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Abstract
Purposeof Review Head and neck cancer (HNC) comprises a group of malignancies, amongst which squamous cell carcinoma 
accounts for more than 90% of the cases. HNC has been related to tobacco use, alcohol consumption, human papillomavirus, 
Epstein-Barr virus, air pollution, and previous local radiotherapy. HNC has been associated with substantial morbidity and 
mortality. This review aims to summarize the recent findings regarding immunotherapy in HNC.
Recent Findings The recent introduction of immunotherapy, with the use of programmed death 1 (PD-1) inhibitors pembroli-
zumab and nivolumab, which have been FDA approved for the treatment of metastatic or recurrent head and neck squamous 
cell carcinoma, has changed the field in metastatic or recurrent disease. There are many ongoing trials regarding the use of 
novel immunotherapeutic agents, such as durvalumab, atezolizumab, avelumab, tremelimumab, and monalizumab.
Summary In this review, we focus on the therapeutic potential of novel immunotherapy treatment modalities, such as 
combinations of newer immune-checkpoint inhibitors; the use of tumor vaccines such as human papillomavirus-targeted 
vaccines; the potential use of oncolytic viruses; as well as the latest advances regarding adoptive cellular immunotherapy. 
As novel treatment options are still emerging, a more personalized approach to metastatic or recurrent HNC therapy should 
be followed. Moreover, the role of the microbiome in immunotherapy, the limitations of immunotherapy, and the various 
diagnostic, prognostic, and predictive biomarkers based on genetics and the tumor microenvironment are synopsized.

Keywords Head and neck cancer · Immune-checkpoint inhibitors · Immunotherapy · Oncolytic viruses · Programmed death 1 · 
Tumor microenvironment · Tumor vaccines
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PAMPs  Pathogen associated molecular 
patterns

PFS  Progression free survival
PD-1  Programmed death protein 1
PD-L1  Programmed death protein ligand 1
PR  Partial response
R/M HNSCC  Recurrent/metastatic head and neck 

squamous cell carcinoma
TAAs  Tumor associated antigens
TAMs  Tumor associated macrophages
TGF-β  Transforming growth factor β
TILs  Tumor infiltrating lymphocytes
TMB  Tumor mutational burden
TME  Tumor microenvironment
TORS  Transoral robotic surgery
Tregs  T regulatory cells
VEGF  Vascular endothelial growth factor

Introduction

HNC is the seventh-most common cancer worldwide [1]. It 
has been estimated that it accounts for more than 600,000 
new cases and approximately 325,000 deaths annually [2, 
3]. In addition, its incidence will increase by 30% in 2030 
[2–4]. This increasing trend is observed particularly in oro-
pharyngeal carcinoma [4].

Head and neck cancer comprises a variety of malig-
nancies, of which more than 90% involve head and neck 
squamous cell carcinoma (HNSCC) [5]. Although HNC is 
typically diagnosed among older patients with a history of 
heavy tobacco and alcohol use, this trend has declined in 
the Western world due to the decrease in tobacco consump-
tion. On the contrary, human papillomavirus-associated 
(HPV-associated) HNC has increasingly been recognized 
among younger patients in northern Europe and the USA 
[6, 7]. Of the 120 types of HPV, the oncogenic types 16 and 
18 account for more than 90% of HPV-associated HNSCC 
[8]. There is an increased likelihood of developing HPV-
associated HNSCC after 10 to 30 years of oral sex. Oral sex 
has been implicated in the development of HPV-associated 
HNSCC in many studies [9, 10]. Another virus, Epstein-Barr 
virus has also been suggested to be involved in the patho-
genesis of nasopharyngeal carcinoma, while air pollutants 
and previous local radiotherapy have also been implicated 
in the development of HNC [12, 13••]. Besides, in south-
ern Asia, betel chewing has also been documented as an 
established risk factor [4]. Moreover, genetic predisposition 
related to specific loci, diet, and the microbiome have also 
been involved in the pathogenesis of HNSCC [4].

Despite advances in the treatment of local HNSCC with the 
use of transoral robotic surgery (TORS), metastatic or recur-
rent disease occurs in approximately 50 to 60% of patients 

with stages III or IV of the disease [14]. Notably, the majority 
of recurrences are not eligible for surgery or/and local radio-
therapy. It is estimated that approximately 60% of patients 
with HNSCC in the UK present with stages III or IV of the 
disease. Interestingly, most patients with oral or oropharyn-
geal cancer present with stage IV at diagnosis, whereas most 
patients with laryngeal cancer present with stage I of the dis-
ease [18]. Metastatic disease had a poor prognosis, with a 
median overall survival (OS) of 6 months in the past [15]. 
However, the advent of immunotherapy has revolutionized our 
understanding as well as the treatment modalities in recurrent 
or metastatic (R/M) HNSCC [16, 17•, 18]

In this review, we aim to discuss current treatment 
choices regarding immunotherapy in HNSCC as well as 
explore novel immunotherapeutic agents that are candidates 
for future treatment protocols. Special emphasis is given to 
combinations of newer immune checkpoint inhibitors; the 
use of tumor vaccines such as human papillomavirus-tar-
geted vaccines; the potential use of oncolytic viruses; the 
latest advances in the use of adoptive cellular immunother-
apy; the role of the microbiome in immunotherapy; and the 
limitations of immunotherapy. Finally, we will synopsize 
various diagnostic, prognostic, and predictive biomarkers 
based on genetics and the tumor microenvironment (TME).

The Concept of Immunotherapy in Cancer

Immunotherapy has emerged as a novel treatment modal-
ity in cancer during the last 2 decades [19]. However, the 
concept of the participation of the immune system in cancer 
prognosis dates back to 1893, when Dr. William Coley noted 
that patients with cancer and post-surgical infection had bet-
ter outcomes [20]. In particular, he reported ten cases of 
cancer patients who were administered heat-killed bacteria-
causing erysipelas, the so-called “Coleys’ toxins,” and who 
exhibited a better prognosis than patients without infection 
[20]. For this conception, which was really outstanding, Dr. 
William Coley has been recognized as the father of cancer 
immunotherapy [21]. Nowadays, it is widely known that 
the immune system plays a key role in cancer cell regula-
tion. More specifically, T cells and antigen-presenting cells 
(APCs) are the cornerstone of immune system responses 
in cancer. Immunotherapy focuses on the development 
of therapeutic agents that may mitigate T cell and APC 
responses in the context of the TME. T cell receptor was 
discovered in 1982 by Allison, who has extensively studied 
T cell responses in cancer. Allison and Honjo were awarded 
the Nobel Prize in 2018 in Physiology for their research on 
immune checkpoint inhibitors (ICIs). ICIs are suggested to 
limit the inflammatory responses taking place after the acti-
vation of T cells [18]. The first ICI that was developed was 
the CTLA-4, which was discovered by Brunet et al. in the 
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1980s [22]. Ipilimumab, a CTLA-4 monoclonal antibody, 
was the first immunotherapeutic agent approved by the Food 
and Drug Administration (FDA) in 2011 for the treatment of 
metastatic melanoma [19]. Programmed cell death 1 (PD-1) 
gene was first discovered in 1992 by Honjo et al. and pro-
grammed cell death ligand 1 (PD-L1) ensued within a few 
years [23]. In 2016, the FDA granted the anti-PD-1 antibod-
ies pembrolizumab and nivolumab accelerated approval for 
treating non-small cell lung carcinoma due to their durable 
objective responses. Nowadays, anti-PD-1/PD-L1 agents are 
rapidly emerging as treatment options in various types of 
cancer, such as metastatic melanoma, non-small cell lung 
carcinoma, small cell lung carcinoma, triple-negative breast 
cancer, pancreatic cancer, platinum-resistant ovarian cancer, 
cervical cancer, renal cell carcinoma, gastric and gastroe-
sophangeal junction adenocarcinoma, colorectal cancer, 
hepatocellular carcinoma, and prostate cancer [18–23].

Immunotherapy in Recurrent or Metastatic 
HNSSC

PD‑1 and PD‑L1 as Immunotherapeutic Agents

PD-1 monoclonal antibody pembrolizumab has been the first 
immunotherapeutic agent used for R/M HNSSC [17•]. The 
KEYNOTE studies have assessed the efficacy and adverse 
effects of pembrolizumab in R/M HNSCC. The KEYNOTE 
studies comprise three studies: KEYNOTE-012, which was 
a phase I study that ended in 2016, the KEYNOTE-055, 
which was a phase II study that ended in 2017, and the 
KEYNOTE-048, which was a phase III study that ended in 
2019 [24–26]. In the KEYNOTE-012 study, 192 patients 
with R/M HNSCC were enrolled. Among them, 60 patients 
were administered pembrolizumab 10 mg/kg every 2 weeks, 
and 132 patients were administered pembrolizumab 200 mg 
every 3 weeks. A complete response (CR) was noted in 4% 
of treated patients and a partial response (PR) in 14%. Sev-
enty-one percent of responses lasted more than 12 months, 
which is indicative of the durability of responses to this 
monoclonal antibody [24]. In addition, pembrolizumab has 
also been administered in comparison with standard therapy 
in the KEYNOTE-055 and KEYNOTE-048 studies, where 
it showed similar results to the KEYNOTE-012 study [25, 
26]. In particular, in the KEYNOTE-055 study, a phase II 
single-arm trial, 171 patients with HNSCC received 200 mg 
of pembrolizumab every 3 weeks. The overall response rate 
(RR) was 16%, with a median duration of 8 months [25]. In 
the KEYNOTE-048 study, an open-label phase III trial, 247 
patients with HNSCC received 200 mg of pembrolizumab 
every 3 weeks, and 248 patients received methotrexate, doc-
etaxel, or cetuximab as a standard of care therapy. Median 
overall survival (OS) was 8.4 months in the pembrolizumab 

group and 6.9 months in the standard-of-care group [26]. 
Adverse effects were fatigue, diarrhea, decreased appetite, 
hypothyroidism, adrenal insufficiency, pneumonitis, fever, 
rash, and pruritus [25, 26]. Based on KEYNOTE-012, KEY-
NOTE-055, and KEYNOTE-048 studies, pembrolizumab 
has shown a significant prolongation in the OS and a favora-
ble safety profile when compared to chemotherapy [24, 26].

Apart from pembrolizumab, nivolumab, another PD-1 
monoclonal antibody, has been employed in the CheckMate 
141 trial among 361 patients with R/M HNSCC who pro-
gressed after platinum chemotherapy [27]. The CheckMate 
141 trial was a randomized phase III study that evaluated 
the efficacy of the administration of nivolumab at a dose of 
3 mg/kg every 2 weeks in 240 patients, while 121 patients 
received standard-of-care therapy. Among these patients, 
there was an estimated survival rate at 1 year of 36% with 
nivolumab versus 16.6% with standard treatment (metho-
trexate, docetaxel, or cetuximab). The response rate was 
13.3% in the nivolumab group versus 5.8% in the stand-
ard single-agent therapy group. Regarding adverse effects, 
fatigue, nausea, decreased appetite, rash, pruritus, and hypo-
thyroidism were reported [27]. Nivolumab was granted FDA 
approval on November 10, 2016, for the treatment of R/M 
HNSCC as a result of the promising outcomes of the Check-
Mate 141 trial.

Based on the KEYNOTE-012 and the CheckMate 141 
trials, respectively, pembrolizumab and nivolumab were the 
first immunotherapeutic agents approved for R/M HNSSC. 
Pembrolizumab and nivolumab were documented to result in 
improved OS as well as increased PFS compared to standard 
treatment [28].

Nevertheless, as there is ongoing research in this field, 
other agents have also been investigated in this regard. 
PD-L1 blockade by the monoclonal antibody durvalumab 
has been evaluated in the HAWK study among 112 patients 
with R/M HNSSC who exhibited PD-L1 tumor expression 
≥ 25% [29]. Median OS and PFS were 7.1 months (95% CI, 
4.9–9.9) and 2.1 months (95% CI, 1.9–3.7), respectively. OS 
and PFS at 12 months were 33.6% (95% CI, 24.8–42.7) and 
14.6% (95% CI, 8.5–22.1). Adverse effects included fatigue, 
nausea, decreased appetite, hypothyroidism, diarrhea, pru-
ritus, and rash [30].

Two other immunotherapeutic anti-PD-L1 agents, atezoli-
zumab and avelumab, have also been used. Atezolizumab 
was administered in 32 patients with advanced HNSSC and 
showed a median OS of 6 months and a median PFS of 2.6 
months without major adverse events. Interestingly, the ques-
tionnaire evaluating the quality of life yielded positive out-
comes regarding its administration [31]. On the other hand, 
avelumab was administered in the JAVELIN study among 
153 patients with R/M HNSSC and demonstrated a median 
OS of 8 months. Adverse effects were documented in 83 
of the 153 patients, the most common being fatigue, fever, 
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and pruritus [32]. Atezolizumab and avelumab have been 
reported to result in objective response rates of 22 and 13.1%, 
respectively, which are equal to or slightly better compared to 
pembrolizumab, nivolumab, and durvalumab [17•].

Overall, PD-1/PD-L1 blockade is capable of restoring 
anti-tumor immune responses, mainly mediated by CD8 + 
lymphocytes in cases of R/M HNSSC [16]. It is noteworthy 
that Chen et al. have demonstrated that p16 protein expres-
sion, which translates into HPV-positivity, is highly associ-
ated with PD-L1 expression in HNSSC [33]. This associa-
tion may account for the better response rates with PD-1/
PD-L1 blockade among HPV-positive HNSSC patients 
when compared to HPV-negative HNSSC ones [16].

Other Immuno‑Based Treatment Modalities Beyond 
PD‑1/PD‑L1

Tregs are a sub-group of CD4 + lymphocytes that express 
the transcription factor 3, Foxp-3 (forkhead box protein 3), 
and CD25 [34••, 35]. This subgroup exists in the blood as 
well as in the stroma of HNSSC, where it exerts tumor-
promoting effects [36]. More specifically, Tregs are capa-
ble of secreting inhibitory cytokines, such as IL-10, IL-35, 
and TGF-β, upregulating inhibitory receptors, as well as 
depriving the local TME of IL-2 through the increase of 
CD25 expression [37, 38]. Cytotoxic T lymphocyte anti-
gen 4 (CTLA-4), is highly expressed in intratumoral Tregs. 
This expression is further enhanced after treatment with 
cetuximab [39]. Cetuximab is a monoclonal antibody tar-
geting epidermal growth factor receptor (EGFR), which has 
gained FDA approval for HNSCC treatment in 2006 [39, 
40]. CTLA-4 Tregs exert inhibitory effects on natural killer 
(NK) cell functionality after treatment with cetuximab. Ipili-
mumab and tremelimumab, which are monoclonal antibod-
ies against CTLA-4, seem to restore the functionality of NK 
cells via the depletion of Tregs, thus exhibiting immunother-
apeutic potential [39, 40]. As Tregs are suggested to promote 
an immunosuppressive TME in HNSSC, their inhibition in 
the TME of HNSSC may restore immune responses [39, 40]. 
Moreover, as resistance to cetuximab may rapidly develop 
among patients with R/M HNSSC, the use of anti-CTLA-4 
therapy could be of special interest. Due to the fact that 
Tregs may mitigate the efficacy of treatment with anti-PD-1/
PD-L1, the administration of an anti-CTLA-4 agent may 
play a crucial role in ameliorating sensitivity to anti-PD-1/
PD-L1 drugs [15]. In this context, CONDOR and EAGLE 
studies were performed to further assess the co-administra-
tion of the PD-L1 monoclonal antibody durvalumab with the 
anti-CTLA-4 agent tremelimumab [40, 41]. In the CONDOR 
study, 256 patients with R/M/HNSSC were enrolled, and the 
median PFS in the combination group was 2 months, while 
in the monotherapy groups, it was 1.9 months for each of the 
two drugs administered, i.e., durvalumab and tremelimumab. 

Notably, adverse effects, such as fatigue and diarrhea were 
similar in the group receiving durvalumab monotherapy, 
tremelimumab monotherapy, and the group receiving their 
combination [40]. In the EAGLE Study, 736 patients with 
R/M HNSSC were enrolled, and the median PFS and OS 
were similar in the three different groups, i.e., the group 
receiving only durvalumab, the group receiving durvalumab 
plus tremelimumab, and the last group receiving standard 
of care chemotherapy (cetuximab, taxane, methotrexate, 
or fluoropyrimidine). The most common adverse effect for 
durvalumab and durvalumab plus tremelimumab was hypo-
thyroidism, whereas anemia was the most frequent adverse 
effect in the standard of care group [41]. Despite the fact that 
the outcomes from the CONDOR and EAGLE studies were 
not very encouraging, there is ongoing investigation regard-
ing anti-CTLA-4 drugs as monotherapy or in combination 
with different category agents in R/M HNSSC.

Apart from the anti-CTLA-4 drugs, other agents with 
therapeutic potential against Tregs include anti-TIM-3 and 
anti-LAG-3 targeting drugs. Anti-TIM-3 agents are heading 
towards T cell immunoglobulin and mucin domain-contain-
ing protein 3 [16]. In addition, anti-LAG-3 agents are being 
developed targetινγ lymphocyte activation gene 3. More spe-
cifically, eftilagimod alpha is a soluble LAG-3 protein that 
binds to MHC II, thereby activating APCs as well as CD8 + 
T cells. Eftilagimod alpha is expected to increase the anti-
tumor responses of PD-1/PD-L1 when used in combination 
[16]. A trial expected to enroll 189 participants with R/M 
HNSSC to receive eftilagimod alpha together with pem-
brolizumab is active but not recruiting yet [NCT03625323]. 
Regarding anti-TIM-3 therapy, there is an ongoing trial 
administering INCAGN02385 and INCAGNO2390 together 
with the anti-PD-L1 retifanlimab among 162 patients with 
R/M HNSSC [NCT05287113]. The results of this trial are 
eagerly anticipated.

Other treatment modalities include monoclonal antibod-
ies, which prevent the binding of NK group 2 member A 
(NKG2A) to HLA-E in NK cells [42]. HLA-E is a member 
of the non-classical HLA (human leukocyte antigen) histo-
compatibility complex, which is overexpressed in HNSSC 
[42]. NKG2A is a receptor of the NK cells as well as of 
a sub-group of CD8 + T cells. Monalizumab is the first 
monoclonal antibody blockading the NKG2A receptor that 
has been evaluated in the UPSTREAM study. The immu-
notherapy 1 cohort of the UPSTREAM study has enrolled 
26 patients with R/M HNSSC and has shown a median PFS 
of 1.7 months (95% CI, 1.5–1.8) and a median OS of 6.7 
months (95% CI, 3.0–9.6). In this cohort, monalizumab pre-
sented limited effectiveness in patients with R/M HNSSC. 
However, an immunotherapy cohort 2 with the addition of 
durvalumab to monalizumab is under investigation within 
the UPSTREAM study [43]. Moreover, Andre et al. have 
examined the efficacy of monalizumab when added to 
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cetuximab in patients with HNSSC [44]. The results have 
shown a 31% objective response rate, which was attributed 
to the dual activity enhancement of NK cells as well as T 
cells. The most common adverse effects included fatigue, 
fever, and headache [44].

Another possible target is the inducible T cell co-stim-
ulator (ICOS) together with its ligand, the inducible T cell 
co-stimulator ligand (ICOSL). The INDUCE-3 trial has 
embarked on investigating the effects of the ICOS receptor 
agonist antibody GSK3359609, feladilimab, as an add-on 
therapy to pembrolizumab among 315 patients with R/M 
HNSSC [NCT04128696]. The INDUCE-4 trial is an active 
trial of the effects of GSK3359609, feladilimab, together 
with pembrolizumab and 5FU-platinum chemotherapy 
among 118 patients with R/M HNSSC [NCT04428333]. 
The results of both INDUCE-3 and INDUCE-4 trials have 
not been published yet.

Overall, there is ongoing research regarding the develop-
ment of various immunotherapeutic agents beyond the PD-1/
PD-L1 axis. Currently, these agents are being studied either 
alone or in combination with the anti-PD-1/PD-L1 drugs. 
Notably, the latter are considered the mainstay of immuno-
therapy among patients with R/M HNSSC.

Tumor Vaccines

Tumor vaccines may be used for the activation of the 
immune system against the development of cancer. They 
are categorized into prophylactic and therapeutic tumor 
vaccines. Paradigms of prophylactic tumor vaccines are 
vaccines against hepatitis B virus, which protect against 
the development of hepatocellular carcinoma, and against 
HPV, which protects against HPV-associated cervical carci-
noma. Bacillus Calmette-Guerin (BCG) vaccine is an FDA-
approved vaccine for the treatment of early-stage bladder 
cancer, while Sipuleucel-T is FDA-approved for the treat-
ment of prostate cancer. Sipuleucel-T comprises APCs, 
that have been activated ex vivo with a recombinant fusion 
protein, PA2024. This PA2024 fusion protein consists of a 
prostate antigen, such as prostatic acid phosphatase, which 
is fused to an immune-cell activator, the granulocyte-mac-
rophage colony-stimulating factor [45••].

The expression of E6 and E7 proteins by HPV results in 
the degradation of p53 gene; hence, leading to uncontrolled 
cellular proliferation. HPV vaccines are suggested to prevent 
more than 90% of HPV-associated head and neck pre-can-
cerous lesions [18]. However, the majority of tumor antigens 
are being recognized as self-antigens by the immune sys-
tem. HPV vaccines targeting E6/E7 oncogenes of HPV16 
are not able to induce complete remission of HNSCC by 
themselves [45••]. Therefore, they are increasingly being 
tested in conjunction with ICIs in R/M HNSCC, promoting 
T cell responses [45••]. Indeed, there are various ongoing 

trials that study a variety of combinations of HPV16 E6/
E7 targeted oncogenes in therapeutic vaccines with dif-
ferent novel ICIs. Table 1 depicts ongoing trials employ-
ing HPV16-targeted vaccines in combination with various 
immunotherapeutic agents.

Adoptive Cellular Immunotherapy

Adoptive cellular immunotherapy refers to the transfer 
of immune cells, which possess anti-tumor properties to 
patients with cancer [46, 47]. Chimeric antigen receptor T 
cell (CAR-T cell) therapy is the most widely known para-
digm of adoptive cellular immunotherapy, which has been 
increasingly used in hematologic malignancies [46, 47]. 
CAR-T cell therapy works by recognizing and eradicating 
specific targets on the surface of cancer cells. In HNSCC, 
potential targets for CAR-T cells are the following: CD27, 
EGFR, MICA, MICB, MAGE-A4, FAP, EPCAM, CD70, 
and B4GALNT1 [48••]. Besides, one of the potential 
targets belongs to the ErbB family, consisting of ErbB1 
(EGFR), ErbB2 (HER2/neu), ErbB 3, and ErbB4. CAR-T 
cell therapy targeting ErbB2 has resulted in a 56% reduc-
tion in tumor size [49]. CAR-T cell therapy targeting the 
CD70-positive HNSCC cells has shown promising results. 
CD70/CAR-T cell therapy may be a future candidate 
for CD70-positive HNSCC, but not for the treatment of 
HNSCC in general [50]. Furthermore, approximately 15% 
of HNSCC carry NOTCH 1 mutations, making synNOTCH 
CAR-T cell therapy suitable for this group of patients with 
HNSCC [50].

CAR-T cell therapy is classified as HPV-associated 
HNSCC and non-HPV-associated HNSCC. In the first case, 
E6 and E7 viral proteins are targeted by T cells. Initial results 
have shown complete tumor regression after the administra-
tion of tumor-infiltrating lymphocytes (TIL). An ongoing trial 
(NCT03083873) is underway, evaluating the efficacy of TIL 
(LN-145) administration in R/M HNSCC [51]. Moreover, 
HPV16E6 peptide T cell receptor gene therapy has shown an 
objective tumor response in 17% of patients, while HPV16E7 
T cell receptor gene therapy (clinical phase I/II trial) has 
reported an objective tumor response in approximately 50% 
of patients [52]. For non-HPV-associated HNSCC patients, 
there are two procedures: Epstein-Barr virus T cells and 
cancer germline antigens. Melanoma-associated antigen 4 
and Kita-Kyushu lung cancer antigen 1 are currently under 
investigation as possible antigen targets for the treatment 
of HNSCC in the context of cancer germline therapy [53]. 
Although there is much progress in the administration of 
adoptive cellular immunotherapy, this technique is still being 
performed very rarely among patients with HNSCC. Nev-
ertheless, this is a technique that is evolving. Its substantial 
toxicity until now, mainly the cytokine release syndrome, 
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which may result even in multi-organ dysfunction, limits its 
widespread use for the time being [54, 55].

Oncolytic Viruses (OVs)

Oncolytic viruses (OVs) have the ability to differentially 
target tumor cells and destroy them, whereas they do not 
affect normal cells in the host. OVs may directly kill tumor 
cells or indirectly augment anti-tumor immune responses by 
releasing pathogen-associated molecular patterns (PAMPs), 
damage-associated molecular patterns (DAMPs), or tumor-
associated antigens (TAAs). They are categorized into natu-
rally occurring OVs and genetically modified OVs, both of 
which can lead to tumor cell lysis [54, 55]. T-VEC (talimo-
gene laherparepvec) is a doubly mutated HSV-1 that pos-
sesses the ability to infect tumor cells and replicate within 
them. It accomplishes this infection and replication within 
tumor cells through the utilization of various cell recep-
tors, such as glycoproteins, nectins, and herpesvirus entry 
mediators [56, 57]. Notably, its replication has been related 
to the interruption of some other oncogenic signaling path-
ways, namely protein kinase R and interferon (IFN) type I 
pathways [57]. Its anti-tumor activity may be enhanced by 
a granulocyte-macrophage colony-stimulating factor (GM-
CSF), which has been documented to recruit dendritic cells 
to the sites of inflammation, thus further stimulating anti-
gen-presenting cell (APC) functionality and T cell responses 
[57]. HF10 is another virus that is naturally mutated in the 
UL56 gene, possessing the ability to replicate and kill tumor 
cells together with suppressing tumor growth among patients 
with HNSCC [58]. This novel, evolving technique using OVs 
could also be combined with chemotherapy or CAR-T cell 
therapy [54, 55]. Nevertheless, the combination of T-VEC 
with pembrolizumab has not resulted in an improved ORR 
when compared to pembrolizumab alone thus far [54, 55].

Diagnostic and Prognostic Biomarkers 
in HNSCC

Programmed Death Ligand‑1 (PD‑L1) Expression: Is 
it Reliable?

Although ICIs have revolutionized the treatment of R/M 
HNSCC, not all patients are eligible to respond to ICIs. 
Currently, responders have been authorized to receive ICIs 
based solely on the expression of PD-L1 in tumor or stroma 
cells [59]. However, the level of PD-L1 expression is still 
questionable. In the KEYNOTE-012 study, even expres-
sion of PD-L1 in at least 1% of cancer cells or stroma cells 
by immunochemistry staining has been associated with 
improved overall survival when compared with patients 
with a PD-L1 expression of less than 1% [60•]. Therefore, 

this more than 1% PD-L1 expression has been designated 
as a marker for a potential response to ICIs. Nonetheless, 
this 1% index has been a matter of debate, as later studies 
have shown that even patients with HNSSC with less than 
1% expression of PD-L1 could benefit from ICIs [61, 62].

Thus, as PD-L1 expression is not considered a reliable 
tool to assess the therapeutic potential with ICIs, other bio-
markers, such as microsatellite instability (MSI) and tumor 
mutational burden (TMB), have already been developed 
[63]. MSI is defined as the DNA mismatch repair defect 
system in microsatellites, i.e., in repetitive DNA motifs 
close to important genes. MSI has been generally classified 
as high-level and low-level MSI [59, 60•, 61–63]. High-
level MSI has been associated with a better prognosis and 
response to immunotherapy and may serve as a marker for 
individualized cancer treatment. However, HNSCC has not 
been related to a significant MSI, as is the case of adeno-
carcinomas. This fact precludes its utility in HNSCC [59, 
60•, 61–63].

Besides, TMB, which is defined as the number of non-
inherited mutations per million bases of the investigated 
genome, is being assessed due to the advent of next-gen-
eration sequencing (NGS) [64•, 65, 66]. As TMB has been 
suggested to correlate with a high burden of neoantigens, 
the increased presence of neoantigens could be associated 
with a more evident activation of cytotoxic T cells and a 
better response to immunotherapy [59, 67•]. Indeed, a bet-
ter OS has been documented with the use of ICIs among 
patients with high TMB values [67•, 68, 69]. Nevertheless, 
even patients with lower than 20 mutations/per million bases 
may benefit from immunotherapy. In addition, standardiza-
tion of the techniques used to estimate TMB is mandatory, 
as differences in NGS platforms as well as bioinformatics 
analyses may lead to non-comparable results [67•, 68, 69]. 
Therefore, there is a need for further investigation in this 
field to establish the effectiveness or not of immunotherapy 
in HNSCC.

Gene Panels Predicting Response 
to Immunotherapy

Huang et al. have recently proposed a 25-gene mutation sig-
nature, which serves as a better predictor of response to the 
administration of ICIs than TMB [59]. In particular, they 
have suggested that the implementation of a 25-gene panel 
may better predict the patients who will benefit from ICIs 
than the high-TMB score, i.e., a TMB score ≥ 10. This TMB 
score ≥ 10 has been designated by the FDA for the approval 
of pembrolizumab treatment among patients with advanced 
solid tumors. It is noteworthy that Huang et al. have demon-
strated that this 25-gene panel may include patients with a 
low TMB score, i.e., less than 10, but who will still benefit 
from the administration of ICIs [59]. More specifically, this 
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25-gene mutation signature includes genes that were predic-
tive of response to ICIs. For example, EP300 has already 
been documented as a predictive biomarker of response to 
ICIs in various cancers [59, 70, 71]. It works by altering the 
differentiation of CD4+ lymphocytes into T-regulatory cells 
(Tregs) [70, 71]. Tregs have a pivotal role in suppressing 
autoimmunity. Their immune-suppressive ability is consid-
ered to be a drawback for the response to ICIs in the con-
text of tumor microenvironment. Therefore, this drawback 
could be overcome by reducing their accumulation in tumor 
microenvironment, thus allowing for a more robust immune 
response to ICIs [72, 73]. Apart from EP300, 4 genes of this 
25-gene panel belong to the NOTCH family, which has been 
related to responses to immunotherapy [72, 73]. Indeed, the 
NOTCH family of genes has been implicated in tumorigen-
esis and is a good predictor of response to cancer immu-
notherapy [72, 73]. In addition, the specific squamous cell 
carcinoma transcription factor TP63 has also been proven to 
be involved in the proliferation of squamous cell carcinoma 
cells as well as in responses to immunotherapy in these car-
cinomas [74]. Besides, mutations in ARID1A gene, which 
has been included in this 25-gene panel, have been associ-
ated with different responses to treatment with PD-1/PD-L1 
[70]. In particular, Okamura et al. have demonstrated that 
alterations in the ARID1A gene may serve as a biomarker of 
longer progression-free survival (PFS) after treatment with 
ICIs, regardless of high MSI and TMB. Overall, this 25-gene 
panel seems to be a very promising biomarker regarding 
response to immunotherapy. It is noteworthy that this spe-
cific 25-gene mutation signature may be further improved 
by the more extensive use of NGS [74].

Zheng et al. have recently reported the usefulness of a 
7-gene panel of transforming growth factor β (TGF-β) in 
predicting response to immunotherapy. TGF-β acts by reduc-
ing CD8 + T cell proliferation as well as by increasing the 
proliferation and activation of Tregs [75•]. HNSCC is char-
acterized by dense infiltration with Tregs. As TGF-β sup-
presses CD8+ cells while promoting Tregs activation, the 
neutralization of TGF-β could result in increased anti-tumor 
activity. Therefore, the inhibition of the TGF-β receptor I, by 
diminishing the immunosuppressive effects of TGF-β in the 
TME, may lead to improved responses to immunotherapy 
[76]. Redman et al. have documented that the dual anti-PD-
L1 and anti-TGF-β treatment enhances anti-tumor activity 
among patients with non-HPV-associated HNSCC [77]. This 
beneficial dual inhibition may confer a significant utility of 
this 7-gene panel regarding TGF-β in predicting responses 
to immunotherapy [75•, 76, 77].

Starger et al. have advocated the use of a DNA meth-
ylation profile to predict response of not to ICIs [78]. In 
particular, they have checked more than 850,000 CpG sites 
in patients with metastatic HNSCC who had previously 
received platinum-based chemotherapy and have found 

differences in methylation profiles, such as hypo-methyla-
tion or hyper-methylation gene patterns, by using microarray 
assay in well-known cancer-involved pathways. They have 
tested genes implicated in MAPK, Hippo, and Axon signal-
ing as well as other pathways in cancer and have documented 
a differential methylation profile, which could distinguish 
patients who would benefit from PD-1 treatment compared 
to nonresponders. However, further large-scale studies are 
needed to confirm their findings [78].

Furthermore, another 18-gene panel has been suggested 
as a surrogative biomarker of response to immunotherapy. 
Haddad et al. have documented that this 18-gene T cell 
inflamed gene expression profile  (Tcellinfl-GEP), which 
refers to infiltrating T cells, interferon-γ, and chemokines, 
has also been shown as a good biomarker of response to 
immunotherapy, especially when combined with TMB and 
PD-L1 expression [79]. This combination may provide dis-
tinct features and more information about response to pem-
brolizumab in HNSCC patients [79].

Major Components of the TME and Their Metabolic 
Reprogramming as a Potential Biomarker

TME comprises the immune cells, the stromal cells, the 
blood vessel cells, and the extracellular matrix (Fig. 1). It 
is considered a dynamic entity that plays a crucial role in 
the development, local invasion, as well as the metastatic 
spread of cancer [80]. Among the stromal cells, cancer-
associated fibroblasts (CAFs) play a vital importance in 
the progression of cancer [80]. As a major component 
of TME, CAFs have been documented to interfere with 
cancer cells to promote differentiation and transformation 
of normal fibroblasts into CAFs, while they have been 
implicated in the enhancement of angiogenesis as well as 
the immunosuppression of T cells. In particular, when a 
tumor reaches a specific volume, its oxygen supplemen-
tation and nutritional needs increase, leading to insuffi-
cient oxygen and nutritional defects. In this hypoxic and 
acidic TME, hypoxia-inducible factors (HIFs) together 
with angiogenesis-promoting factors, such as the vascular 
endothelial growth factor (VEGF), are activated in order 
to maintain sufficient blood supply with enough oxygen 
and nutritional supplementation to the cancer cells [80]. 
Therefore, TME with this dynamic process, which is 
largely attributed to CAFs, is able to maintain and pro-
mote cancer progression. Indeed, Luo et  al. have only 
recently proven the plasticity of CAFs and their signifi-
cance in immune responses, as well as their prognostic and 
therapeutic potential [81]. With the advent of single-cell 
RNA sequencing, they have demonstrated the diversity of 
CAFs and their key role in the development and spread of 
various types of cancer [81]. Besides, their interactions 
with tumor-associated macrophages (TAMs) as well as the 
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endothelial-to-mesenchymal transition may result in dif-
ferential responses to immunotherapy [81].

Du et al. have developed a metabolism-related gene prog-
nostic index (MRGPI) based on 7 genes: HPRT1, AGPAT4, 
AMY2B, ACADL, CKM, PLA2G2D, and ADA. Patients with 
a high MRGPI may have a better response to immunotherapy, 
while patients with a low MRGPI have been designated as non-
responders to immunotherapy [82]. More specifically, a higher 
MRGPI has been associated with an increased metabolic func-
tion, lower anti-tumor immune capacity, and an immunosup-
pressive TME, which limits response to immunotherapy [82]. 

This MRGPI seems to be an appealing approach for the predic-
tion of response to immunotherapy [82].

Moreover, Qiang et al. have recently suggested another 
MRGPI for HNSCC, which could be a useful tool in assess-
ing patients who would have a better response to immuno-
therapy [83]. This tool is based on 12 genes that have been 
implicated in the metabolic reprogramming of the TME and 
could serve as a molecular signature predicting the response 
to immunotherapy [83]. The expression of P4HA1, ALG3, 
CYP2D6, POLE2, DNMT1, MTHFD2, and PYGL have 
already been related to the prognosis of HNSCC, whereas 
the role of the remaining five genes has not yet been defined.

Wang et al. have proposed that among a 34-gene panel 
associated with immunogenic cell death, 15 genes were 
associated with response to immunotherapy: CALR, CXCR3, 
PDIA3, HSP90AA1, NT5E, ATG5, PRF1, FOXP3, IL17A, 
CD8A, IL10, IL6, CD8B, CD4, and ENTPD1. The above-
mentioned panel may be a good predictor of response to 
immunotherapy, reflecting modifications of the TME in 
HNSCC [84].

Only recently, a novel predictor of a poor response to 
immunotherapy has been suggested by Chen et al. They have 
demonstrated that the expression of the NT5E gene has been 
related to CAFs in HNSCC patients [85]. More specifically, 
the increased expression of NT5E on CAFs, i.e., a high 
NT5E index, has been associated with a poor OS as well as 
a poor PFS among patients with HNSCC. A higher NT5E 
expression has been associated with an immunosuppressive 
TME, which may be translated to a low neo-antigen load, 
a low TMB, and a reduced response to immunotherapy in 
HNSCC patients [85].

The Role of Microbiome in Immunotherapy 
for HNSCC

The microbiome refers to the entire genome of the sum of 
microorganisms inhabiting the human body, i.e., bacteria, 
viruses, fungi, and archaea [86, 87]. Recent studies have 
demonstrated that the microbiome plays a crucial role in 
the development of various types of cancer. In particular, 
regarding HNC, Mukheerjie et al. have documented a multi-
hit process of microbiome and mycobiome alterations in the 
pathogenesis of oral cavity cancers [88]. As already men-
tioned above, alcohol consumption has been linked to the 
etiopathogenesis of oral cavity carcinoma. Chronic alcohol 
consumption results in changes in the levels of acetaldehyde, 
a well-known product of alcohol metabolism. In addition, 
bacteria may also metabolize alcohol, thus interfering with 
acetaldehyde production. Acetaldehyde is a highly toxic sub-
stance with a negative impact on DNA synthesis and repair 
mechanisms [89]. It has been suggested that dysbiosis, with 
the abundance of bacteria synthesizing acetaldehyde such as 

Fig. 1  The tumor microenvironment (TME) plays a crucial role in the 
immunotherapy of HNSCC. A variety of cells, such as CAFs, TAMs, 
Tregs, T cells, B-cells, NKCs, and DCs, interact with each other to 
promote cancer proliferation and spread through the vasculature (ves-
sels in red color). The extracellular matrix (ECM) provides the TME 
with structural support and biochemical properties, which may be 
protective against cancer progression or, in the contrary, may serve as 
a background where the activity of cancer cells is amplified
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Rothia, Streptococcus, and Prevotella, has been implicated 
in oral cavity tumorigenesis [90]. Furthermore, Porphy-
romonas gingivalis has involved in the pathogenesis of oral 
cavity cancer. Indeed, higher serum levels of IgG antibodies 
against Porphyromonas gingivalis have been found among 
patients with HNC. Moreover, patients with Porphyromonas 
gingivalis in their oral cavity tend to exhibit a higher mor-
tality. It has been documented that this bacterium decreases 
the expression of the p53 tumor suppression gene, thereby 
resulting an increased cell proliferation and tumorigenesis 
[89]. It is noteworthy that even changes in the oral myco-
biome have been associated with the etiopathogenesis of 
oral cavity cancers. More specifically, among patients with 
HNSCC, specific strains of Candida albicans were over-pre-
sented or under-presented in mouth oral wash, when com-
pared to healthy individuals. Notably, the fungi Schizophyl-
lum commune was also found in abundance among healthy 
controls [90]. Schizophyllum commune is known to produce 
the polysaccharide schizophylan, which has been a subject 
of research as a potential anti-cancerous compound in Japan 
in the 1980s among patients with HNSCC. It should also 
be noted that the inter-kingdom and intra-kingdom inter-
play between the oral bacteriome and the oral mycobiome 
seems to play a crucial role in the development of the tumor 
milieu in HNSCC. Whether the modification of the oral 
microbiome with the administration of probiotics, prebiot-
ics, or synbiotics may prevent the occurrence of HNSCC 
remains to be elucidated in further large-scale studies [90]. 
However, Routy et al. have already reported a better outcome 
among patients receiving immunotherapy who have not been 
administered antibiotics prior to immunotherapy [91]. The 
exact role of the oral microbiome in the pathogenesis of 
oral cavity cancer and the preventive or even therapeutic 
potential of probiotics or prebiotics in this context will be a 
subject of investigation in the near future.

Limitations of Immunotherapy in R/M 
HNSSC

Immunotherapy allows for better management of patients with 
R/M HNSSC, as it has been associated with an improved OS 
and PFS [18, 92, 93]. Apart from the improved outcomes, 

immunotherapy has also been related to a better safety pro-
file when compared to chemotherapy [18, 92, 93]. Regard-
ing adverse effects of ICIs, the most common appear to be 
fatigue, diarrhea, decreased appetite, rash, fever, pruritus, and 
pneumonitis; autoimmune endocrinopathies, mainly hypo-
thyroidism; and less frequently, hyperthyroidism and adrenal 
insufficiency or hypophysitis [18, 92, 93]. In particular, almost 
50% of the patients administered ICIs experienced skin rashes. 
Rarely, neurological complications such as Guillain-Barre syn-
drome, aseptic meningitis, myasthenia gravis, and optic neu-
ritis occurred. Despite the fact that immunotherapy has been 
associated with longer durability of its effects, a non-neglected 
proportion of patients do not respond to immunotherapy, while 
resistance to immunotherapeutic agents may develop during 
treatment [94••, 95]. Resistance may be due to the adaptation 
of cancer cells, T cell proliferation, and alterations in the TME. 
Changes in the TME have also been in the spotlight of research 
lately, on account of the complexity of TME and its associated 
interactions with cancer cells [18, 95, 96].

Regarding the adverse effects of tumor vaccines, their 
immunogenic properties are limited due to the fact that usually, 
tumor antigens are recognized as self-antigens, thereby not 
stimulating the immune system responses. In addition, cancer 
cells may modulate the TME, resulting in an immunosuppres-
sive TME. Therefore, personalized tumor vaccines are man-
dated, which are much time consuming and also very expen-
sive [97]. Nowadays, personalized tumor vaccines require 
approximately 3–4 months to be developed [97]. In the case 
of CAR-T cell therapy, its major limitation is the development 
of tachyphylaxis, known as an antigen escape phenomenon in 
immunology. However, the most dangerous adverse effect is 
the cytokine release syndrome, which is characterized by the 
cascade of cytokine release leading to life-threatening com-
plications such as capillary leak syndrome and shock [18]. 
Regarding OVs, their use is still in its very beginning; thus, our 
knowledge of adverse effects is limited in the clinical setting.

Conclusion

Nowadays, immunotherapy plays a crucial role in the man-
agement of patients with R/M HNSSC. Table 2 summarizes 
FDA-approved and investigational treatment modalities for 

Table 2  FDA-approved 
and investigational medical 
interventions for R/M 
HNSCC in the context of 
Immunotherapy

Abbreviations: HPV16, human papillomavirus 16; TILs, tumor infiltrating lymphocytes

ICIs Pembrolizumab and nivolumab are FDA approved for R/M HNSCC
Durvalumab, atezolizumab, avelumab, ipilimumab, tremelimumab. and 
monalizumab are still under investigation

CAR-T cell therapy TILs are evolving, but much has yet to be performed
Tumor vaccines HPV16 E6/E7 vaccines are being studied in combination with ICIs treatment
Oncolytic viruses Under investigation, such as T-VEC
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HNSCC regarding immunotherapy. Immunotherapy has 
been linked to more sustained results and fewer and less 
severe, or at least more easily manageable adverse effects. 
The advent of anti-PD-1/PD-L1 agents has been the first 
step in the field of immunotherapy. However, anti-PD-1/
PD-L1 drugs are not enough for combating R/M HNSCC. 
As upregulation of the PD-L1 has been documented in can-
cers treated with chemotherapy, the strategy of the admin-
istration of combinations of immunotherapeutic agents is 
required. Moreover, the combination of immunotherapeutic 
agents with vaccines and chemotherapy is still of particu-
lar interest. However, there is much to be performed in the 
field of immunotherapy. Future research on the TME, espe-
cially regarding subsets of CAFs and TAMs and their role 
in immune responses in HNSCC, may be very appealing. 
Apart from research on TME, the discovery of newer and 
more precise biomarkers could shed light on when and why 
immunotherapy could be initiated among patients with vari-
ous types of R/M HNSSC. Despite the fact that until today, 
the selection of patients as candidates for immunotherapy is 
based upon PD-L1 expression, there are many more reasons 
to extend our choices. Currently, as our knowledge regard-
ing novel biomarkers is rapidly expanding, it seems that a 
more personalized approach to patients with R/M HNSSC 
may be feasible. Combined efforts from genetic engineering, 
molecular biology, with the advent of multi-omics, bioinfor-
matics, immunology, and pharmacology have made possible 
this personalized approach.
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