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Abstract
Purpose of Review Recent treatment advances in both acute myeloid leukemia and acute lymphoblastic leukemia have 
drastically improved outcomes for these diseases, but central nervous system (CNS) relapses still occur. Treatment of CNS 
disease can be challenging due to the impermeability of the blood–brain barrier to many systemic therapies.
Recent Findings The diagnosis of CNS leukemia relies on assessment of clinical symptoms, cerebrospinal fluid sampling 
for conventional cytology and/or flow cytometry, and neuroimaging. While treatment of CNS leukemia with systemic or 
intrathecal chemotherapy and/or radiation can be curative in some patients, these modalities can also lead to serious toxici-
ties. In the modern era, prophylaxis with intrathecal chemotherapy is the most important strategy to prevent CNS relapses 
in high risk patients.
Summary Accurate risk stratification tools and the use of risk-adapted prophylactic therapy are imperative to improving the 
outcomes of patients with acute leukemias and preventing the development of CNS leukemia.

Keywords Acute myeloid leukemia · Acute lymphoblastic leukemia · Intrathecal chemotherapy · Central nervous system · 
Lumbar puncture · Radiation · Prophylaxis · Treatment

Introduction

Despite the improvement in current available therapies for 
acute leukemias, central nervous system (CNS) involvement 
remains a significant clinical challenge and can lead to seri-
ous complications and mortality. The diagnosis of CNS leu-
kemia can be difficult, as neurologic symptoms can be subtle 
and widely range based on the anatomical site of infiltra-
tion. CNS leukemia can appear as leptomeningeal disease 
where leukemic cells infiltrate the cerebrospinal fluid (CSF) 
or rarely as a solid mass. In acute lymphoblastic leukemia 
(ALL), the CNS is a well-known site for disease infiltration; 

therefore, routine assessment of the CNS and CNS-directed 
prophylaxis are incorporated in standard ALL therapies. The 
incidence of CNS disease at diagnosis is 5–15% in adult 
ALL patients, and isolated CNS relapses after achieving 
remission are observed in 5% of patients of ALL [1–3]. In 
contrast, CNS involvement in adults with acute myeloid leu-
kemia (AML) is less common, although it still can rarely be 
observed both at diagnosis and at the time of relapse. [4, 5]

Irrespective of the disease subtype, leukemic infiltration 
in the CNS can be difficult to treat due to the complexity 
and impermeability of the blood–brain barrier (BBB), which 
can impede optimal penetration of chemotherapy [6]. Addi-
tionally, the presence of adhesion molecules on leukemic 
cells can facilitate their adherence to the meningeal vas-
culature, allowing them to evade CNS-directed therapies. 
Despite recent advances in ALL and AML therapies, CNS 
relapses remain a therapeutic challenge underscoring the 
need to improve our understanding of its pathophysiology, 
identification of risk factors, and development of effective 
treatment strategies. Treatment options for CNS disease have 
drastically improved since the development of whole-brain 
radiation treatment (WBRT), with more effective therapies 
like intrathecal chemotherapy and more refined radiation 
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techniques such as craniospinal irradiation, both of which 
have an improved efficacy and toxicity profile compared 
with prior therapies. However, acute and long-term toxicities 
still occur, especially if these treatments are not appropri-
ately applied. Ultimately, understanding the unique biology 
of CNS leukemia, utilizing reliable diagnostic tools, and 
recognizing risk factors for CNS involvement in AML and 
ALL are key to design precise and effective CNS-directed 
therapies.

Pathophysiology

The brain and the spinal cord are enveloped by the dura, 
arachnoid, and pia matter, the latter two of which are referred 
as the leptomeninges. Behind the leptomeninges lies a suba-
rachnoid space that holds the CSF. The CSF is produced by 
the choroid plexus and circulates through the ventricular 
system, spinal cord, and brain and then is absorbed into the 
blood by the arachnoid villi. Blood supplied from the periph-
ery must pass through the BBB interface to enter the CNS. 
The BBB is composed of endothelial cells held together by 
tight, adherens junctions which consist of transmembrane 
proteins such as claudin-5 and VE-cadherin or PECAM-1 
[7, 8]. Notably, physiologic changes, such as inflammation, 
and certain drugs can disrupt the BBB.

Leukemic cells can penetrate the CNS through multiple 
mechanisms. Leukemic cells can travel through the vascu-
lature from the bone marrow to the vertebrae and the brain 
by crossing the BBB via endothelial disruption or trans-
endothelial migration. Less commonly, leukemic cells can 
escape into the CSF after a traumatic LP, particularly in the 
presence of high circulating blasts [9–11]. Leukemic cells 
highly express adhesion molecules that aid in their migra-
tion, CNS infiltration, and chemoresistance. Both AML and 
ALL cells express numerous types and classes of adhesion 
molecules that interact with the bone marrow and CNS 
microenvironment. AML cells express CD56, CD44, CD34, 
VLA-4, VLA-5, LFA-1, E-selectin, ICAM-1, and MAC-1 
[12, 13]. Similarly, ALL cells express ICAM-1, LFA-1, 
LFA-3, CD44, beta-1 integrin, beta-2 integrin, α6 integrin, 
and E-selectin, among others [13]. Several studies demon-
strate a correlation between CD56 expression and extramed-
ullary infiltration in AML [14–17]. In addition, high MAC-1 
expression, a protein involved in transendothelial migration, 
is commonly observed in M4 and M5 AML subtypes, pro-
viding a potential mechanistic explanation for the clinical 
observation of an increased risk of extramedullary involve-
ment with these monocytic leukemias [18]. In vivo, ALL 
cells expressing α6 integrin have been shown to penetrate the 
CNS by α6 integrin-laminin interaction, allowing migration 
through laminin-rich vessels into the CSF [19]. Increased 
expression of vascular endothelial growth factor (VEGF) 

has been detected in ALL blasts in the CNS as compared 
with those in the bone marrow, suggesting that VEGF may 
be a potential mediator of CNS migration and involvement 
in ALL [20]. Studies have also demonstrated that chemokine 
receptors including CCR7 and CXCR4 play an important 
role in cell adherence and trafficking into the CNS [19, 21, 
22]. Targeting these receptors may therefore be potential 
future therapeutic strategy for the prevention or treatment 
of CNS involvement in acute leukemias.

Leukemic stem cells (LSCs) may also play a role in CNS 
involvement and persistence. LSCs may be present in the 
CNS at the time of leukemia diagnosis but remain quies-
cent in the meninges, leading to higher risk of isolated CNS 
relapse [23, 24]. Since LSCs exist in a quiescent state, they 
are inherently resistant to chemotherapy that require cells 
to be in an active cell cycle, such as commonly used CNS-
directed treatment like high-dose methotrexate (HD-MTX) 
and high-dose cytarabine (HD-AraC) [25]. This may explain 
why some patients still develop CNS relapse even after 
receiving appropriate CNS-directed prophylaxis.

Risk Factors

Identifying CNS-related risk factors is essential in designing 
effective therapeutic and monitoring strategies to prevent 
CNS disease in both AML and ALL. In ALL, younger age, 
hyperleukocytosis, presence of high-risk cytogenetics such 
as KMT2A rearrangements, Philadelphia chromosome (Ph)-
positive ALL, and mature B-cell or T-cell immunopheno-
types are independent high-risk features for development 
of CNS disease based on multiple studies [26–29]. High 
proliferative index and leukocytosis at presentation may be 
contributing factors for higher CNS involvement in both 
Ph-positive and mature B cell ALL; hence, these entities 
required a higher total number of prophylactic doses of IT 
chemotherapy than does standard risk B- cell ALL. Pres-
ence of extramedullary disease such as mediastinal mass and 
lymphadenopathy, commonly present in T-cell ALL, also 
increases the risk for CNS involvement. [28, 30].

In AML, younger age, increased WBC and lactose dehy-
drogenase (LDH) at diagnosis, chromosomal 11q23 abnor-
malities, and FLT3-ITD mutations have consistently been 
found to be independent risk factors for CNS leukemia [4, 
31–33]. Dabaja and colleagues also noted that core-bind-
ing factor (CBF) AML (inversion 16 and t[8;21]) and high 
peripheral blasts at diagnosis were historically associated 
with an increased risk of CNS relapse [4]. However, the use 
of HD-AraC-based regimens—which are capable of pen-
etrating the BBB—for patients with CBF AML may mitigate 
this risk. In a large cohort of patients with non-CBF AML, 
age (< 64 years), elevated LDH, and FLT3-ITD mutation 
were independently associated with increased risk of CNS 
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relapse [34•]. AML with M4 or M5 phenotype (monocytic) 
is known to have increased expression of adhesion molecules 
such as CD56 and MAC-1 and has been linked to higher 
rates of CNS relapse. [35, 36].

Diagnosis

The diagnosis of CNS disease involves three primary tech-
niques which may be used independently or in combina-
tion: clinical evaluation of neurologic symptoms, assess-
ment of CSF through lumbar puncture, and radiologic 
imaging. Patients with ALL have historically been divided 
into 3 groups based on the amount of CNS involvement by 
CSF sampling and/or imaging: CNS1, no blasts in CSF; 
CNS2, < 5 WBCs/µL in the CSF with blasts; and CNS3, ≥ 5 
WBC/µL in the CSF with blasts, or cerebral mass, or cranial 
nerve palsy with leukemic cells in the CSF [37]. While these 
categories do have some prognostic impact, the main use of 
this classification is for purposes of uniform reporting of 
retrospective and prospective studies that includes patients 
with CNS involvement.

Clinical manifestations of CNS involvement vary based 
on burden of disease and anatomical location of the leuke-
mic infiltration. General neurologic symptoms include head-
ache, nausea/vomiting, dizziness, mood changes, irritability, 
and gait abnormalities. Patients with cranial nerve involve-
ment may endorse aphasia, hearing loss, dysphagia, altered 
mental status, facial numbness or droop, visual changes such 
as vision loss or diplopia, and chin numbness [38]. Spinal 
involvement may present as back pain, focal weakness, 
radicular pain, or bowel and bladder dysfunction. Recog-
nition and interpretation of these symptoms are important 
as these can be subtle and overlap with other neurologic 
conditions. Therefore, clinical evaluation accompanied with 
lumbar puncture and/or imagining is key to a more conclu-
sive diagnosis.

Evaluation of CSF by lumbar puncture (LP) is the stand-
ard diagnostic method used to detect CNS leukemia. Defini-
tive diagnosis of leptomeningeal disease is based on pres-
ence of leukemic blasts in the CSF. Conventional cytology 
(CC) is used to examine the morphology of cells in order to 
distinguish malignant cells from benign. Although CC has 
a > 95% specificity, the sensitivity is relatively low (< 50%) 
leading to many false negatives [39, 40]. CSF specimens can 
have low cellularity making it possible to miss low levels 
of CNS involvement [39, 41]. Therefore, for patients with 
high clinical suspicion of CNS disease but without defini-
tive evidence of involvement by CC, it may be necessary to 
repeat CC up to three times in order to rule out this diagno-
sis. Large-volume sampling can also increase the sensitivity 
of CC, albeit with an increased risk of post-LP headaches.

In contrast with CC, immunophenotyping by flow cytom-
etry (FC) has higher sensitivity and specificity for detecting 
CNS leukemia even when cellularity is low [42]. However, 
FC requires expertise in handling, processing, and evaluat-
ing the sample in order to correctly distinguish neoplastic 
and non-neoplastic cells [41, 42]. Several studies have dem-
onstrated superiority of FC over CC in detection of CNS 
disease [39, 42, 43••, 44–47]. A large multicenter study per-
formed CC and FC on every CSF sample collected from 240 
newly diagnosed ALL patients and found 43 patients had 
CNS disease that was identified by FC but not by CC [43••]. 
It is therefore recommended, whenever possible, to perform 
FC in conjunction with CC in order to provide adequate sen-
sitivity for the detection of CNS leukemia. This is particu-
larly important when the burden of disease is relatively low.

Radiologic imaging should also be considered when there 
is suspicion of CNS involvement and should be used as an 
adjunct to the other diagnostic tests previously discussed. 
The two most common neuroimaging modalities are cra-
nial computed tomography (CT) and magnetic resonance 
imaging (MRI). MRI is more sensitive than CT in detect-
ing smaller lesions or leptomeningeal involvement, which is 
the common area of leukemic infiltration [48–50]. Routine 
radiologic imaging is not indicated at the time of diagno-
sis in AML and ALL in the absence of clinical symptoms. 
However, for patients with neurologic deficits, MRI of the 
brain and/or spinal axis should be performed. For patients 
with CSF that is positive for leukemic involvement, imag-
ing can help to identify mass lesions that may require more 
aggressive therapy (e.g., irradiation). In contrast, for those 
with negative CSF studies but a strong clinical suspicion for 
CNS involvement, MRI imaging of the brain and/or spinal 
cord can sometimes identify leukemic infiltration that is not 
appreciable with CSF analysis.

Prevention and Treatment Modalities

Systemic Therapy

Systemic chemotherapy plays an integral role in preventing 
CNS disease. Utilizing drugs that penetrate the CNS such 
as HD-MTX (1–8 g/m2) and HD-AraC (1–3 g/m2) provides 
dual advantage due to their activity against both systemic and 
CNS disease. Methotrexate is an antifolate and antimetabolite 
that is hydrophilic and can penetrate the CNS when given 
at high doses, with higher concentrations achieved through 
bolus infusion [51]. It has shown to have significant activity 
in ALL cells, while AML cells remain intrinsically resist-
ant [52, 53]. Doses of MTX up to 8 mg/m2 in lymphoma 
have been safely given with a folate rescue, leucovorin. Since 
AML has a relatively low incidence of CNS relapse, CNS-
directed prophylaxis is not routinely used, aside from the 
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use of HD-AraC in induction/consolidation therapy, which 
may have secondary benefit through its ability to penetrate 
the BBB [54, 55]. In contrast, both HD-MTX and HD-AraC 
are incorporated into widely used ALL regimens such as 
hyper-CVAD [56] and have been shown to be effective in 
preventing CNS relapses in ALL [57]. Corticosteroids, such 
as prednisone and dexamethasone, can also cross the BBB. 
Studies have shown higher CNS concentration and half-life 
with dexamethasone than prednisone. [58, 59].

In Ph-positive ALL, the BCR-ABL1 tyrosine kinase 
inhibitors dasatinib and ponatinib have both been shown 
to cross the BBB [60]. Higher doses of dasatinib (150 mg) 
appear to achieve adequate concentration for CNS activ-
ity, although optimal CNS concentrations for these tyros-
ine kinase inhibitors have not been defined. Recently, there 
is a trend towards reduced intensity or chemotherapy-free 
regimens for Ph-positive ALL. In a phase II study, blinatu-
momab plus dasatinib with 12 doses of IT chemotherapy in 
Ph-positive ALL was highly effective with promising and 
durable responses. However, among the 63 patients treated, 
9 relapsed (4 of which were in the CNS) [61, 62]. Longer-
term follow-up is still needed from this study, although 
this suggests that more doses of IT chemotherapy may be 
required when using these chemotherapy-free regimens in 
Ph-positive ALL.

Nelarabine, a drug that is approved for the treatment of 
relapsed/refractory T cell ALL, has demonstrated good CNS 
penetration [63]. In a phase III study, nelarabine improved 
disease-free survival, driven mostly by decrease in CNS 
relapse. T-ALL patients receiving nelarabine had signifi-
cantly lower CNS relapses than those who did not receive 
nelarabine (1.3% versus 6.9%, respectively; P = 0.0001). 
[64•].

Intrathecal Chemotherapy

In the absence of prophylactic IT chemotherapy for ALL, 
more than half of patients may develop CNS disease [57]. 
Similarly, in AML, CNS disease has been observed in 
patients despite receiving HD-AraC as part of standard 
therapy [35, 65–67]. IT chemotherapy is essential to prevent 
and treat CNS leukemia due to its direct CSF penetration 
and sustained exposure, aided by the slow metabolism and 
clearance of drugs in the CSF [68, 69]. Routine prophylactic 
IT chemotherapy is an integral part of ALL therapy, while 
generally only those with significant CNS-related risk fac-
tors should receive IT chemotherapy in AML, as the rate 
of CNS involvement is low. In a recent large retrospective 
study of 3240 newly diagnosed AML patients, the incidence 
of CNS leukemia was only 1.1%. [70•].

IT chemotherapy can be administered through two routes: 
LP or intraventricularly through Ommaya reservoir place-
ment. Several studies report better outcomes with Ommaya 

reservoirs than LPs [71–73]. Ommaya reservoirs allow for 
direct access to the CSF and cerebral ventricles for optimal 
and even distribution of chemotherapy, whereas LPs may 
lead to suboptimal distribution of chemotherapy through 
the neuroaxis. Chemotherapy delivery through an Ommaya 
reservoir is also associated with less discomfort than repeti-
tive LPs. However, Ommaya reservoirs require surgical 
placement and may lead to serious and even life-threaten-
ing complications such as catheter migration or obstruction, 
device failure, infection, and subdural hematoma or hygroma 
[74–78]. These complications can be mitigated by skillful 
surgical technique, pre-operative imaging to view catheter 
placement and flow, and preoperative prophylactic antibiot-
ics to reduce infection risk. Patients with intravascular coag-
ulation, tumor at the site of intended reservoir placement, 
scalp infection, brain abscess, or allergy to silicone may not 
be candidates for Ommaya placement [74, 75]. In our own 
practice, we avoid Ommaya reservoirs, whenever possible, 
due to the aforementioned potential complications, which 
are particularly prevalent in patients with acute leukemia 
who experience repeated periods of chemotherapy-induced 
neutropenia. While LPs can be sometimes associated with 
discomfort for the patient, if done by an experienced prac-
titioner and premedicated with anxiolysis and local analge-
sic, pain can be mitigated and complications such as post-
LP headaches due to CSF leak and traumatic taps can be 
avoided.

The most utilized IT chemotherapies include MTX and 
AraC; liposomal AraC, thiotepa, and topotecan are rarely 
used but may be considered refractory cases. IT MTX and 
AraC may be given individually (usually when given as 
prophylaxis) or together for synergy (usually when given 
as treatment). Corticosteroids may be added to attenuate 
arachnoiditis associated with IT MTX and AraC, or all three 
agents may be combined, sometimes referred to as “triple IT 
therapy.” In adults, MTX is commonly given at a flat dose 
of 12 mg by LP and 6 mg intraventricularly, while AraC is 
given at a dose of 100 mg. The liposomal formulation of 
AraC allows for exposure that is 40 times that of standard 
cytarabine [79, 80] and results in sustained levels in the CSF 
for ≥ 14 days, as compared with < 24 h with standard AraC 
[80, 81]. Consequently, liposomal cytarabine is associated 
with an increased risk of neurotoxicity, which limits its use 
as a prophylactic agent [82, 83]. Topotecan has also demon-
strated activity in meningeal malignancies at a dose of 400 
mcg intrathecally. [84, 85].

Routine prophylaxis with IT MTX and IT AraC is an 
integral part of ALL therapy. Early integration of IT chemo-
therapy has been shown to reduce CNS relapses and improve 
survival [86, 87]. The number of doses of IT chemotherapy 
that should be administered varies on risk stratification. 
With the Hyper-CVAD regimen, standard IT prophylaxis for 
pre-B ALL and T-cell ALL includes 8 ITs (alternating doses 
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of MTX and AraC, given 2 per cycle for the first 4 cycles). 
Given the higher rate of CNS relapse in patients with Ph-
positive ALL, 12 doses of IT prophylaxis are routinely given 
[88], and patients with mature B- cell ALL (Burkitt leukemia) 
have the higher risk of CNS relapse and should receive 16 
doses [29]. Concomitant administration of systemic HD-MTX 
and HD-AraC with ITs should be avoided, if possible, due 
to potential overlapping CNS toxicity. In the Hyper-CVAD 
regimen, during odd cycles with HD-MTX and HD-AraC, IT 
AraC should be given on approximately day 2 and IT MTX on 
approximately day 8 in order to avoid concomitant administra-
tion and increased risk of neurotoxicity. [89•].

If IT chemotherapy is administered by LP, it is 
recommended to delay the procedure until peripheral 
blasts are undetectable in order to prevent accidental 
infiltration of leukemic blasts into the CSF, although 
this cannot always be avoided in patients with active 
systemic and CNS disease [90]. For patients with ALL 
and CNS involvement, our practice is to administer triple 
IT chemotherapy (i.e., the combination of MTX, AraC 
and corticosteroids) twice weekly until documented 
clearance of the CSF by CC and/or FC. The frequency of 
IT chemotherapy is then decreased to weekly for 4 weeks, 
then every other week for 4 weeks, and then monthly for 
approximately 4 months. For patients who also require 
radiotherapy (RT), it is best to avoid concomitant MTX 
as it acts as a radiosensitizer and can increase radiation-
related CNS toxicity. [91••, 92, 93].

In AML, routine CNS prophylaxis is unnecessary except 
in those with high-risk features for CNS involvement. In 
our own practice, we reserve prophylactic IT chemotherapy 
(generally 2 doses of IT cytarabine) for those patients with 
AML who present with high WBC (≥ 50 ×  109/L) or elevated 
LDH or have a FLT3-ITD mutation.

Radiation

With the successful combination of IT with high-dose sys-
temic chemotherapy, prophylaxis with cranial radiation 
therapy (RT) is no longer warranted, as the added toxicity 
outweighs benefit. In a meta-analysis of 16,623 newly diag-
nosed children with ALL receiving both systemic and IT 
chemotherapy, the addition of prophylactic cranial RT did 
not impact the risk of CNS relapse overall [94••]. In con-
trast with its limited benefit as prophylaxis, cranial RT has 
demonstrated benefit in improving symptoms and decreas-
ing disease burden in those with CNS relapse, especially 
isolated CNS relapse [95, 96]. In a study with 163 adults 
with CNS involvement and neurologic symptoms, compre-
hensive WBRT or craniospinal irradiation (CSI) provided 
symptom resolution or improvement in two-thirds of the 
patients [95]. As a result, CNS-directed RT is generally 
reserved for patients with relapsed CNS leukemia, those 

with CNS disease that is refractory to systemic and/or IT 
chemotherapy, or those with CNS disease and who plan to 
undergo allogeneic stem cell transplant (HSCT) [97].

In CNS-directed radiation, normal tissue complication 
probability, tumor control probability, location of involve-
ment, patient age and performance status, and treatment goal 
(palliation, bridge to HSCT, etc.) are all taken into consid-
eration when designing and determining dose of RT. CNS 
radiation in adults is generally recommended at a dose of 
23.4 Gy in 1.8 Gy fractions [91••]. CSI can be photon- or 
proton-based, although the latter is preferred due to better 
dose distribution and less toxicity [98]. Proton beam RT 
uses charged particles for tumor killing and spares normal 
tissue, thus reducing acute and chronic toxicities. In contrast, 
photon beam RT uses high-energy X-rays and can damage 
both normal cells and tissues as it exits the body. If CSI 
is combined with total body irradiation as a preparatory 
regimen for HSCT, the cumulative dose should not surpass 
24 Gy [91••].

Toxicities

Systemic and IT Chemotherapy

The advantage of CNS penetration with HD-MTX and HD-
AraC must be balanced with their potential for neurotoxic-
ity. MTX can lead to CNS toxicity through direct neuronal 
damage or disruption of CNS folate homeostasis [99–101]. 
MTX-induced neurotoxicity can be acute or chronic. Acute 
toxicities generally occur 2 days to weeks after exposure and 
manifest as seizures, headache, stroke-like symptoms, dysar-
thria, aphasia, leukoencephalopathy, and/or myelopathy. In 
contrast, chronic toxicity can take months to years to become 
evident and often presents as cognitive decline and behav-
ioral abnormalities. Several germline variants and polymor-
phisms including MTX metabolism, such as thymidylate 
synthase, SLCO1B1, methylenetetrahydrofolate reduc-
tase (MTHFR), GSTP1, and SHMT1, predispose patients 
to increased toxicity [102–104]. A high plasma MTX-to-
leucovorin ratio and increased serum homocysteine levels 
have also been linked to increased risk of neurotoxicity 
[105, 106]. Delayed MTX clearance due to pleural effusions, 
decreased renal function, or drug-drug interactions should 
be avoided if possible. Re-exposure of MTX after transient 
neurotoxicity, such as acute encephalopathy, has been suc-
cessful in some reports but should be attempted with caution 
[105, 107]. Folate rescue with leucovorin should be used to 
mitigate MTX-induced toxicity. In addition, dextrometho-
rphan, a homocysteine antagonist, has also suggested to 
improve symptoms in pediatric patients with subacute 
MTX toxicity, although its efficacy remains controversial 
[108]. Management of toxicity includes discontinuing MTX, 
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administering leucovorin rescue, and considering empiric 
dextromethorphan and/or vitamin B12.

HD-AraC (1–3 g/m2) can cause cerebellar and ocular 
toxicity. Most cerebellar toxicity, such as delirium, ataxia, 
dysarthria, nystagmus, and somnolence can be reversible; in 
contrast, conjunctivitis and corneal toxicity may be irrevers-
ible [109]. Toxicity may occur via direct cytotoxic effect or 
by an immune-mediated mechanism [110, 111]. Risk factors 
for neurotoxicity include: a dose > 1 g/m2, older age, renal 
dysfunction, IT dose of > 100 mg per week, liposomal IT 
administration, and concurrent use of HD-MTX [112–115]. 
In one retrospective analysis, creatinine ≥ 1.2 mg/dL and 
alkaline phosphatase ≥ 3 times above the upper limit of 
normal were found to be independent risk factors for AraC 
toxicity [115]. All patients treated with HD-AraC should 
also receive prophylactic corticosteroid eye drops (predni-
solone or dexamethasone) starting the day prior to adminis-
tration and until 2 days after completion in order to prevent 
conjunctivitis. Patients may also derive benefit from topical 
nonsteroidal anti-inflammatory drugs or cold compresses to 
the eye [116, 117]. Discontinuation of cytarabine and admin-
istration of a corticosteroid may help resolve or attenuate 
cerebellar symptoms. [111].

Occurrence of neurologic toxicity after IT chemotherapy 
varies largely in the time of onset and degree of symptoms. 
IT chemotherapy can cause arachnoiditis that can be miti-
gated with concurrent corticosteroid use. MTX-induced 
myelopathy and encephalopathy have been reported with IT 
administration as well. [118–121]. IT chemotherapy-induced 
neurotoxicity generally correlates with higher cumulative 
dose [122]. Currently, no patient-related risk factors pre-
dicting for CNS toxicity from IT chemotherapy have been 
identified [123].

Radiation

RT complications can vary based on the radiation field, dose, 
and length of therapy. Common signs and symptoms include 
pituitary dysfunction, neurocognitive decline, brain necro-
sis, leukoencephalopathy, and demyelination of spinal cord. 
Onset of RT complications can be defined as acute (during 
or up to 6 weeks), early delayed (6 weeks to 6 months), and 
late (≥ 6 months). While acute and early-delayed symp-
toms are often reversible, late effects may be irreversible. 
Although some IT and intravenous chemotherapies may have 
synergy and higher tumoricidal capacity when combined 
with RT, in the context of CNS leukemia, it is generally 
recommended to avoid their concurrent administration in 
order to prevent overlapping and serious neurotoxicity, such 
as necrotizing leukoencephalopathy. RT should be delayed 
by at least 2 weeks from last intravenous and intrathecal 
administration of MTX and AraC, but in emergent cases 
separation by 48–72 h can be considered [91••]. Patients 

who receive WBRT should receive prophylactic memantine 
as it is shown to decrease cognitive decline and be neuro-
protective. [124–126].

Conclusion

CNS involvement of acute leukemia has serious implications 
on outcomes and requires swift identification and treatment. 
FC is more specific and sensitive than CC in detecting leuke-
mic cells in the CSF; it should be included in the diagnostic 
work-up of suspected CNS disease. Routine incorporation of 
prophylactic IT chemotherapy is a fundamental component 
of ALL therapy and has significantly reduced the rate of 
CNS relapses in this disease. In contrast, only those patients 
with AML who harbor significant CNS-related risk factors 
require CNS-directed prophylactic therapy. For patients with 
relatively low-burden CNS disease, aggressive IT chemo-
therapy (alongside appropriate systemic chemotherapy) 
may be adequate to eradicate the CNS leukemia. For more 
refractory cases or for patients with gross disease by imag-
ing, radiation may be required. For all these treatments, an 
appropriate risk–benefit assessment should be performed, 
and the potential for both acute and chronic toxicities should 
be considered. Given the many challenges of treating CNS 
leukemia, prevention is of the utmost importance. Accurate 
risk stratification tools and algorithms for delivery of risk-
adapted prophylactic therapy are both imperative to improv-
ing the outcomes of patients with both ALL and AML.
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