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Abstract
Purpose of review Triple negative breast cancer (TNBC) accounts for approximately 10–15% of all breast cancers and it is
associated with a poor prognosis. However, recent new effective treatment strategies have improved its outcomes. The aim of this
review is to provide an overview on the emerging therapeutics for TNBC, describing both previously approved therapies that are
currently being repurposed, as well as new target therapies that may improve patient outcomes.
Recent findings Emerging therapies are forthcoming in TNBC’s treatment landscape, including new post-neoadjuvant chemo-
therapy strategies, PARP inhibitors, immune checkpoint inhibitors, and antibody-drug conjugates. Combination of different
therapies such as AKT/PI3K/mTOR-inhibitors, other immunotherapeutic agents, CDK-inhibitors, antiandrogens,
antiangiogenics, and histone deacetylase inhibitors is under clinical investigation.
Summary The treatment landscape for TNBC is gradually evolving towards a more personalized approach with promising
expectations.
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Introduction

Triple-negative breast cancer (TNBC) accounts for about 10–
15% of newly diagnosed breast cancers (BC) and is associated
with worse overall survival (OS) compared to other BC sub-
types (5-year OS of 76.5% versus 94% for luminal BC) [1].
More than 30% of patients with TNBC eventually develop
metastatic disease and relapses often occur during the first
2–3 years from diagnosis [2, 3].

This prognosis reflects an intrinsic aggressive behavior
since TNBC is often associated with high histological grade

and high proliferation index (ki67) [4] as well as the lack of
actionable oncogenic targets, namely hormone receptors and
human epidermal growth factor receptor-2 (HER2) [5].

For many years, chemotherapy has been the only avail-
able systemic treatment option for TNBC, but, recently, a
deeper understanding of genomic and molecular character-
istics of TNBC has led to the introduction of new target
therapies. TNBC is no longer considered a single entity
since different subtypes have been identified, depending
on different protein expressions, genomic alterations,
and/or mRNA signatures [6].

Lehmann et al. evaluated gene expression profiles of
TNBC and identified six subtypes: two basal-like, immu-
nomodulatory, mesenchymal, mesenchymal stem–like,
and luminal androgen receptor (LAR) subtypes [7].
Another classification, proposed by Burnstein et al. distin-
guishes four different subtypes with its own characteristics
and prognosis: LAR, mesenchymal, basal-like immuno-
suppressed, and basal-like immune-activated [8]. Each
molecular subtype showed different degrees of sensitivity
to targeted therapies [7]. Thus far, these classifications
have no direct implications in clinical practice. However,
molecular analyses of TNBC are leading towards a more
tailored approach in clinical trials.
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The aim of this review is to provide an overview on the
emerging therapeutics for TNBC treatment, describing both
previously approved therapies which are currently being eval-
uated in different scenarios (i.e., therapies approved in the
metastatic setting, under evaluation in the early setting), and
new therapies that may improve patient outcomes (Fig. 1).

Current Treatment Strategy for TNBC

Early Setting

The standard of care is represented by dose-dense
anthracycline-based chemotherapy followed by a taxane [9].
While clinical data suggest that TNBC is particularly sensitive
to platinum salts and support the use of platinum-based chemo-
therapy in the advanced setting [10, 11], the use of carboplatin
in the neoadjuvant setting is still a matter of debate [12–14].
Platinum-based neoadjuvant regimens are associated with
higher pathological complete response (pCR) rates [12].
However, there is no conclusive data on long-term outcome
benefit, although some adjuvant data recently became available
for anthracycline-free platinum-containing regimens [15–17].

Advanced Setting

In current clinical practice, a proposed treatment algorithm for
advanced TNBC relies on the BRCA mutational status and PD-
L1 expression [3]. In the presence of a germlineBRCAmutation,
platinum-based chemotherapy or PARP inhibitors (PARPi) rep-
resent first-line treatment options. In case of PD-L1 expression
(defined as PD-L1≥1% on immune cells with the SP142 assay,
Ventana), first-line treatment with atezolizumab and nab-
paclitaxel should be considered. For BRCA-wild-type TNBC
without PD-L1 expression, chemotherapy is the first-line treat-
ment option [3]. Sequential single-agent chemotherapy repre-
sents the optimal approach, while combinations should be re-
served for patients with high disease burden, rapid clinical pro-
gression or visceral crisis. Anthracyclines or taxanes are recom-
mended first-line options, provided patients did not progress on
these regimens in the early setting. Other treatment options exist
and their choice depends on patients preferences, comorbidities
and safety profile [10]. Inclusion in clinical trials should be con-
sidered at any disease stage, where available.

Repurposing Previously Approved Therapies
into New Settings

Chemotherapy in the Post-neoadjuvant Setting

The CREATE-X study showed that the use of adjuvant capecit-
abine in HER2-negative BC without pCR after neoadjuvant

chemotherapy (NAC) provided a statistically significant
disease-free survival (DFS) and OS benefit, which was more
prominent in the TNBC subgroup [18••]. In a large meta-anal-
ysis, (neo)adjuvant capecitabine was able to decrease the risk of
a DFS event by 21% in TNBC [19]. Based on these data, adju-
vant capecitabine is nowadays considered a standard option for
patients with residual disease after NAC, according to European
Society for Medical Oncology (ESMO) and American Society
of Clinical Oncology (ASCO) guidelines [9, 20].

Fig. 1 Emerging therapeutics for triple-negative breast cancer. CT:
chemotherapy, PARPi: PARP-inhibitors, IO: immunotherapy, CDKi:
cyclin-dependent kinase inhibitors, ADCs: antibody-drug conjugates,
AKTi: AKT inhibitors, TNBC: triple-negative breast cancer
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Additionally, data from two randomized phase III trials of
adjuvant capecitabine in TNBC were recently presented [21,
22]. In these trials, patients were not selected for residual
disease as in CREATE-X. Both studies concluded that adju-
vant capecitabine improved DFS rates without significant OS
benefit [21, 22].

Besides capecitabine, other post-neoadjuvant strategies are
being evaluated for TNBC with residual disease after NAC.
Examples are platinum-based chemotherapy vs. capecitabine in
patients with ≥1cm residual TNBC after NAC (NCT02445391)
or cisplatin plus gemcitabine as post-neoadjuvant treatment for
non-pCR TNBC after standard NAC (NCT04297267).

PARP Inhibitors in BRCA-Mutated TNBC and Beyond

Approximately 11% of patients affected by TNBC are carriers
of a germline pathogenic variant inBRCA1 orBRCA2 (gBRCA)
[23]. BRCA genes code for proteins involved in the repair of
double-strandDNAbreaks through homologous recombination
repair (HRR) [24]. Therefore, BRCA-mutated cells are unable
to use HRR pathway and rely on complementary DNA repair
processes, which involve poly ADP-ribose polymerase (PARP)
proteins. As a consequence, the use of PARP inhibitors
(PARPi) induces cell death because of accumulation of
unrepaired DNA damages, a concept known as “synthetic le-
thality” [25–27]. Two PARPi (olaparib and talazoparib) have
been approved in monotherapy as treatment options for ad-
vanced gBRCA-mutated HER2-negative BC [28••, 29••], based
on data fromOlympiAD and EMBRACA trial which showed a
significant PFS improvement compared to chemotherapy of
investigator’s choice (HR 0.58, 95% CI 0.43-0.80 and HR
0.54; 95% CI 0.41-0.71, respectively).

Recently, final OS results from OlympiAD trial were pub-
lished. No statistically significant OS improvement was ob-
served (HR 0.90, 95%CI 0.66-1.23, in all patients; HR 0.93,
95%CI 0.62-1.43 in TNBC patients) [30]. Of note, the trial
was not powered for OS, and crossover after the end of the
study can significantly confound OS analysis. Interestingly,
olaparib-treated patients who had not received prior chemo-
therapy in the advanced setting showed a 7.9 months longer
median OS compared to control arm, suggesting a larger ben-
efit of olaparib in earlier lines. This hypothesis should be
confirmed in further studies [30]. Similarly, the final analysis
from the EMBRACA trial showed no significant OS benefit
with talazoparib vs standard chemotherapy (HR 0.85, 95%CI
0.67–1.07) [31].

Gradually, the use of PARPi is evolving, and while PARPi
monotherapy is being evaluated in HRR-deficient BC beyond
gBRCA, new combination strategies with chemotherapy, im-
munotherapy, antibody-drug conjugates (ADCs), target ther-
apy (such as ATR-inhibitors, BET-inhibitors) and radiothera-
py are under evaluation in BC patients with or without a
gBRCA mutation [32]. In a phase III study, patients with

metastatic gBRCA-mutated TNBC received carboplatin and
paclitaxel with or without veliparib. The addition of the
PARPi significantly increased PFS (HR 0.71, 95%CI 0.57–
0.88), with a durable benefit, compared to controls [33].

Particularly, the combination of PARPi and chemotherapy
is being studied in the treatment of BRCA-wild type (WT) BC
[34]. It should be considered that up to 10% of gBRCA-WT
TNBC have pathogenic mutations leading to homologous re-
combination deficiency (HRD), resulting thus in a BRCA-like
phenotype despite the gBRCA-WT status (BRCAness) [35]. In
a phase II window clinical trial enrolling untreated TNBC,
HRD was identified even in 69% of patients using a
mutational-signature-based assay [36]. Recently, a random-
ized phase II study of cisplatin with or without veliparib in
three groups of metastatic TNBC (gBRCA mutant carriers,
gBRCA-WT but BRCA-like and non-BRCA-like) was present-
ed. In the BRCA-like group, the addition of veliparib was
associated with significantly improved PFS with a trend to-
wards OS benefit, while the non-BRCA-like group did not
benefit from the addition of veliparib [37].

Another strategy under evaluation is the combination of
PARPi with immunotherapy. The rational is that the emer-
gence of neoantigens following PARPi-induced DNA-dam-
age can stimulate antitumoral immune response and improve
response to immune checkpoint inhibitors (ICIs) [38, 39]. In
the I-SPY 2 trial, the addition of olaparib and durvalumab to
standard NAC for stage II/III HER2-negative BC was associ-
ated with a significantly improved pCR rate in a small TNBC
cohort (47% vs 27%) [40].

Despite most recent studies on PARPi aiming to broaden
their indications in BC treatment, maintenance data in the
advanced setting is lacking and some challenges remain in
the evaluation of their long-term safety profile, the interaction
in combination with other therapies, and the overcoming of
resistance mechanisms.

The ongoing phase III study OlympiA is evaluating
olaparib in the adjuvant setting for gBRCA- HER2-negative
BC andwill shed further light on the role of PARPi in the early
setting of gBRCA-BC (NCT02032823).

Immunotherapy

TNBC represents the optimal BC subtype for ICIs, since it is
characterized by higher genomic instability compared to other
BC subtypes [6, 41]. Moreover, stromal tumor-infiltrating
lymphocytes (sTILs) in TNBC have demonstrated a strong
prognostic value as well as a predictive value for response to
NAC in the early setting [42, 43], while in the advanced set-
ting, there are data for higher benefit of single-agent check-
point inhibition [44–46]. Main randomized clinical trials test-
ing ICI in TNBC are summarized in Table 1.

Immunotherapy alone in TNBC has low response rates,
especially in later lines of therapy [56–59] and combination
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Table 1 Randomized clinical trials on immune check-point inhibitors
(ICIs) for triple-negative breast cancer. TNBC triple-negative breast
cancer, AC doxorubicine-cyclophosphamide, EC epirubicine-
cyclophosphamide, pCR pathological complete response, OR odds

ratio, CI confidence interval, mPFS median progression-free survival,
HR hazard ratio, mOS median overall survival, CPS combined positive
score. ITT intention to treat, EFS event-free survival

Study Study
design

Treatment Setting
/study
population

N
(TNBC)

Main outcomes

Early setting

Keynote-522 [47•] Phase
3

Pembrolizumab or placebo + carboplatin
and paclitaxel followed by AC/EC;
Adjuvant pembrolizumab or placebo
after surgery

Neoadjuvant
and
adjuvant
settings

602 pCR: 64.8% in pembrolizumab arm vs 51.2% in
control arm; treatment difference of 13.6%
(95% CI, 5.4–21.8; p<0.001)

18 months EFS: 91.3% vs. 85.3% (HR of 0.63;
95% CI, 0.43–0.93)

NeoTRIPaPDL1
Michelangelo
[48]

Phase
3

Carboplatin and nab-paclitaxel +/-
atezolizumab, followed by AC/EC

Neoadjuvant
setting

280 pCR: 43.5% in atezolizumab arm vs 40.8% in
control arm, OR=1.11 (95% CI 0.69–1.79)

GeparNuevo [49] Phase
2

Durvalumab or placebo + nab-paclitaxel
followed by standard EC

Neoadjuvant
setting

117 pCR: 53.4% in durvalumab arm vs 44.2% in
control arm, OR=1.45 (95% CI 0.80-2.63)
p=0.224

In the window-cohort (durvalumab/placebo alone
given 2 weeks before nab-paclitaxel): pCR:
61.0% in durvalumab arm vs 41.4% in control
arm, OR = 2.22 (95% CI 1.06-4.64), p=0.035

I-SPY 2
(pembrolizumab
arm) [50]

Phase
2

Paclitaxel +/- pembrolizumab followed by
AC

Neoadjuvant
setting

250
(114)

pCR: 44% vs 17% in HER2-negative population;
pCR: 60% vs 22% in TNBC cohort

I-SPY 2
(durvalumab and
olaparib arm)
[40]

Phase
2

Paclitaxel +/- durvalumab and olaparib
followed by AC

Neoadjuvant
setting

372 In all patients:
pCR: 37% in durvalumab arm vs 22% in control

arm
In TNBC subgroup:
pCR: 47% in durvalumab arm vs 27% in control

arm

Advanced setting

Impassion130 [51••,
52]

Phase
3

Atezolizumab or placebo + nab-paclitaxel 1st line 902 In all patients:
mPFS: 7.2 mo in atezolizumab arm vs 5.5 mo in

control arm, HR 0.80; 95% CI 0.69–0.92,
p=0.002

mOS: 21.0 mo in atezolizumab arm vs 18.7 in
control arm, HR 0.86, 95% CI 0.72–1.02,
p=0.08

In PD-L1+ population:
mPFS: 7.5 mo in atezolizumab arm vs 5.0 mo in

control arm, HR 0.62, 95% CI 0.49–0.78;
P<0.001

mOS: 25 mo in atezolizumab arm vs 18 mo in
control arm, HR 0.71, 95%CI 0.54–0.94

Keynote-119 [53] Phase
3

Pembrolizumab monotherapy ≥2nd line 622 In PD-L1 CPS≥10 group:
mOS: 12.7 mo in pembrolizumab arm vs 11.6 mo

in control arm (HR 0.78, 95%CI 0.57–1.06)
In PD-L1 CPS≥1 group:
mOS: 10.7 mo in pembrolizumab arm vs 10.2 mo

in control arm (HR 0.86, 95%CI 0.69–1.06)
In all patients:
mOS: 9.9 mo in pembrolizumab arm vs 10.8mo in

control arm (HR 0.97, 95%CI 0.82–1.15)

KEYNOTE-355
[54]

Phase
3

Pembrolizumab or placebo +
chemotherapy (taxanes or carboplatin +
gemcitabine)

1st line 847 In PD-L1 CPS≥10 group:
mPFS= 9.7 vs. 5.6 months; HR=0.65 (95% CI,

0.49–0.86)
In PD-L1 CPS≥1 group:
mPFS= 7.6 vs. 5.6 months; HR=0.74 (95% CI,

0.61–0.90)
In ITT population:
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treatments have demonstrated more activity in metastatic
TNBC.

The anti-PD-L1 antibody atezolizumab in combination
with nab-paclitaxel has been proven superior to nab-
paclitaxel alone in previously untreated, PD-L1-positive, ad-
vanced TNBC patients and is currently standard of care, as
reported above [51••]. Surprisingly, a recent press-release
reporting results from the IMpassion-131 trial about the com-
bination of atezolizumab with paclitaxel in the same setting
did not confirm the positive findings of IMpassion-130: fur-
ther data are awaited to better understand the reason of this
discrepancy.

Anti-PD1 antibody pembrolizumab in combination with che-
motherapy (taxanes [paclitaxel or nab-paclitaxel] or carboplatin
plus gemcitabine) was evaluated in the phase III KEYNOTE-
355 trial, where 847metastatic TNBC patients were randomized
to receive first-line therapy with chemotherapy plus
pembrolizumab or placebo [54]. The co-primary endpoints were
PFS and OS in the PD-L1-positive population (combined posi-
tive score [CPS] ≥10 and ≥1) and in the overall population, with
a hierarchical testing for PFS. The predefined significance
threshold for PFS was met in the CPS≥10 population. OS data
were still immature. In Keynote-119, pembrolizumab alone
failed to prove superiority to investigator’s choice of chemother-
apy in pre-treated metastatic TNBC patients [53]. As an excep-
tion, pembrolizumab alone is approved by US Food and Drug
Administration (FDA) for patients with treatment-refractory,
mismatch repair deficient tumors (<2% of TNBC cases), based
on the efficacy results of tumor-agnostic basket trials [60, 61].
Altogether, in the metastatic setting, immunotherapy seems to
provide benefit to a subgroup of TNBC patients selected on PD-
L1 expression and the benefit seems larger when combined with
chemotherapy in first-line. However, many questions related to
ICIs in metastatic TNBC, such as more precise predictive bio-
markers and comparative data on the optimal chemotherapy
partner, remain unanswered.

Ongoing studies (Table 2) are trying to expand the benefits
of immunotherapy in TNBC patients, both anticipating its use

in earlier disease settings (adjuvant and neoadjuvant) and go-
ing beyond PD-L1 positivity (e.g., TILs enrichment, tumor
mutational burden [TMB]) [46, 62].

The addition of ICIs to chemotherapy in the neoadjuvant
setting has shown conflicting results (Table 1). In the
GeparNuevo trial, the addition of durvalumab to NAC did
not significantly improve pCR rates in the ITT population,
although in the window cohort (induction durvalumab prior
to chemotherapy), better pCR rates were attained [49]. Also
the addition of atezolizumab to neoadjuvant nab-paclitaxel
plus carboplatin showed no pCR improvement, albeit the tri-
al’s primary endpoint was EFS, yet to be reported [48].
Conversely, the adaptive phase 2 trial I-SPY2 met its primary
endpoint of improved pCR by adding pembrolizumab to NAC
[50]. KEYNOTE-522 confirmed this benefit in phase III set-
ting by demonstrating a significant increase in pCR rates by
the addition of pembrolizumab to neoadjuvant platinum-
containing taxane-anthracycline regimen (51.2% to 64.8%)
with an early trend towards EFS benefit [47•]. The pCR ben-
efit was irrespective of PD-L1 status.

Furthermore, in the post-neoadjuvant and adjuvant setting,
ICIs could represent a treatment option for TNBC, which is
being explored in ongoing trials (Table 2).

New Target Therapies in TNBC Treatment

Antibody-Drug Conjugates

Novel ADCs are opening new horizons in TNBC.
Sacituzumab-govitecan is an ADC composed of a topoisom-
erase I inhibitor (SN-38), which is an active metabolite of
irinotecan, and an anti-Trop2 monoclonal antibody, linked
together by a cleavable protein. Trop-2 is a trophoblast cell-
surface antigen which is expressed on the surface of many
epithelial cancer cells, including TNBC, and its activation
induces cell growth. Sacituzumab-govitecan has been evalu-
ated in a phase I/II study in patients with advanced epithelial

Table 1 (continued)

Study Study
design

Treatment Setting
/study
population

N
(TNBC)

Main outcomes

mPFS= 7.5 vs. 5.6 months; HR=0.82 (95% CI,
0.69–0.97)

SAFIRO2-Immuno
[55]

Phase
2

Durvalumab vs chemotherapy as
mantainance therapy after induction
chemotherapy

1st or 2nd
line

199
(75)

In all patients:
mPFS: 2.7 mo in durvalumab arm vs 4.6 mo in

control arm (HR = 1.40; p=0.047)
In TNBC subgroup (predefined subgroup

analysis):
HR for PFS 0.87 (95% CI 0.54–1.42)
In PD-L1+ group (predefined subgroup analysis):
HR for PFS 0.75 (95%CI 0.38–1.49)
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cancer. Overall, 108 metastatic, heavily pre-treated TNBC
patients received sacituzumab-govitecan, with durable objec-
tive responses (33.3% objective response rate (ORR) with a

median duration of response of 7.7 months) [63••]. Based on
this data, the FDA recently granted accelerated approval to
sacituzumab-govitecan for pre-treated metastatic TNBC

Table 2 Ongoing phase II and III randomized trials with immunotherapy in triple-negative breast cancer

NCT number Phase Experimental treatment Status

Early setting

NCT03639948 II Pembrolizumab + Carboplatin + Docetaxel Recruting

NCT03289819 II Pembrolizumab + Nab-Paclitaxel followed by
Pembrolizumab + epirubicin and cyclophosphamide

Active, not recruiting

NCT04373031 II Pembrolizumab + IRX-2 + cyclophosphamide followed
by pembrolizumab + pacliataxel followed by IRX-2,
pembrolizumab + doxorubicine and cyclophosphamid

Not yet recruiting

NCT04443348 II Pembrolizumab + carboplatin + paclitaxel +
cyclophosphamide and doxorubicine + preoperative
radiation therapy

Not yet recruiting

NCT02883062 II Atezolizumab + carboplatin + paclitaxel Active, not recruiting

NCT03756298 II Adjuvant atezolizumab + capecitabine Recruiting

NCT03546686 II Nivolumab + ipilimumab followed by adjuvant nivolumab Recruiting

NCT03872505 II Durvalumab + carboplatin + paclitaxel + preoperative
radiation therapy

Not yet recruiting

NCT03356860 II Durvalumab + paclitaxel + epirubicin and cyclophosphamide Recruiting

NCT04188119 II Avelumab + aspirin Not yet recruiting

NCT03036488 III Pembrolizumab + carboplatin + paclitaxel + anthracycline
andcyclophosphamide followed by pembrolizumab

Active, not recruiting

NCT02954874 III Adjuvant pembrolizumab Recruiting

NCT03281954 III Atezolizumab + doxorubicin and cyclophosphamide +
paclitaxel + carboplatin followed by atezolizumab

Recruiting

NCT03197935 III Atezolizumab + doxorubicin + cyclophosphamide +
nab-paclitaxel followed by atezolizumab

Active, not recruiting

NCT03498716 III Atezolixumab + paclitaxel followed by dose-dense
doxorubicin/epirubicin + cyclophosphamide

Recruiting

NCT02926196 III Adjuvant avelumab Recruiting

Advanced setting

NCT02768701 II Pembrolizumab + single-dose cyclophosphamide Active, not recruiting

NCT03121352 II Pembrolizumab + carboplatin + nab-paclitaxel Completed

NCT02755272 II Pembrolizumab + carboplatin/gemcitabine Recruiting

NCT03164993 II Atezolizumab + pegylated liposomal doxorubicin + cyclophosphamide Recruiting

NCT03206203 II Atezolizumab + carboplatin Recruiting

NCT03464942 II Atezolizumab + Stereotactic Ablative Body Radiotherapy Recruiting

NCT03853707 I/II Atezolizumab + ipatasertib + capecitabine Recruiting

NCT04408118 II Atezolizumab + bevacizumab + paclitaxel Not yet recruiting

NCT04434560 II Nivolumab + ipilimumab before brain metastasectomy Not yet recruiting

NCT03789110 II Nivolumab + ipilimumab Recruiting

NCT03606967 II Durvalumab + nabpaclitaxel + neoantigen vaccine Not yet recruiting

NCT03616886 II Durvalumab + paclitaxel + carboplatin + oleclumab Recruiting

NCT03167619 II Durvalumab + olaparib Recruiting

NCT03742102 I/II Durvalumab + paclitaxel + immune-modulating agents
(selumetinib, danvatirsen, oleclumab and capivasertib)

Recruiting

NCT03971409 II Avelumab + binimetinib, utomilumab, or anti-OX40
antibody PF-04518600

Recruiting

NCT02819518 III Pembrolizumab + nab-paclitaxel or paclitaxel or
carboplatin/gemcitabine

Active, not recruiting

NCT03125902 III Atezolizumab + paclitaxel Active, not recruiting

NCT03371017 III Atezolizumab + carboplatin + gemcitabine or capecitabine Recruiting
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patients. A phase III study (ASCENT study) comparing
sacituzumab-govitecan with single-agent chemotherapy of
physician’s choice was terminated early because of compel-
ling efficacy and results are expected soon [64]. The availabil-
ity of this new treatment option has the potential to change the
treatment landscape of TNBC, since it is under evaluation as
single agent and in combination in several settings in TNBC.

Another ADC being evaluated in TNBC treatment is
ladiratuzumab-vedotin, an anti-LIV1 antibody combined with
a microtubule-disrupting agent (MMAE) through a cleavable
linker [65]. LIV-1 is a protein expressed on several cancer cells,
including TNBC. In a phase I/II study of ladiratuzumab-vedotin
in combination with pembrolizumab, 32 patients with first-line
TNBC were enrolled in the dose-expansion phase. The combi-
nation was tolerable and showed encouraging clinical activity
(ORR of 54%) [65].

The HER2-targeted ADC trastuzumab-deruxtecan has
shown promising signs of efficacy in an early-phase trial of
HER2-low BC (defined as HER2 immunohistochemistry 1+,
or 2+ without HER2 amplification per ASCO/CAP guide-
lines) [66, 67]. Approximately 17% of HER2-low BC are
TNBC [68]. A phase III trial in HER2-low BC with
trastuzumab-deruxtecan vs. chemotherapy of investigator’s
choice is ongoing [69].

PI3K/AKT/mTOR Pathway Inhibitors

The PI3K/AKT/mTOR pathway is often activated in TNBC,
mainly due to activating mutations of PI3K catalytic subunit
PIK3CA, AKT1 or loss of function of PTEN [70, 71]. AKT is a
key effector in PI3K/AKT/mTOR pathway and mediates cell
proliferation and survival. Capivasertib, a pan-AKT inhibitor,
was evaluated in a randomized phase II trial, in combination
with paclitaxel, as first-line treatment for patients with meta-
static TNBC [72]. Addition of capivasertib resulted in signif-
icantly improved PFS and OS, compared to placebo (HR 0.74,
95%CI 0.50-1.08 and HR 0.61, 95%CI 0.37-0.99, respective-
ly) and benefits were more pronounced in patients with
PIK3CA/AKT1/PTEN-altered tumors. These results are con-
sistent with those of the LOTUS trial, a phase II study evalu-
ating the AKT inhibitor ipatasertib in combination with pac-
litaxel as first-line treatment for metastatic TNBC. The trial
showed an increase in median PFS (from 4.9 to 6.2 months in
the ITT population, and from 4.9 to 9.0 months in the
PIK3CA/AKT1/PTEN altered population) and a trend towards
improved OS, supporting the role of AKT inhibitors in TNBC
[73]. Phase III studies testing capivasertib, ipatasertib, and
alpelisib (CAPItello-290 [NCT03997123], IPATunity130
[NCT03337724] and EPIK-B3 [NCT04251533]) in addition
to (nab)-paclitaxel for metastatic TNBC are ongoing.

In a phase II trial, neoadjuvant ipatasertib with 12 weekly
paclitaxel did not increase pCR rates compared to placebo/
paclitaxel [74]. Nonetheless, MRI-assessed responses, a

secondary endpoint, favored ipatasertib/paclitaxel, especially in
the PIK3CA/AKT1/PTEN-altered population. Importantly, gas-
trointestinal adverse events (AE), especially diarrhoea, seem to
dominate the toxicity profile of AKT inhibitors [72–74].

Other drugs targeting the PI3K/AKT/mTOR pathway are
being evaluated in TNBC such as mTOR- and dual inhibitors,
and combinations with immunotherapy (NCT02616848,
NCT04177108).

Cyclin-Dependent Kinase (CDK) Inhibitors

Targeting the cellular machinery responsible for cell cycle
regulation has already been proven beneficial in luminal BC,
with diverse CDK4/6-inhibitors (CDK4/6i) showing marked-
ly survival benefit in combination with endocrine therapy
[75]. In TNBC, the loss of the tumor suppressor retinoblasto-
ma (Rb), an in vitro biomarker of sensitivity to CDK4/6i, is a
common event, especially in basal-like TNBC, explaining the
observed lower activity of CDK4/6i in vitro in TNBC com-
pared with luminal models [7, 76, 77]. Moreover, targeting
CDK4/6 with palbociclib has actually been shown to antago-
nize the cytotoxic effect of paclitaxel in Rb-positive TNBC
cell lines, possibly due to the lower sensitivity to the cytotoxic
effect upon tumor cell cycle arrest. While in unselected
TNBC, CDK4/6i alone or in combination with chemotherapy
does not seem to be a venue worth exploring, there is a phase
II trial ongoing with abemaciclib in Rb-positive metastatic
TNBC (NCT03130439). Combinations with antiandrogens
and PI3K-inhibitors are discussed later.

Trilaciclib, an intravenous CDK4/6i, was tested in a phase
II trial where 102 metastatic TNBC patients were randomized
to either chemotherapy alone (carboplatin plus gemcitabine)
or to two different schedules of the same chemotherapy and
trilaciclib [78]. The primary objective was to show an im-
provement in myelotoxicity-related endpoints in favor of the
trilaciclib arms, since the drug can arrest hematopoietic pro-
genitor cells at G0/G1 and thereby preserve them from the
cytotoxic effect, which could be translated into an enhanced
chemotherapy dose-intensity and anti-tumor immunity. The
trial failed to show a superiority for the trilaciclib arms in
terms of severe neutropenia incidence and duration.
However, there was an important benefit in the secondary
OS endpoint (median OS in the chemotherapy arm of 12.6
vs. 20.1 months in the trilaciclib plus chemotherapy arms
combined). A potential explanation for this survival benefit
might be an enhanced anti-tumor lymphocyte immunity with
trilaciclib, as seen by an increment in T cell production of
IFN-γ, and this warrants further studies.

With dinaciclib, a small-molecule inhibitor of CDK1/2/5/9,
disappointing results were initially reported from a phase I
study combining dinaciclib with epirubicin in TNBC [79].
In the preclinical setting, the inhibition of CDK1 in TNBC
xenograft models resulted in synthetic lethality and block in
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tumor dissemination for models overexpressing MYC, an on-
cogene overexpressed in approximately 70% of TNBC and
associated with poor prognosis [80]. Moreover, MYC-driven
TNBC models are associated with an increased PD-1 expres-
sion on sTILs. Based on these preclinical data, a phase I study
was conducted with dinaciclib and pembrolizumab in meta-
static TNBC [81]. Preliminary efficacy analysis showed an
ORR of 16.7% and a CBR of 46.7%. Interestingly, at an
exploratory analysis, MYC expression correlated with treat-
ment response. Further studies are needed to establish the role
of MYC as a possible predictive biomarker.

Antiandrogens

Androgen receptor (AR) positivity occurs in about 24% of
TNBC and is associated with a lower recurrence risk [82],
supporting the hypothesis that AR-driven TNBC represent a
distinct subtype. There is significant overlap between AR pos-
itivity and LAR TNBC subtype, which is enriched in lobular
histology and frequently correlated with PIK3CA and AKT1
alterations [83, 84]. Bicalutamide and enzalutamide have been
tested in phase II trials and shown proof-of-efficacy in AR-
positive TNBC patients [85, 86]. Enzalutamide is also being
evaluated in a phase III trial, both as single agent and com-
bined with paclitaxel vs paclitaxel monotherapy in patients
selected by a genomic signature for AR-driven disease [87].

AR-expression in TNBC tends to be associated with ex-
pression of Rb, a biomarker of sensitivity to CDK4/6i [88].
This supports the hypothesis of increased efficacy by combin-
ing androgen blockade with CDK4/6i as palbociclib. Results
from a phase II study combining bicalutamide with
palbociclib for AR-positive TNBC showed that this combina-
tion was safe and efficacious, with 11/33 patients progression-
free at 6 months [89]. Additionally, antiandrogens combined
with PIK3CA-inhibitors are under evaluation in AR and
PTEN-positive metastatic BC (NCT03207529).

Other Immunotherapeutic Approaches

Purinergic Pathway Antagonists

The purine nucleoside adenosine exerts multiple immunosup-
pressive functions in the tumor micro-environment [90]. The
ecto-enzyme CD73 is responsible for generating adenosine
from a by-product of ATP, whilst adenosine receptors
(A2R) initiate the adenosine intracellular signaling pathway.
It has been shown that CD73 overexpression in TNBC is
associated with lower sTILs and worse prognosis, whereas
by the same time CD73 and A2R blockade inhibits BC cells
growth and migration [91–93]. Therefore, compounds
targeting the purinergic pathway are currently under clinical
development in TNBC: oleclumab, an anti-CD73 monoclonal
antibody, given together with durvalumab plus chemotherapy,

is being compared with durvalumab plus chemotherapy in 2
phase I/II trials [94, 95]. An oral A2R inhibitor is also being
studied in metastatic TNBC (NCT03207867).

Anti-cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA4)

The combination of anti-PD1 nivolumab with anti-CTLA4
ipilimumab is currently being tested for TNBC in two phase
II trials (NCT03789110, NCT03668119) [62]. Eligibility is
restricted to patients with hypermutated tumors (TMB ≥10
mutations/megabase), a rare event in BC (5% of cases) [96].
These trials are expected to clarify the role of dual ICI and to
provide a prospective evaluation of TMC as predictive bio-
marker in TNBC.

Innate Immune Activators

Imprime-PGG is an intravenously administered, yeast-derived
beta-glucan, which is currently being evaluated in combina-
tion with ICIs for metastatic TNBC [97]. Imprime-PGG acts
as a pathogen-associated molecular pattern activating the in-
nate immune response against tumor cells by enhancing anti-
gen presentation and T cell activation [98]. Imprime-PGGwas
evaluated in a phase II study (Imprime-1), where it was ad-
ministered as first-line therapy in combination with
pembrolizumab in patients with metastatic TNBC [97]. ORR
was 13.6% and median OS was 13.7 months [97].

Angiogenesis Inhibition

By decreasing neovessel permeability and tumor interstitial
pressure, antiangiogenic drugs facilitate chemotherapy deliv-
ery and exert synergistic effects with various chemotherapy
agents [99]. Nevertheless, despite increasing median PFS in
metastatic HER2-negative BC, the addition of bevacizumab, a
monoclonal antibody against circulating vascular endothelial
growth factor (VEGF) to chemotherapy never showed an OS
benefit [100]. Together with a low cost-effectiveness and an
increased rate of bleeding, thromboembolic and cardiovascu-
lar AE, bevacizumab’s approval for HER2-negative metasta-
tic BCwas revoked by the FDA in 2010, albeit the drug is still
available for combination with paclitaxel as first-line therapy
in Europe [99].

Nonetheless, different combinations with antiangiogenic
agents may play a future role in the care of TNBC patients.
Antiangiogenics have immunomodulatory properties and are
able to increase lymphocytic infiltration into the tumor, hereby
enhancing antitumor immune responses [101]. A phase II
single-arm trial with 57 HER2-negative BC patients has ex-
plored the combination of bevacizumab, weekly paclitaxel
and nivolumab in first-line [102]. The study met its primary
endpoint, showing an ORR of 75.4% (83.3% in 18 patients
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with TNBC) [103]. A similar trial focusing on TNBC patients
is ongoing (NCT04408118).

The angiogenesis pathway deeply interacts with DNA repair
mechanisms, since tumor hypoxia induces DNA damage, ge-
nomic instability, and, ultimately, cell death. Therefore,
antiangiogenics combined with DNA-repair inhibitors and/or
ICIs might provide another synergistic approach [104, 105].
In a phase II study, cediranib, a pan-VEGF receptor tyrosine
kinase inhibitor, was administered with olaparib in patients with
advanced solid tumors including TNBC and resulted in objec-
tive responses in 14% of heavily pretreated metastatic TNBC.
Toxicity profile was manageable, with gastrointestinal symp-
toms and hypertension among the most common AE [106].

TRK Inhibitors

Although extremely rare in unselected BC (<1% of cases),
neurotrophic tyrosine receptor kinase (NTRK) oncogene fu-
sions are described in ductal TNBC with secretory features
and ETV6-NTRK3 fusions are pathognomonic in the rare
secretory subtype that can present as TNBC [107]. These fu-
sions can be efficiently targeted by the tropomyosin kinase
protein (TRK) inhibitors larotrectinib and entrectinib. [108]
In this sense, patients with NTRK fusion-positive TNBC are
eligible for treatment with TRK inhibitors, based on efficacy
data coming from various tumor-agnostic basket trials [109].

Histone Deacetylase Inhibitors

The acetylation of histone proteins induces the activation of
genes mediating cell growth and proliferation, and histone
deacetylases (HDAC) are often overexpressed in malignan-
cies [110]. Thus far, HDAC inhibitors have shown limited
activity as single agent in BC, and combination strategies
are currently being tested. Entinostat, an oral HDAC inhibitor,
in combination with atezolizumab was evaluated in a phase II
study for patients with advanced TNBC. The combination did
not improve PFS compared to placebo and was more toxic
[111]. Therefore, the role of HDAC inhibitors in TNBC is yet
to be defined.

Other Strategies

Several trials are evaluating further approaches in advanced
TNBC (including, but not limited to, interleukin-7, NKTR-
214, bispecific antibodies, STAT3-inhibitors, NOTCH-inhib-
itors, CXCR4-antagonists) whose results are eagerly awaited.

Conclusions

Recent evidence has introduced new therapies which have
modified the treatment landscape from chemotherapy as only

available treatment to a more personalized approach for
TNBC: atezolizumab is now a standard of care for first-line
advanced TNBC with PD-L1-positive tumors, PARPi are ap-
proved for BRCA-mutated advanced TNBC and recently
sacituzumab-govitecan was FDA-approved for previously
treated metastatic TNBC. Ongoing studies aim to broaden
treatment indications for immunotherapy, PARP inhibitors,
and ADC in TNBC, both anticipating their use in earlier dis-
ease settings (adjuvant and neoadjuvant) and going beyond
the current limitations of PD-L1 positivity and gBRCA muta-
tion for immunotherapy and PARPi, respectively. Several oth-
er target therapies are currently being evaluated, reflecting a
promising evolution towards a more subtype-based approach
in TNBC.
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