclovine PET is another amino acid 
tracer approved for prostate cancer imaging that is currently 
prospectively studied in radiation response monitoring in 
glioma (NCT03926507).

Neurologic Assessment in Neuro‑Oncology

The most widely used tools to assess performance in activi-
ties of daily living in cancer patients are the Karnofsky Per-
formance Status (KPS) and the Eastern Cooperative Oncol-
ogy Group (ECOG) performance status. These assessment 
tools have proven helpful for monitoring the clinical trajec-
tories of patients with cancer receiving experimental chemo-
therapies [51]. However, these scales are not without short-
comings. For instance, scores are subjectively [52] assigned 
by a health care provider, lack reproducibility [53], and fail 
to assess deficits in neurologic function objectively. In the 
early 1990s, recursive partitioning analysis (RPA) of prog-
nostic factors helped the design, stratification, and outcome 
comparison for multiple glioblastoma clinical trials [54]. 
The classification was simplified in 2011 and resulted in 
three distinct prognostic groups defined by age, performance 
status, the extent of resection, and neurologic function (able 

to work versus not) for use in glioblastoma clinical trials 
[55]. Similar to prior assessment tools, the RPA model did 
not include data from the standard neurologic examination. 
Although the Macdonald and RANO criteria incorporated 
the patient’s clinical status in the assessment of progressive 
disease, a quantifiable measure of the true clinical picture 
was not clearly defined. To illustrate, multiple assessment 
tools are readily available for clinicians to report changes in 
neurological status in patients across several neurologic sub-
specialties such as neurocritical care (Glasgow Coma Scale 
[GSC]), stroke (National Institutes of Health Stroke Scale 
(NIHSS) and the Canadian Neurological Scale (CNS)), mul-
tiple sclerosis (Expanded Disability Status Scale (EDSS)), 
Parkinson disease (Unified Parkinson Disease Rating Scale 
(UPDRS)), ataxia (Scale for Assessment and Rating of 
Ataxia), myopathy (Kendall muscle scale), and amyotrophic 
lateral sclerosis (Amyotrophic Lateral Sclerosis Functional 
Rating Scale–Revised (ALSFRS-R)) [56–58]. Despite this 
progression in neuroscience, a standardized metric to meas-
ure neurologic function in patients with brain tumors was not 
available and generated a surge in interest in implementing 
a measurable tool to quantify neurological function in this 
patient population. To this end, the Neurologic Assessment 
in Neuro-Oncology (NANO) scale was drafted and provided 
an objective clinician-reported outcome of neurologic func-
tion for patients with brain tumors [56]. The NANO scale 
integrated components of the standard neurologic examina-
tion conducted in routine clinic visits and measured neuro-
logic function across nine relevant neurological domains, 
including gait, strength, upper extremity ataxia, sensation, 
visual field, facial strength, language, level of conscious-
ness, and behavior [56]. The scale has been introduced into 
clinical trials with preliminary confirmation of high inter-
observer agreement and reliability for assessing disease 
response to novel therapies [56].

Patient‑Reported Outcomes

Glioblastoma portends an unfavorable prognosis and a 
high symptom burden that adversely impacts the quality 
of survival. Thus, maintaining or improving the patient’s 
quality of life (QoL) and palliation are critical consid-
erations during the disease trajectory. For this reason, 
health-related quality of life (HRQoL) has become a 
crucial outcome measure in clinical trials, supplemen-
tary to traditional outcome measures such as OS, PFS, 
and radiological response to treatment [59]. HRQoL is 
a multidimensional concept covering physical, psycho-
logical, and social domains and symptoms induced by 
the disease and its treatment [59]. Generally speaking, 
HRQoL focuses on the impact of the disease and inter-
ventions on the emotional, social, and physical aspects of 
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the patient’s daily life. HRQoL data is garnered through 
a patient-reported outcome (PRO) measure, which cap-
tures reports from patients about their health without the 
interpretation or influence of the clinician. Several PROs 
questionnaires have been developed and are available in 
brain tumor clinical trials and daily clinical practice. The 
European Organization for Research and Treatment of 
Cancer (EORTC) developed a generic questionnaire, the 
EORTC QLQ-C30, to measure HRQoL in patients with 
cancer [60]. This questionnaire was designed to assessed 
clinical variables (disease stage, weight loss, performance 
status, and treatment toxicity) in heterogenous group of 
patients with cancer, and includes 30 items, organized into 
five functional scales (physical, role, emotional, cognitive, 
and social functioning), three symptom scales (fatigue, 
nausea and vomiting, and pain), one global health status 
scale, one overall quality of life scale, and six single-items 
symptom measures (dyspnea, insomnia, appetite loss, con-
stipation, diarrhea, and financial difficulties). The EORTC 
QLQ-C30 is a reliable and valid measure of the QoL in 
cancer patients in multicultural clinical research settings 
[60]. Following this, Osoba and colleagues developed a 
brain tumor-specific questionnaire, the EORTC QLQ-
BN20, designed to complement other core or general QoL 
questionnaires when studying patients with brain cancer in 
clinical trials [61]. This module included 20 items organ-
ized into four scales (future uncertainty, visual disorders, 
motor dysfunction, and communication deficit) and seven 
single items (headache, seizures, drowsiness, hair loss, 
itchy skin, weakness of the legs, and bladder control). 
Another well-established tool is the Functional Assess-
ment of Cancer Therapy-General (FACT-G) questionnaire. 
The FACT-G (version 4) consists of a 27-item question-
naire covering four domains of the HRQOL in cancer 
patients: physical, social, emotional, and functional well-
being [62]. A brain cancer-specific module, the FACT-
brain, is available in addition to this generic questionnaire. 
This disease-specific questionnaire consists of 50 items 
that cover physical, social/family, emotional, and func-
tional well-being and concerns relevant to patients with 
brain tumors, including concentration, memory, seizures, 
eyesight, personality, expression of thoughts, weakness, 
coordination, and headaches [62–64]. The FACT meas-
ures cover more psychosocial aspects of the disease and 
its treatment, while the EORTC measures focus more on 
functioning and symptoms [59]. Finally, the MD Anderson 
Symptom Inventory (MDASI) questionnaire was designed 
to measure the severity of symptoms in cancer patients 
(13 items) as well as the hindrance of these symptoms on 
basic activities necessary for independent living (6 items) 
[65]. A brain tumor-specific module (MDASI-BT) has 
been developed in addition to the core questionnaire [66].

Neurocognitive Assessments

Patients with glioblastoma are exceedingly vulnerable to 
neurocognitive decline as they progress through standard 
therapy. Supportive treatment such as anti-seizure medica-
tion and dexamethasone may also contribute to cognitive 
dysfunction [67]. A report found deterioration in neu-
rocognitive performance in the domains of information 
processing, psychomotor function, and attentional tasks in 
patients with glioblastoma eight months after completion 
of radiotherapy [68]. By the same token, the long-term 
survival of patients with glioblastoma is associated with 
substantial impairment in HRQOL and disabling cognitive 
deficits [69, 70]. Thus, assessing neurocognitive function 
in HGG patients is of immense value. The Mini-Mental 
State Examination (MMSE) is a relatively quick and easy-
to-perform screening tool for general neurocognitive func-
tion; however, the questionnaire lacks sensitivity and fails 
to detail memory, verbal fluency, visual-motor speed, and 
executive function, frequent cognitive changes in patients 
with brain tumors [71, 72]. Additionally, the MMSE does 
not account for patient-to-patient variation based on age 
and education [73]. Neurocognitive function can be evalu-
ated more comprehensively with other screening instru-
ments such as the Wechsler Adult Intelligence Scale-Third 
Edition and the Wechsler Memory Scale-Revised, the 
Hopkins Verbal Learning Test–Revised, the Trail Mak-
ing Tests, and the Controlled Oral Word Association, 
which are highly valuable, objective, and comprehensive 
measures of cognition and with reported prognostic value 
[72–75].

Seizure Control

Tumor-related epilepsy (TRE) is one of the most com-
mon comorbidities in patients with brain tumors, and it is 
well-established that TRE is influenced by oncobiology 
and tumor growth [76]. Seizures occur in > 80% of low-
grade glioma (LGG) patients and 40–60% of patients with 
classical, histopathologically-defined glioblastoma [76, 
77]. Approximately 48–65% of patients with the newly 
recognized diffuse astrocytic glioma, IDH-wildtype, with 
molecular features of glioblastoma, WHO grade 4 are 
confronted with seizures at presentation [78–80]. Uncon-
trolled epilepsy and the capriciousness of TRE can impact 
a patient’s HRQoL and adversely compromise independ-
ence in self-care. Emerging data suggest that effective sei-
zure control and radiographic response can be achieved 
with tumor-directed therapies alone in patients with LGG 
[81–83]. In fact, a change in chemotherapy has been 
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proposed in patients with inadequate seizure control, even 
in the absence of radiographic progression [84]. Similarly, 
achieving seizure freedom may herald a radiographic 
response to therapy [84, 85]. From this frame of reference, 
the RANO seizure working group proposed seizure control 
as an adjunctive secondary outcome measure in determin-
ing treatment response in clinical trials of patients with 
LGG [86]. The assessment tool includes an evaluation of 
seizure classification, frequency, and a rating system for 
seizure outcome and incorporates a variety of HRQoL and 
symptom burden scales [86].

Liquid Biomarker Discovery

Liquid biopsy is an attractive noninvasive complement to 
radiographic assessment for monitoring therapeutic response 
in patients with glioblastoma. Success with this technique 
hinges on leveraging the discovery and quantification of 
diverse classes of tumoral content, such as circulating tumor 
DNA (ctDNA), circulating tumor cells (CTC), extracellular 
vesicles (EV), and glioma-specific oncogenic markers that 
are shed into peripheral blood and cerebrospinal fluid (CSF) 
during tumor cell turnover. This paradigm shift in oncol-
ogy has modernized prognostication parameters for patients 
with solid cancers such as breast cancer [87], head and neck 
cancer [88], and lung cancer [89]. At present, several assays 
have been approved by the FDA to detect genetic altera-
tions in plasma cell-free DNA (cfDNA) in patients with 
advanced-stage systemic cancer, marking a turning point 
for integration into daily practice [90]. Comparatively, very 
little progress has been made in validating circulating bio-
markers for primary CNS malignancies. Still, the detection 
and quantification of tumoral content released by glioblas-
toma may be helpful for diagnosis, monitoring tumor evolu-
tion, and unveiling the molecular landscape of primary and 
recurrent disease.

To date, liquid biopsy studies in glioblastoma have shown 
a detection rate of CTCs ranging from 20–77% [91–93]. This 
variability is primarily due to the heterogeneity of analyti-
cal methods, the lack of standardized tumor-specific cell 
surface markers, and the absence of methodological uni-
formity to permit meaningful comparison among studies 
[94, 95•]. Nonetheless, there is growing evidence that the 
enumeration of CTCs could reflect tumor burden, which 
has potential value when monitoring tumor progression and 
therapeutic response [93, 96•]. Researchers in a recent pilot 
study isolated CTCs from whole blood in 20 newly diag-
nosed patients with glioblastoma before and after surgery 
and reported that patients with a CTC count of zero after 
surgery had a significantly longer PFS, suggesting that post-
operative CTC quantification may have potential utility as a 
prognostic biomarker [97]. Moreover, CTC detection may 

be vital in distinguishing tumor recurrence from radiation 
necrosis in patients with glioma; larger studies are needed 
to clarify this potential benefit [93].

Circulating tumor DNA analysis is a novel approach 
for interrogating the genomic landscape of primary brain 
tumors without invasive tissue acquisition. Studies perform-
ing comprehensive ctDNA analysis in patients with primary 
brain tumors report a detection rate of 10–50% in plasma, 
with higher detection rates associated with glioblastoma 
[98–101]. However, all studies unanimously report much 
lower ctDNA concentrations when compared to other 
advanced-stage tumors. The postulated explanation for this 
lower yield in ctDNA concentrations relates to the physical 
hurdle of the blood–brain barrier, which limits the passage 
of tumoral content into the peripheral circulatory system. 
In contrast, several studies have identified CSF as a rich 
and reliable source of ctDNA in patients with primary brain 
tumors [102, 103]. Molecular characterization of ctDNA in 
CSF of patients with primary brain tumors has confirmed the 
feasibility of capturing a broad spectrum of mutations and 
copy number alterations, including TERT promoter, TP53, 
and IDH1 mutations as well as CDKN2A/B deletions [104, 
105]. Tracking CSF ctDNA longitudinally may have appli-
cations in determining therapeutic efficacy and potentially 
transform how we evaluate responses to glioma therapies. 
Longitudinal data have illustrated the ability of CSF ctDNA 
analysis to capture the genomic response to treatment and 
tumor evolution [102, 104]. For instance, in one study, high 
H3F3A K27M copy number in CSF ctDNA correlated with 
the presence of contrast-enhancing and total tumor cross-
sectional area on MRI in pediatric diffuse intrinsic pontine 
gliomas [106].

Liquid biopsy based analytes also hold promise as prog-
nostic biomarkers in glioma [107]. In an analysis of CSF 
ctDNA in 85 adults with glioma, tumor-derived DNA posi-
tivity was a statistically significant prognostic factor, even 
after adjustment for percent extent of resection at original 
diagnosis, tumor burden at CSF collection, and IDH status 
[104]. Moreover, a prospective study of 42 patients with 
newly diagnosed glioblastoma showed that a high plasma 
cfDNA concentration prior to initial surgical resection is 
independently associated with poor outcomes in patients 
undergoing standard of care therapy [108]. Equally impor-
tant, the emergence of plasma cfDNA methylomics is 
gaining momentum in liquid biopsy diagnostics for the 
detection and discrimination of glioma from other primary 
intracranial tumors [109]. For instance, the implementa-
tion of a cell-free methylated DNA immunoprecipitation 
and high-throughput sequencing (cfMeDIP-seq) [110] to 
blood samples from glioma patients, patients with extrac-
ranial cancers, and healthy controls showed high sensitiv-
ity and discriminative capacity for distinguishing patients 
with gliomas from patients with systemic cancers and 
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healthy controls [111]. Additionally, a more recent study 
profiled the methylome of circulating cfDNA in the serum 
from a cohort of patients with gliomas and other tumors 
and non-neoplastic conditions and identified a DNA meth-
ylation-based signature that recapitulated the epigenetic 
features of glioma tissue [112]. The methylation-based 
signature discriminated patients with glioma from non-
glioma patients with 100% sensitivity and 98% specificity 
[112]. Interestingly, the researchers tested the signature 
in an independent discovery and validation cohorts that 
enabled the development and verification of a score met-
ric (the “glioma-epigenetic liquid biopsy score” or GeLB) 
that reflected clinicopathological changes during surveil-
lance (i.e., progression, pseudoprogression, and response 
to treatment to standard and or experimental therapies). 
Still, the practicality of using ctDNA as a therapy-mon-
itoring biomarkers remains unresolved. More large-scale 
prospective cohorts are needed to define its clinical utility.

Extracellular vesicles (EVs) are membrane-bilayered 
vesicular particles that carry molecules such as oncoproteins 
and oncopeptides, RNA species (microRNAs, mRNAs, and 
long non-coding RNAs), lipids, and DNA fragments from 
donor to recipient cells [113]. EVs hold several advantages 
over other liquid biopsy analytes. As a first point, EVs shed 
from glioblastoma and the tumor microenvironment are 
more diffusible than CTCs and may recapitulate the whole 
tumor when compared to trace CTCs that represent only a 
fraction of the multiclonal tumor heterogeneity [114]. Addi-
tionally, EVs are biologically stable, which permits storage 
at a variety of temperatures without degradation of their con-
tents [115]. Finally, genomic analysis of plasma exosomal 
nucleic acids has a higher sensitivity for detecting common 
mutations than mutational analysis of plasma ctDNA [116]. 
Among the potential biomarkers with clinical utility in 
diagnosis, monitoring, and predicting treatment response in 
patients with glioblastoma, miRNAs are the most promising. 
For instance, there is evidence that changes in the mRNA 
level of alkylating repair enzymes within glioblastoma-
derived exosomes from blood may potentially predict the 
emergence of temozolomide resistance during therapy [117, 
118]. Another study reported a dramatic decrease in circulat-
ing exosomal miR-21, miR-222, and miR-124-3p in patients 
with glioblastoma, supporting the rationale of using micro-
RNA-based biomarkers when monitoring for post-surgical 
progression [119]. On the contrary, extracellular vesicle 
enumeration from plasma, rather than detecting exosomal 
tumor-associated proteins and RNA levels may be helpful 
in detecting tumor presence, tracking responses to therapy, 
and confirming tumor progression [120]. Ongoing prospec-
tive trials are expected to provide longitudinal analyses of 
liquid biopsies in primary brain tumors to validate findings 

and enable entry into clinical practice (NCT05383872), 
(NCT05099068), (NCT04931732), and (NCT04940507).

Artificial Intelligence Methods

Progress in artificial intelligence (AI) methods applied 
to a vast amount of imaging, clinical, and molecular 
data will revolutionize treatment response monitoring 
in neuro-oncology. Machine learning (ML) and deep 
learning (DL) algorithms are being rapidly adopted in 
radiomics research to relate large-scale extracted imag-
ing data to clinical and biological endpoints, making 
personalized precision cancer care possible [121]. ML 
can process unlabeled data without specified outcome 
variables; most ML used in medicine utilizes labeled data 
provided as “ground truth” and is thus supervised [121]. 
ML algorithms are being rapidly adopted in the task of 
automated tumor segmentation, a key task for rapid and 
reliable volumetric studies [41], as well as in radiomics 
research where large-scale multimodality imaging data is 
matched with clinical and biological endpoints, promis-
ing truly personalized cancer care [121]. Recent machine 
learning approaches have successfully predicted pseudo-
progression [122, 123], tumor recurrence [124–126], and 
radiation necrosis [127] in glioblastoma. Furthermore, a 
machine learning algorithm has emerged as a putative 
imaging biomarker for identifying patients who may ben-
efit most from antiangiogenic therapy [128]. Likewise, a 
recent deep learning model discriminated true progres-
sion from pseudoprogression in glioblastoma patients 
with a moderate accuracy comparable to advanced imag-
ing methods [129]. As discussed earlier, there are several 
pitfalls in the RANO criteria for evaluating treatment 
response which may be remedied by AI. For example, 
Kickingereder et  al. established an infrastructure to 
allow fully automated quantitative analysis of MRI and 
examined its effectiveness for tumor response assess-
ment [130]. Based on their neural network, the research-
ers’ evaluation of tumor response yielded a better surro-
gate endpoint than the RANO assessment for predicting 
overall survival in an EORTC dataset. Additionally, the 
automatic evaluation of tumor response enabled a higher 
agreement to radiologist assessment than using RANO 
criteria [130]. Although artificial intelligence–based tech-
niques may outperform standard response evaluation in 
neuro-oncology, the translation of radiomics and artificial 
intelligence algorithms into everyday multidisciplinary 
care plans is far from ready for daily use, and numerous 
translational challenges persist. These include the lim-
ited quality and clinical value of ground truth data used 
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for AI training, and the lagging regulatory framework 
for interinstitutional data sharing and publication stand-
ards. Federated learning offers a promising solution to 
some of these issues, by enabling model-training to take 
place locally and multiple parallel sites, where raw data 
is stored and only models are shared aggregated between 
the sites maintaining a high level of data privacy and 
security and thus enabling extremely large-scale projects 
[131], and projects. Thus, enthusiasm towards develop-
ing platforms to permit more rapid integration of new AI 
algorithms into the clinical-neuroradiological workflow is 
highly justified [132, 133]. Several clinical research stud-
ies are underway to clarify the feasibility and clinical util-
ity of artificial intelligence in the management of patients 
with glioblastoma (NCT05624736), (NCT05735171), 
(NCT04359745), and (NCT03452774).

Conclusions

Glioblastoma remains the most aggressive and recalcitrant 
of all the primary brain tumors in adults and is associated 
with a dismal prognosis despite multimodal therapy and dec-
ades of interventional studies. Evaluating the direct impact 
of standard therapies and novel investigational agents for the 
treatment of glioblastoma remains a formidable challenge 
in neuro-oncology. Several brain tumor assessment crite-
ria have been developed and revised in the past decade to 
address these challenges. Currently, the RANO criteria are 
generally used in clinical trials to evaluate the effectiveness 
of investigational agents; nonetheless, efforts are underway 
to refine and standardize these guidelines. Several advanced 
imaging modalities have emerged with the potential to com-
plement visual interpretation of glioblastoma response to 
therapies. In the era of precision medicine, liquid biopsy and 
artificial intelligence methodologies are poised to modern-
ize our methods for measuring disease response. While the 
field of neuro-oncology continues to evolve, accelerating 
the pace and breath of these preliminary achievements into 
clinical practice will require large prospective randomized 
controlled studies. Furthermore, the implementation of these 
technological innovations on a large scale will also require 
industry to overcome issues with infrastructure, knowledge 
gaps, and disparities in access to care.
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