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Abstract
Purpose of Review Neuroendocrine prostate cancer (NEPC) is an aggressive histologic subtype of prostate cancer that most
commonly arises in later stages of prostate cancer as a mechanism of treatment resistance. The poor prognosis of NEPC is
attributed in part to late diagnosis and a lack of effective therapeutic agents. Here, we review the clinical and molecular features of
NEPC based on recent studies and outline future strategies and directions.
Recent Findings NEPC can arise “de novo” but most commonly develops as a result of lineage plasticity whereby prostate cancer
cells adopt alternative lineage programs as a means to bypass therapy. Dependence on androgen receptor (AR) signaling is lost as
tumors progress from a prostate adenocarcinoma to a NEPC histology, typically manifested by the downregulation of AR, PSA,
and PSMA expression in tumors. Genomic analyses from patient biopsies combined with preclinical modeling have pointed to
loss of tumor suppressors RB1 and TP53 as key facilitators of lineage plasticity. Activation of oncogenic drivers combined with
significant epigenetic changes (e.g., EZH2 overexpression, DNA methylation) further drives tumor proliferation and expression
of downstream neuronal and neuroendocrine lineage pathways controlled in part by pioneer and lineage determinant transcription
factors (e.g., SOX2, ASCL1, BRN2). These biologic insights have provided a framework for the study of this subgroup of
advanced prostate cancers and have started to provide rationale for the development of biomarker-driven therapeutic strategies.
Summary Further study of the dynamic process that leads to NEPC is required for the development of effective strategies to
identify and treat patients developing lineage plasticity as a mechanism of treatment resistance.

Keywords Neuroendocrine prostate cancer . Lineage plasticity . AR indifference . Epigenetics . Castration resistance

Introduction

Prostate cancer is the most common malignancy and second
leading cause of cancer-related death amongst men in the
USA [1]. Despite significant advances in treatment, the prog-
nosis of advanced prostate cancer remains variable with most
men still succumbing to the disease [2]. Prostate cancer is an
androgen-driven disease, and androgen deprivation therapy
(ADT) combined with other potent drugs that target androgen
receptor (AR) signaling such as abiraterone acetate or
enzalutamide is a standard first-line approach for metastatic
prostate cancer. Despite significant and often durable re-
sponse, resistance to AR-directed strategies ultimately ensues

[3]. Most castration-resistant prostate cancers (CRPC) are still
dependent on AR signaling through acquired AR gene muta-
tion, amplification, or other means to re-activate the AR [4–6].
This has led to alternative strategies to further target AR sig-
naling [7, 8]. Approximately 15–20% of CRPC tumors will
lose dependence on AR signaling at some point during their
disease course but the identification of AR-independent dis-
ease in the clinic remains challenging. One apparent clinical
manifestation is histologic transformation from an AR-
expressing prostate adenocarcinoma to an AR-negative, poor-
ly differentiated small cell neuroendocrine carcinoma histolo-
gy [9]. This cancer phenotype is often referred to as neuroen-
docrine prostate cancer (NEPC) to broadly encompass both
pure small cell carcinomas and mixed adenocarcinoma-
neuroendocrine tumor morphologies. AR expression is typi-
cally low but even when AR is expressed, NEPC tumors tend
to be less dependent, or “indifferent,” to canonical AR signal-
ing. The diagnosis of NEPC is currently based on metastatic
tumor biopsy confirming tumor morphology. Although there
are no standard criteria for when to perform a biopsy to look
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for NEPC, one may consider this in patients with particularly
aggressive disease, atypical spread, and/or progression with
low or non-rising PSA levels. The NCCN guidelines currently
recommend consideration of metastatic biopsy in suspected
cases of NEPC transformation, as prostate cancer patients that
develop small cell carcinoma could be considered for
platinum-based chemotherapy regimens (similar to small cell
lung cancer (SCLC).

Clinical Features of NEPC

The incidence of AR-independent prostate cancer seems to be
increasing, which may be related in part to the introduction of
more potent and effective drugs that target the AR. In a rapid
autopsy study, 13.3% of patients harbored metastatic lesions that
were AR-negative with neuroendocrine (NE) features and an
additional 23.3% harbored AR-negative lesions without NE fea-
tures. This is at higher frequency than observed in autopsies
performed prior to the approval of potent AR signaling inhibitors
(i.e., enzalutamide and abiraterone acetate) (6.3%NE, 5.4%AR-
negative) [10]. In another study by the West Coast Dream Team
(WCDT) evaluating metastatic biopsies from a cohort of 202
patients after progression on potent AR signaling inhibitors,
17% of patients showed histologic evidence of small cell neuro-
endocrine prostate cancer, and this was significantly correlated
with increased risk of death (P = 0.027) [11••]. Notably, although
AR was expressed in small cell NE metastatic tumors from this
WCDT cohort, AR signaling was significantly lower compared
with non-NE tumors.

In a systematic review, 123 NEPC patients were analyzed to
evaluate for risk factors associated with time to NEPC devel-
opment and survival [12]. The median time from initial diag-
nosis of prostate cancer to NEPC development was 20 months,
and high Gleason score (≥ 8) at diagnosis was an independent
risk factor for early NEPC development (HR, 1.66; P = 0.032).
The median survival after NEPC diagnosis was 7 months and
involvement of more than three metastatic organs was associ-
ated with shorter survival (HR, 3.31; P = 0.001).

In another retrospective analysis of 87 patients with histolog-
ically confirmed de novo or treatment-related NEPC, the median
overall survival from time of prostate cancer diagnosis in de novo
NEPC was 16.8 months which was shorter than those with
treatment-related NEPC (53.5 months) [13]. Median time from
diagnosis of prostate adenocarcinoma to treatment-related NEPC
was 39.7 months. At the time of NEPC, median PSA level was
less than 4 ng/ml while serum chromogranin A and LDH levels
elevated in 48.3% and 62.5%, respectively. NEPC patients har-
bored frequent visceral metastases compared to patients with
castration-resistant adenocarcinoma (62% vs. 24%, P < 0.001).
Tumors with mixed adenocarcinoma-NEPC harbored better
prognosis than those with pure small cell NEPC (26.1 vs.

8.9months in median survival from the time of NEPC diagnosis,
P < 0.0001).

Despite accumulating data around the clinical and patho-
logic features of this subset of advanced prostate cancers, the
diagnosis of NEPC remains challenging. There are a number
of reasons for this. Tumor biopsies are invasive to perform,
and there are no guidelines for when and where to biopsy in a
patient with suspected NEPC. Single-site biopsies also do not
always represent the tumor burden of the patient. There is
wide variability in pathology, and the diagnosis of “NEPC”
is often loosely defined. According to pathology guidelines
[14•], NEPC may fall into several categories based on tumor
morphology [14•]. This includes (i) usual prostate adenocar-
cinoma with NE differentiation; (ii) adenocarcinoma with
Paneth call NE differentiation; (iii) carcinoid tumor; (iv) small
cell carcinoma; (v) large cell NE carcinoma; and (vi) mixed
(small or large cell) NE carcinoma-acinar adenocarcinoma.
These classifications are summarized in Table 1. NEPC tu-
mors are usually associated with expression of classical NE
markers (e.g., synaptophysin (SYP), chromogranin, CD56) by
immunohistochemistry (IHC) but none of these are required
for the diagnosis. Paneth cell and carcinoid tumors are well-
differentiated and associated with a more favorable prognosis,
whereas poorly differentiated NE tumors including small cell
carcinomas are more aggressive [14•]. Clinical challenges
arise in particular when mixed, hybrid, or amphicrine histolo-
gies are observed, with positive AR and PSA expression and/
or variable NE marker expression. How to manage such pa-
tients is not defined.

Given these diagnostic challenges, clinical features associ-
ated with cancer aggressiveness have been proposed and stud-
ied as clinical trial criteria to select patients for small cell/NE-
directed therapies such as platinum chemotherapy [15–18] or
alisertib [19•] (Table 2), without the requirement for histologic
confirmation of NEPC. The aggressive variant prostate cancer
(AVPC) criteria developed by Aparicio and colleagues has
been used as inclusion criteria for several platinum chemo-
therapy studies [15, 20, 21]. Notably, in the AVPC trials,
approximately 25% of patients met histologic criteria, and
the presence of bulky tumor and/or high serum LDH levels
significantly predicted poor prognosis although serum NE
markers did not [15].

With respect to imaging modalities, prostate-specific mem-
brane antigen (PSMA), a type II transmembrane protein, is an
emerging target for molecular imaging and therapy in prostate
adenocarcinoma. However, NEPC tumors often lose PSMA
expression [22] along with AR and, therefore, may manifest
on imaging with PSMA-low or -negative lesions [23].
Conversely, FDG-PET-CT, standardly used in SCLC, may
be useful in identifying NEPC tumors as they tend to be met-
abolically active [22, 24]. The presence of PSMA-low or
PSMA/FDG-discordant lesions on imaging were seen in up
to one third of patients (91 of 291 men) screened for the
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TheraP trial as eligibility for Lu-PSMA radionuclide therapy
[25, 26], and these features have been associated with poor
prognosis [27], though the precise relationship between
PSMA/FDG imaging features and pathology has not been
well-established. The role and application of other imaging
and treatment modalities such as somatostatin receptor–
targeting peptides (e.g., 68Ga-DOTATATE, 177Lu-
DOTATATE) used in well-differentiated NE tumors are also
being investigated in NEPC [28, 29]. Cases have been report-
ed in which tumor lesions in prostate cancer patients with NE

features were successfully detected using somatostatin recep-
tor activity [30, 31].

Genomic Features of NEPC

Genomic studies have supported NEPC tumors evolving from
a prostate adenocarcinoma precursor, with shared genomic
alterations between adenocarcinoma and metastatic NEPC tu-
mors and between different histologies within mixed tumors,

Table 1 Pathologic subtypes of
neuroendocrine prostate cancer Classification Definition

(i) Usual prostate adenocarcinoma with
NE differentiation

Morphologically typical, usual acinar, or ductal
adenocarcinoma of the prostate with NE differentiation based
on morphology and/or expression of NE markers (i.e.,
synaptophysin, CD56, chromogranin)

(ii) Adenocarcinoma with Paneth cell NE
differentiation

Histologically typical adenocarcinoma containing varied
proportions of cells with marked eosinophilic cytoplasmic
granules under routine light microscopy

(iii) Carcinoid tumor Well-differentiated NE tumor that is not closely associated with
usual prostate carcinoma

(iv) Small cell carcinoma High-grade carcinoma defined by characteristic nuclear features
(i.e., prominent nucleoli deficiency, nucleation, and fragility),
high mitotic rate, apoptotic bodies, high ratio of nucleus to
cytoplasm, and poorly defined cell borders.

(v) Large cell NE carcinoma High-grade carcinoma with peripheral palisades and large nests,
frequent geographical necrosis, high mitotic rate

(vi) Mixed (small or large cell) NE
carcinoma-acinar adenocarcinoma

Biphasic cancer with distinct and recognizable mixed
component of NE (small cell or large cell) carcinoma and
usual conventional acinar adenocarcinoma.

NE, neuroendocrine; IHC, immunohistochemistry

Table 2 Clinical criteria of
aggressive variant prostate cancer
(AVPC) and eligibility for
alisertib trial

AVPC [20]

(i) Histologically determined small cell carcinoma

(ii) Exclusively visceral metastases

(iii) Predominantly lytic bone metastases

(iv) Bulky (≥ 5 cm) lymphadenopathy or high-grade (GS ≥ 8) tumor mass in prostate/pelvis

(v) Low PSA (≤ 10 ng/ml) + high volume (≥ 20) bone metastases at initial presentation or upon
castration-resistant symptomatic progression

(vi) Presence of neuroendocrine markers on histology (positive staining for CgA or SYP) or in serum, +
serum LDH ≥ twice the IULN, malignant hypercalcemia, or serum CEA ≥ twice the IULN

(vii) Short interval (≤ 6 months) to castration-resistant progression after initiation of ADT

Alisertib trial [19•]

(i) Small cell carcinoma morphology based on tissue sample

(ii) Prostate adenocarcinoma with greater than 50% IHC staining for NE markers (e.g., CgA, SYP)

(iii) Development of liver metastases in the absence of PSA progression defined by Prostate CancerWorking
Group 2 criteria

(iv) Elevated serum CgA level ≥ 5× ULN and/or serum NSE ≥ 2× ULN

SCPC, small cell prostate cancer;GS, Gleason score; PSA, prostate-specific antigen; CgA, chromogranin A; SYP,
synaptophysin; LDH, lactate dehydrogenase; IULN, institutional upper limit of normal; CEA, carcinoembryonic
antigen; ADT, androgen deprivation therapy; NEPC, neuroendocrine prostate cancer; IHC, immunohistochemis-
try; NSE, neuron-specific enolase
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particularly when considering early prostate cancer genomic
events such as the TMPRSS2-ERG gene fusion [32, 33].
Preclinical studies using lineage tracing have also supported
a “trans-differentiation model” with NEPC arising from a lu-
minal precursor [34].

Alterations such as TP53 and RB1 loss, enriched in NEPC
tumors, are often acquired during the course of therapy resis-
tance. Of note, loss of RB1 and TP53 is also frequent in other
small cell carcinomas and universally lost in SCLC [35–37].
In a prostate cancer study by Tan et al., Rb protein loss was
consistently observed in small cell prostate carcinomas with
90% of tumors being negative or low by IHC analysis, with
85% of these occurring through copy number allelic loss [35].
In addition, accumulation of p53 was detected in 56% of small
cell prostate cancer carcinomas, with 60% of cases harboring a
TP53 mutation [35]. In another study of whole-exome se-
quencing (WES) of metastatic biopsies of NEPC and
castration-resistant adenocarcinoma (CRPC-Adeno),RB1 loss
was seen in 70% of NEPC and 32% of CRPC-adeno and
mutation or deletion of TP53 in 66.7% of NEPC and 31.4%
of CRPC-adeno [38]. Multiple preclinical studies now have
supported combined TP53 and RB1 deficiency as key facili-
tators of the NE-like phenotype [39–45].

Understanding when and how these genomic events occur
has important biomarker implications. Recent data suggests
that although combined loss of RB1 and TP53 can facilitate
lineage plasticity, they are not sufficient by themselves to
cause NEPC transformation [46]. RB1 loss in particular is
associated with poor prognosis in CRPC-Adeno [9], and fu-
ture studies are warranted to address whether single or com-
bined loss of these tumor suppressors predicates NEPC trans-
formation and identifies patients at higher risk for developing
lineage plasticity. By studying whole-exome sequencing in-
cluding serial time points and circulating tumor DNA
(ctDNA) profiles, a working model has been established in
which NEPC tumors become less heterogeneous as they
evolve from adenocarcinoma potentially due to clonal selec-
tion (of RB/TP53 clones or others) [47••].

Although it is considerably less common, de novo
small cell prostate carcinoma can also occur. Chedgy
et al. investigated the pre-treatment molecular profiles
of 18 patients with de novo small cell prostate cancer
[48]. Ten cases (55%) harbored pure small cell carcino-
ma histology in biopsy cores and others had mixed with
adenocarcinoma. Similar genomic alterations were ob-
served in de novo cases as seen in treatment-related
NEPC including frequent biallelic deletion and/or muta-
tion of TP53, RB1, and PTEN. Notably, biallelic loss of
DNA repair genes (BRCA1, BRCA2, ATM, and MSH2/6)
were seen in 5/18 patients (29%) which is of potential
therapeutic relevance. Interestingly, several pure de
novo small cell prostate cancers also harbored ETS gene
fusions suggesting possibly a luminal cell of origin.

Epigenetic Features

Epigenetic alterations also play a key role in lineage plasticity
leading to acquisition of stem-like cell properties and changes
in developmental programs and differentiation [49]. These
epigenetic features, including changes in DNA methylation,
histone modifications, and chromatin integrity and accessibil-
ity, are responsible for transcriptional regulation, and seem to
be dynamic [50]. Comparing genome-wide DNAmethylation
patterns in metastatic tumor biopsies of patients with NEPC
and castration-resistant adenocarcinoma, it was found that
DNA methylation patterns can robustly distinguish NEPC
[38]. Integration of DNA methylation with transcriptome data
point to epigenetic modulation of pathways involved in dif-
ferentiation, development, and cell-cell adhesion [38]. Of
note, these NEPC-associated DNA methylation changes are
detectable in the circulation using cell-free DNA (cfDNA)
which may have important biomarker implications; in a recent
study of whole-genome bisulfite sequencing of cfDNA, DNA
methylation patterns in cfDNA reflected matched metastatic
tumor biopsies including hypermethylation of ASXL3 and
SPDEF and hypomethylation of INSM1 and CDH2 in
NEPC [47••].

Disorder of epigenetic processes impairs the differentiation
status, along with other reprogramming factors such as the
enhancer of zeste homolog 2 (EZH2) in NEPC [9, 39,
51–54]. EZH2 is a histone methyltransferase and the catalytic
component of the Polycomb repressive complex 2 (PRC2).
EZH2 tri-methylates the histone H3 lysine-27 (H3K27me3),
and this activity is required for PRC2-mediated gene silencing
[55]. EZH2 is highly expressed in many types of cancers
including NEPC [32, 38]. In preclinical models of NEPC,
EZH2 inhibition restored AR expression and sensitivity to
AR-targeted therapy [39], suggesting that this may be a tar-
getable modulator of lineage plasticity [52, 56, 57].

Biology of NEPC

Facilitated by both genomic and epigenomic changes, NEPC is
characterized by the expression of genes involved in neuronal
and neuroendocrine differentiation, epithelial-mesenchymal tran-
sition, stem-like/developmental pathways, and cell-cyclemarkers
[38]. During the transition from adenocarcinoma to NEPC, lu-
minal markers of prostate lineage are typically downregulated
and AR activity is suppressed [49]. Critical dysregulation of
key oncogenic drivers as well as pioneer and lineage determinant
transcription factors (such as SOX2, ASCL1, BRN2, MYCN,
and ONECUT2) drives plasticity and maintains the NE state
(Fig. 1).

N-myc is a transcription factor upregulated in NEPC and
also implicated as a key oncogenic driver in other neuroendo-
crine tumors [58, 59]. In preclinical studies, N-myc functions
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as a suppressor of AR signaling and driver of lineage plasticity
[51, 60, 61•]. Overexpression of N-myc is frequently observed
in NEPC and a subset of CRPC-Adeno while N-myc is not
normally expressed in normal prostate cells [19•, 32, 59].
Tumor overexpression of N-myc has been associated with
shorter OS in patients with CRPC-Adeno and NEPC [61•].
N-myc interacts directly with AR, EZH2, and other PRC2
components to drive epigenetic changes [51]. Aurora kinase
A (AURKA), a protein involved in mitosis and spindle assem-
bly [62], also stabilizes N-Myc and prevents N-Myc degrada-
tion [32], and the AURKA inhibitor alisertib has been inves-
tigated as means to inhibit the N-Myc-AURKA complex and
NEPC tumor growth [19•, 63].

The master neural transcription factor BRN2 is another
lineage transcription factor and driver of NEPC [54]. BRN2
is directly suppressed by AR and regulates expression of the
stem cell transcription factor SRY-box2 (SOX2). SOX2 is
also downstream of RB1 and TP53 and may be involved in
reverting cells to a stem-like/pluripotent state prior to differ-
entiation towards a neuroendocrine lineage [39, 64]. The re-
pressive role of SOX2 has also been attributed to hypomethy-
lation of histone H3 caused by the activation of lysine-specific
demethylase 1 [53]. Recent investigations revealed that ele-
vated SOX2 expression can also transactivate SPINK1 which
has a role in sustaining the NE phenotype [65].

There are several other emerging biologic factors implicat-
ed in NEPC pathogenesis including overexpression of the
placental gene PEG10which facilitates cell-cycle progression
and lineage plasticity [66], upregulation of the RNA-splicing
factor SRRM4 [67–69], and downregulation of the master
repressor of neuronal differentiation REST [70]. REST can

bind to target regions within genes crucial for a neuronal phe-
notype and prevent their transcription [71]. Expression of
REST is regulated in part by SRRM4 [67, 72, 73]. Recently,
MUC-1 was demonstrated as highly expressed in NEPC [74].
MUC-1 could facilitate lineage plasticity via activation of the
MYC-BRN2 pathway, MYCN, and EZH2; inhibition of
MUC-1 suppressed BRN2 and self-renewal in vivo.

Metabolic vulnerabilities have also been reported in NEPC
[75]. Reina-Campos et al. identified protein kinase C (PKC)
λ/ι to be downregulated in de novo and treatment-related
NEPC compared with prostate adenocarcinoma. They re-
vealed that PKCλ/ι functions as a tumor suppressor and its
deficiency results in upregulation of serine biosynthesis via
the mTORC1/ATF4 pathway. Metabolic modifications lead
to elevated intracellular S-adenosyl methionine (SAM) levels
which impacts the DNA methylation, facilitating the develop-
ment of NEPC [75]. Tumor hypoxia in NEPC has been found
to be regulated in part by the transcription factor ONECUT2
[76]. ONECUT2 activates SMAD3 which impacts hypoxia
signaling and also drives a NE phenotype. Rotinen et al. found
that ONECUT2 is a master regulator that acts to repress the
AR network via regulation of FOXA1 and activates neural
differentiation-related genes in prostate cancer [77].
Inhibition of ONECUT2 suppresses tumor progression and
metastasis in vivo, suggesting that ONECUT2 could be a
therapeutic target for NEPC [76, 77].

Although there has been significant progress in the field’s
overall understanding of the biology of NEPC, a better under-
standing of how and when these factors emerge in the context
of AR therapy resistance and potentially cooperate to drive
NEPC is still required.
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Fig. 1 Prostate cancer progression fromCSPC (castrate-sensitive prostate
cancer) to CRPC-Adeno to treatment-related NEPC (t-NEPC). Lineage
plasticity towards t-NEPC is characterized by loss of tumor suppressors,
activation of oncogenic drivers, and epigenetic changes. This results in a

proliferative, poorly differentiated tumor with NE morphology, low AR
signaling, and expression of neuronal and neuroendocrine lineage
markers
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Treatment of NEPC

Platinum-based chemotherapy is commonly administered to
patients with pure small cell carcinoma based on SCLC data
and the accumulating data for AVPC. This may consist of a
combination of carboplatin (or sometimes cisplatin) plus ei-
ther etoposide (based on SCLC) or a taxane (especially if
mixed histology or AVPC features). A combination regimen
of cisplatin, etoposide and doxorubicin has been studied in 36
patients with small cell prostate cancer [18]. Twenty patients
(61%) showed partial response. Median time to progression
and overall survival were 5.8 months (95% CI, 4.1–
6.9 months) and 10.5 months (95% CI, 7.5–14.3 months),
respectively. With respect to toxicity, severe neutropenia
was observed and three patients died due to toxicity. Given
these therapeutic and toxicity data, this regimen is not recom-
mended for patients with NEPC [18]. Flechon et al. evaluated
treatment response of carboplatin and etoposide every 3 weeks
in 60 patients with CRPC who were considered to have NE
differentiation based on elevated serum CgA and NSE levels
and/or visceral metastases [16]. In this study, the objective
response rate of this regimen was low in patients with mea-
surable disease (8.9%) and PSA response rate was 8%. The
median progression-free survival (PFS) and OS were
2.9 months and 9.6 months, respectively. Culine et al. inves-
tigated combination therapy with docetaxel and cisplatin in 41
patients with mCRPC [17]; in this study, serum NE marker
(NSE and/or CgA) response rate (≥ 50%) was 33% and objec-
tive response rate was 41%.

In patients with AVPC clinical criteria, carboplatin plus
docetaxel was evaluated followed by next-line cisplatin plus
etoposide in a phase 2 clinical trial [15]. PFS rate after 4 cycles
of carboplatin plus docetaxel and etoposide plus cisplatin were
65.4% and 33.8%, respectively. Notably, serum neuroendo-
crine markers were not associated with outcome or response
[15]. In a follow-up randomized study of cabazitaxel with or
without carboplatin in mCRPC including AVPC, the median
PFSwas 7.3 months with combination therapy compared with
4.5 months with cabazitaxel alone (P = 0.018) [78••].
Molecular characterization of tumors from patients with
AVPC [20] has revealed frequently combined tumor suppres-
sor loss (RB1, TP53, and/or PTEN) which are also frequent
gene alterations in histologic confirmed NEPC [32]. Post hoc
analysis of the cabazitaxel with or without carboplatin study
found that patients with ≥ 2 alterations in TP53, RB1, and/or
PTEN experienced longer median PFS (7.5 vs. 1.7 months)
and median OS (20.2 vs. 8.5 months) when treated with the
combination vs. cabazitaxel alone [78••]. Thus, clinically de-
fined AVPC shares genomic features with NEPC, and further-
more, biomarker-driven strategies targeting these characteris-
tics are planned.

Beyond platinum, therapy for NEPC is not well-established
[15]. Based on clinical and pathologic features, second-line

SCLC regimens or alternative CRPC therapies could be con-
sidered. There may be rationale for using immune checkpoint
inhibitor therapy based on SCLC data either upfront such as
atezolizumab with platinum chemotherapy [79] or in the sec-
ond line such as nivolumab plus ipilimumab [80], but studies
focused on NEPC have not yet been reported. A phase 2 study
of nivolumab plus ipilimumab for advanced rare GU tumors
including small cell/NEPC is ongoing (NCT03333616).

Other drugs have been evaluated for NEPC based on pre-
clinical studies. In light of the interaction betweenMYCN and
AURKA, the AURKA inhibitor alisertib was evaluated in a
phase II trial [19•]. There is also a rationale for exploring
AURKA inhibition in the context of RB1 loss based on syn-
thetic lethality [81]. The inclusion criteria for the alisertib
study were broad (Table 2). Sixty patients were treated with
alisertib 50 mg twice daily for 7 days every 21 days. Six-
month radiographic PFS was 13.4%, and median survival
was 9.5 months in this study. Notably, four patients showed
outstanding response to alisertib with disappearance of liver
metastases and durable stable disease, suggesting that patient
selection (potentially by MYCN or RB1 biomarker status)
may be important [52].

Delta-like protein 3 (DLL3) is a protein expressed on the
cell surface of various neuroendocrine tumors including
SCLC andNEPC [82, 83]. In a recent study, DLL3 expression
was observed in the majority of NEPC tumors (76.6%) and
also a subset of CRPC-Adeno (12.5%), with minimal or ab-
sent expression in localized prostate cancer and benign tissues
[83]. Several drugs targeting DLL3 are in clinical develop-
ment with planned investigation in NEPC.

Based on integrative analyses of transcriptomic and cell-
surface proteomic data, Lee et al. identified carcinoembryonic
antigen-related cell adhesion molecule 5 (CEACAM5) as an-
other cell-surface antigen overexpressed in NEPC [84].
Targeting CEACAM5 with chimeric antigen receptor T cells
provided antigen-specific cytotoxic activity, and therefore,
targeting CEACAM5 could represent a novel therapeutic ap-
proach for NEPC.

The epigenetic regulator, EZH2, is of potential therapeutic
relevance in NEPC as described above, and EZH2 expression
is higher in NEPC tissues compared to CRPC, localized pros-
tate cancer, and benign prostate tissues [38]. In preclinical
studies, EZH2 inhibitors have shown activity in NEPC [38,
51]. One study reported that EZH2 inhibitor GSK503 could
restore enzalutamide sensitivity in RB1 and PTEN double-
knockout mouse model of NEPC [39]. Thus, EZH2 is a can-
didate therapeutic target for NEPC. Trials of EZH2 inhibitors
in mCRPC are ongoing (NCT03480646, NCT03460977,
NCT0419864) and correlative analyses within these studies
may provide additional insights.

Other drugs directed at epigenetic modulators have been
investigated in mCRPC and may also be relevant for targeting
plasticity and NEPC. Lysine-specific demethylase 1 (LSD1)
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catalyzes the histone H3 lysine 4 demethylase and is involved
in stemness and differentiation; LSD1 activates a lethal pros-
tate cancer network through interaction with the LSD-1 bind-
ing protein ZNF217 [85]. LSD1 is also an emerging target for
SCLC [86] and may have relevance in NEPC. Aggarwal et al.
reported a phase 1b/2a study with the bromodomain extra-
terminal (BET) inhibitor ZEN-3694 in combination with
enzalutamide in patients with mCRPC previously treated
with abiraterone and/or enzalutamide [87]. The median
PSA level was 26.99 ng/ml (range 0.15–1701.8), and 28%
of patients harbored visceral metastasis at study entry.
Median radiographic PFS was 9.0 months. Seventeen per-
cent and 5% of patients continued the treatment for more
than 12 and 24 months without progression, respectively.
Notably, lower canonical AR activity in baseline biopsy
was correlated with longer rPFS (median rPFS, 10.4 months
vs. 4.3 months). Furthermore, patients who met clinical
criteria for AVPC had prolonged time to progression com-
pared with those without AVPC (11.6 months vs. 5.5 months,
P = 0.24).

Conclusions

NEPC is an increasingly recognized histologic subtype of
prostate cancer that most commonly arises in later stages of
the disease as a mechanism of treatment resistance. The cur-
rent diagnosis depends on tissue biopsy, and effective therapy
targeting the molecular features of NEPC has not yet been
developed. Advances in our understanding of the genomic,
epigenomic, and biologic features are pointing to new oppor-
tunities to help improve diagnosis and guide therapy. In order
to undergo treatment at the optimal timing, it will be important
to identify biomarkers that can detect the emergence of lineage
plasticity during the course of sequential therapies. A further
understanding of biological characteristics of NEPC is re-
quired to conquer this lethal form of prostate cancer.
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