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Abstract
Mesenchymal chondrosarcoma is a rare but deadly form of chondrosarcoma that typically affects adolescents and young adults.
While curative intent is possible for patients with localized disease, few options exist for patients in the unresectable/metastatic
setting. Thus, it is imperative to understand the fusion-driven biology of this rare malignant neoplasm so as to lead to the future
development of better therapeutics for this disease. This manuscript will briefly review the clinical and pathologic features of
mesenchymal chondrosarcoma followed by an appraisal of existing data linked to the fusions, HEY1-NCOA2 and IRF2BP2-
CDX1, and the associated downstream pathways.
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Introduction

Mesenchymal chondrosarcoma is a rare malignant neoplasm
known for exhibiting features of primitive appearing mesenchy-
mal cells mixed with islands of cartilage differentiation. This
entity was first described by Lichtenstein and Bernstein in
1959 and represents less than 5% of all chondrosarcoma cases
diagnosed each year in the USA [1]. The peak incidence occurs

in the third decade of life, though the range involves children as
young as 7 years and elderly individuals as old as 80 years [2,
3•]. This disease generally arises from bone, but extra-osseous
variants have been known to involve areas such as visceral or-
gans and meninges (Fig. 1). Frequent sites of involvement in-
clude the vertebrae, ribs, pelvic bones, and craniofacial bones
(mandible and maxilla), with a predilection toward late local
and distant recurrences [4, 5]. For many centers, the treatment
of this tumor is still a subject of debate [6]. Localized disease
should be managed surgically with wide margin resection with
or without radiation, and consideration should be given to the use
of systemic chemotherapy [2, 4, 7]. While multimodal strategies
reported in the past did not appear to substantially improve prog-
nosis, a recent European Musculoskeletal Oncology Society
study reported a reduced risk of recurrence and superior survival
metrics (progression-free and overall survivals) with the use of
cytotoxic chemotherapy in the neoadjuvant and/or adjuvant set-
ting for localized disease [7, 8]. For patients with metastatic
disease, systemic chemotherapy is the primary form of therapy
with surgical resection considered for cases in which surgery
may result in remission. The approach of our center to localized
mesenchymal chondrosarcoma involves neoadjuvant,
anthracycline-based chemotherapy, radiation therapy (unless
contraindicated), and surgical resection with wide margins.
Unfortunately, there is scarcity of available data onmesenchymal
chondrosarcoma, which is limited to small-sample retrospective
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studies without prospective mesenchymal chondrosarcoma-
specific trial data [2, 4, 9–11]. A recent evaluation of 205 mes-
enchymal chondrosarcoma patients through the Surveillance,
Epidemiology, and End Results (SEER) database demonstrated
5- and 10-year overall survival rates of 51 and 43%, respectively
[3•]. Clearly, better therapeutic options are needed for the treat-
ment of patients with mesenchymal chondrosarcoma.

A recurrent translocation, HEY1-NCOA2, has been recent-
ly identified in the great majority (at least 80%) of mesenchy-
mal chondrosarcomas [12, 13]. This finding is of interest since
molecular characterization of this disease may shed light on its
pathogenesis and the potential therapeutic avenues that could
be explored. The following review aims to (1) summarize the
different structural components of the HEY1-NCOA2 fusion,
(2) identify potential pathways that might be modulated by it,
and (3) suggest future therapeutic strategies for the manage-
ment of mesenchymal chondrosarcoma.

Pathology of Mesenchymal Chondrosarcoma

Mesenchymal chondrosarcoma is characterized by having a
prominent primitive component comprised of round to spin-
dled cells punctated with islands of mature cartilage (Fig. 2a).
The combination of these two components is virtually diag-
nostic, but a small core needle biopsy sampling only one com-
ponent or the other can be diagnostically challenging. The
primitive cell component has a non-specific immunohisto-
chemical profile but shows SOX9 nuclear reactivity indicative
of a chondroid lineage (Fig. 2b). Demonstration of the char-
acteristic HEY1-NCOA2 fusion by a variety of methodologies
can be useful in diagnostically challenging cases.

Structure and Function of HEY1

HEY1 (hairy/enhancer-of-split related with YRPWmotif 1) is a
gene located on the long arm of human chromosome 8 (Fig. 3).
It encodes an evolutionary conserved protein of the hairy and
enhancer of split-related family of basic helix-loop-helix
(bHLH) transcriptional repressors [14]. Three different regions
were isolated in HEY1. They include the bHLH domain which

mediates the DNA-binding properties of the protein, the
Orange domain, which interacts with the bHLH domain to
drive and extend the protein interaction and HEY dimerization,
and the C-terminus YRPW domain (Fig. 4) [14, 15].

Through its C-terminus bHLH and N-terminus YRPWmo-
tifs, HEY1 is thought to act mainly as a transcriptional repres-
sor (Fig. 5). Inhibition of gene promoters is driven by direct
DNA binding and dimerization of HEY1 to gene sequences
rich in CACGTG/CACGCG and/or CGCGCG, two E-box-
like sequences bound with high affinity to the HEY1 DNA-
binding domain [14]. This association initiates the recruitment
of corepressors to the DNA area of interest, which inhibits
target gene expression. Epigenetic modulation is another
mechanism through which HEY1 exerts its inhibitory effects.
The amino- and the carboxy-terminal-repressive HEY1 do-
mains depend on histone deacetylase-dependent and indepen-
dent mechanisms, respectively, to suppress target genes [16].
HEY1 transcriptional activity does not seem to be limited to
repression only, since many gene targets are overexpressed
upon its stimulation [14]. Of note, E-box motifs have not been
found in the activated gene promoters, which raises the pos-
sibility of a protein-protein interaction mechanism to mediate
gene activation [14].

HEY1 is a downstream mediator and effector of the acti-
vated Notch developmental and stemness pathway. Gene ex-
pressions that are modulated by HEY1 up- or downregulation
involve multiple embryological processes, including muscu-
loskeletal, neurological, and cardiovascular development [14,
17–21]. Through its interaction with GATA transcription fac-
tors, HEY1 inhibits erythropoiesis- and cardiogenesis-related
genes [22–24]. FBXO45 (F-box only protein 45) is required
for proper neural development [25]. It associates with SKP1
(S-phase kinase-associated protein 1) to form an atypical
protein-ubiquitin ligase complex [25, 26]. Through its bHLH
and Orange sequences, HEY1 indirectly inhibits FBXO45
activity through redirection of the ubiquitination complex to-
ward other proteins (Fig. 5) [27]. In the embryonic murine
inner ear, it also maintains the hairy mechano-sensory cell
population and stemness [21].

HEY1 dysregulation alters the expression of genes that
intervene in musculoskeletal development [14, 16]. The
Notch network is important for the prevention of the prema-
ture differentiation of myogenic precursors by sustaining
stem/progenitor cell self-renewal, whereas myogenin and
MyoD are crucial muscle regulatory factors for muscle differ-
entiation [28, 29]. HEY1 exerts its inhibitory effects on
myogenesis at least in part through targeting of myogenin
promoters by increasing their methylation and compromising
MyoD recruitment to its target promoters (Fig. 5) [16]. HEY1
interaction with GATA does not seem to be relevant in
myogenesis as compared to erythropoiesis and cardiogenesis,
despite the fact that many myogenic gene promoters contain
GATA binding sites in their sequences [16].

�Fig. 1 Spectrum of imaging appearance of mesenchymal
chondrosarcoma. a Fourteen-year-old boy with a lesion arising from the
left temporal bone. bNine-year-old girl with a soft tissue mass centered in
the left middle cranial fossa compressing the temporal lobe. c Twenty-
one-year-old woman with a mass arising from a left anterior rib. Note
internal calcifications. d Thirty-five-year-old man with a soft tissue mass
in the left hemithorax. e Eighteen-year-old woman with a mass arising
from the right ilium. f Thirty-six-year-old man with a soft tissue mass in
the left gluteal musculature. Note internal calcifications. g Forty-six-year-
old woman with a lytic lesion of the proximal tibial metaphysis. h
Twenty-four-year-old man with a soft tissue nodule in the anterior
compartment of the thigh
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There are conflicting data in the literature regarding
HEY1 involvement in bone and cartilage formation. In
C2C12 mesenchymal stem cells, microarray analysis
showed HEY1 to be among the most overexpressed gene
upon BMP (bone morphogenetic protein)-induced osteogen-
ic differentiation [30]. In pre-osteoblasts MC3T3 cells,
HEY1 abrogated Runx2 transcriptional activity, which is
an essential transcription factor for bone development [31].
In mice, HEY1 repression did not affect osteogenic matura-
tion and mineralization, while its induction inhibited

mesenchymal stem cell osteogenic differentiation and min-
eralization properties [32]. Mice overexpressing HEY1 ex-
hibited also a 76% increase in the number of hypertrophic
chondrocytes [32]. In response to BMP9, which induces
mesenchymal stem cells differentiation into osteoblasts pre-
cursors, HEY1 was among the most stimulated genes [33].
However, in this study, HEY1 knockdown reduced BMP9-
mediated osteogenic differentiation both in vivo and in vitro,
while increasing chondrogenic cell numbers and chondroid
matrix formation. High HEY1 levels were also linked to
high invasive and metastatic potential in mice injected with
osteosarcoma cell lines [34••].

Structure and Function of NCOA2

NCOA2 (nuclear receptor coactivator 2) belongs to the p160
nuclear receptor coactivator family and is located on the long
arm of human chromosome 8 (Fig. 3). It encodes a transcrip-
tional coactivator protein for nuclear hormone receptors. Three
distinct regions are identified in this gene. They encompass an
N-terminus bHLH domain that mediates DNA binding and
protein dimerization, a central area with three LXLLmotifs that
drive NCOA2 interaction with nuclear hormone receptors, and
a C-terminus region that contains two transcriptional activation
sequences with a relevant role in chromatin remodeling (Figs. 4
and 5) [35]. Without directly binding DNA, NCOA2 associates
with nuclear receptors, recruits histone methyltransferases to
specific sequences, and mediates chromatin remodeling and
transcription of specific target genes. AD1 (activation domain
1) interacts with transcriptional coactivators (CBP and P300),
whereas AD2 (activation domain 2) interferes with histone
methyltransferases, coactivator-associated arginine methyl-
transferase 1 (CARM1), and protein arginine methyltransferase
1 (PRMT1) [35–37].

NCOA2 rearrangements have been identified in several he-
matologic (Table 1) and solid tumors (Table 2). This gene’s
fusion with SRF, TEAD1, and VGLL2 has been found in in-
fantile spindle cell rhabdomyosarcomas [43, 44]. In a rare
variant of alveolar rhabdomyosarcoma, a t(2;8) translocation
generated a PAX3-NCOA2 chimeric oncogene [45]. Fusions

Fig. 3 On the left, normal chromosome 8 on which wild-type NCOA2
andHEY1 genes are shown. The pathognomonicHEY1-NCOA2 fusion is
pictured on the right

Fig. 2 a Mesenchymal
chondrosarcoma shows a mixture
of primitive cells juxtaposed to
islands of mature chondroid tissue
(H&E). b Immunohistochemistry
for SOX9 reveals strong nuclear
reactivity in the primitive cell
component, indicative of
chondroid lineage
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with AHRR and GTF2I have also been found in soft-tissue
angiofibromas [48–50]. NCOA2 is also involved in MYST3-
NCOA2 and ETV6-NCOA2 translocations in leukemias ex-
pressing both T-lymphoid and myeloid markers [38, 41].

Carapeti et al. detected and confirmed the presence of the
KAT6A-NCOA2 fusion in acute myeloid leukemias [39, 40].
The transforming properties of KAT6A-NCOA2 and PAX3-
NCOA2 were biologically elucidated [45, 55]. The former

Fig. 5 Blunt arrows (┴) indicate inhibition while sharp arrows (→)
indicate stimulation. a HEY1 bHLH domain binds E-box-like
sequences, which leads to recruitment of corepressor factors to mediate
HEY1-related gene expression. b HEY1 bHLH inhibits myogenesis
through a promoter competition mechanism with MyoD. c This domain
inhibits Runx2 to induce and inhibits chondrogenesis and osteogenesis,
respectively. d It interacts with GATA to promote the expression of the

genes modulated by it. e HEY1 bHLH might interact with other proteins
to modify genes expression. f It competes with FBXO45 and promotes a
ubiquitination mechanism disruption, which is responsible of some
proteins destruction. The g AD1 and h AD2 domains of NCOA2 recruit
coactivator elements and histone methyltransferases that lead to
epigenetic modifications via chromatin remodeling

Fig. 4 Schematic representation
of the wild-type HEY1 and
NCOA2 gene sequences, as well
as the HEY1-NCOA2
translocation, which retains the
HEY1 bHLH and the NCOA2 two
activation domains
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relies on its interaction with CBP through AD1 for acute my-
eloid leukemia transformation, whereas the latter requires the
presence of both activation domains for alveolar rhabdomyo-
sarcoma genesis.

LACTB2-NCOA2 was identified as a rare but recurrent fu-
sion by whole-genome and transcriptome sequencing in colo-
rectal cancer [56••]. In this study, high NCOA2 levels pro-
foundly abolished colorectal cancer cell line proliferation, col-
ony formation, migration, and invasiveness while increasing
their apoptotic rate. In nude mice, NCOA2 overexpression
repressed colorectal xenograft growth.

In prostate cancer, NCOA2 was respectively upregulated in
8 and 37% of primary andmetastatic tumors [57]. In mice, high
NCOA2 levels were sufficient to induce early stages of human
prostatic cancer [58]. The same study showed that tumor cells
with high NCOA2 expression were more invasive compared to
their control counterparts. In prostate cancer cells, NCOA2
overexpression was transcriptionally inhibited by the androgen
receptor. NCOA2 inhibition in androgen-dependent cells made
them more sensitive to androgen deprivation therapy and
stopped tumor growth at low grade stages [58].

Structure of HEY1-NCOA2 Fusion

HEY1 andNCOA2were fused in at least 80% ofmesenchymal
chondrosarcomas as detected by RT-PCR, FISH, and genome-
wide screen of exon-level expression data and appears to be
disease defining [13, 51, 59]. The chimeric fusion is generated
from an intra-chromosomal deletion between exon 4 ofHEY1
and exon 13 of NCOA2 (Figs. 3 and 4) [59]. Similarly to all
fusions involving NCOA2, HEY1-NCOA2 bears the DNA-
binding domain of HEY1 and the two C-terminal activation
domains of NCOA2 (Fig. 4) [12, 51]. The histone
methyltransferase-interacting domain of NCOA2 is also
conserved.

Genomics of Mesenchymal Chondrosarcoma

Despite being specific to mesenchymal chondrosarcoma,
HEY1-NCOA2 fusion does not seem to be the only recurrent
translocation identified in this disease. Therefore, fusion het-
erogeneity should not be excluded even though one translo-
cation might be more frequent compared to others. Nyquist
et al. reported a case of mesenchymal chondrosarcoma with an
in-frame t(1;5)(q42;q32) fusion resulting in an IRF2BP2-
CDX1 translocation between exon 1 of the IRF2BP2 gene
on chromosome 1 and intron 1 of the CDX1 gene on chromo-
some 5 [60]. CDX1 encodes a transcription factor, with an
irregular expression in intestinal cancer [61–63]. IRF2BP2
contains a zinc finger motif that can bind DNA. It has the
ability to interact with TP53 tumor suppressor and IRF2 on-
cogene to affect tumorigenesis [64, 65]. Nevertheless, TP53

Table 2 Solid tumors with
fusions involving NCOA2 Chimeric transcript Genetic translocation Disease

SRF-NCOA2 t(6;8)(p12;q11) Infantile spindle cell rhabdomyosarcoma [43]

TEAD1-NCOA2 t(8;11)(q13;p13) Infantile spindle cell rhabdomyosarcoma [43]

VGLL2-NCOA2 t(6;8)(q22;q13) Infantile spindle cell rhabdomyosarcoma [44]

PAX3-NCOA2 t(2;8)(q35;q13)

t(2;12;8)(q11;q22;q13)

Congenital embryonal rhabdomyosarcoma [45, 46]

Embryonal rhabdomyosarcoma [47]

AHRR-NCOA2 t(5;8)(p15;q13)

t(5;8;17)(p15;q13;q21)

Soft tissue angiofibroma [48]

Soft tissue angiofibroma [49]

GTF2I-NCOA2 t(7;8)(q11;q13) Soft tissue angiofibroma [50]

HEY1-NCOA2 t(8;8)(q13;q21) Mesenchymal chondrosarcoma [12, 13, 51]

NCOA2-ARFGEF1 t(8;8)(q13;q13) Breast adenocarcinoma [52]

NCOA2-LEPROTL1 t(8;8)(p12;q13) Lung adenocarcinoma [52]

NCOA2-NCALD t(8;8)(q13;q22) Breast adenocarcinoma [52]

NCOA2-ST18 t(8;8)(q11;q13) Melanoma [52]

NCOA2-XKR9 t(8;8)(q13;q13) Lung adenocarcinoma [52]

NCOA2-ZNF704 t(8;8)(q13;q21) Breast adenocarcinoma [53, 54]

SH2D6-NCOA2 t(2;8)(p11;q13) Bladder transitional cell carcinoma [52]

Table 1 Hematologic malignancies with NCOA2-based translocations

Chimeric transcript Genetic translocation Disease

KAT6A-NCOA2
(MYST3-NCOA2)

t(8;16)(p11;p13) or
inv8(p11;q13)

Acute myeloid
leukemia [38–40]

ETV6-NCOA2 t(8;12)(q13;p13) Acute biphenotypic
leukemia [41]

ETV3-NCOA2 Indeterminate cell
histiocytosis [42]
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anomalies have been reported in previous studies including
one report that showed 39% of these alterations (loss of pro-
tein expression) involving the small cell area while only 7% of
the cartilaginous portions of mesenchymal chondrosarcoma
samples harbored similar aberrations [66]. Within this same
report, the retinoblastoma pathway was the most altered net-
work with 3 of 11 (70%) samples having a homozygous loss
of the CDKN2A/p16 locus [66]. Contrary to conventional
chondrosarcomas and dedifferentiated chondrosarcomas, no
mutations in the IDH1 or IDH2 genes were noted in this same
study. Aside from the presence of fusions, no consistent addi-
tional genetic abnormalities have been discovered for this
disease.

Potentially Activated Pathways
in Mesenchymal Chondrosarcoma

Notch Signaling Pathway

As a member of the Notch signaling network, HEY1 is in-
volved in multiple processes. The effects of the Notch path-
way are cell dependent but often promote oncogenesis
through apoptosis repression, proliferation, and epithelial-to-
mesenchymal stimulation [67–69]. Nuclear HEY1 expres-
sion, in particular, has been associated with local lymph node
and neurovascular bundle invasion, as well as adverse prog-
nosis in pancreatic adenocarcinoma [70]. HEY1 has been
shown to dramatically reduce gene expression levels of
COL2A1, which is responsible for encoding the alpha 1 chain
of type II collagen, an essential component of the cartilaginous
extracellular matrix [71]. This occurs by binding to the N-box
domains in intron 1 of COL2A1, thus modulating the interac-
tion between SOX9 and COL2A1. In line with these findings,
Notch pathway inhibition in general, HEY1more specifically,
might be of interest in mesenchymal chondrosarcoma.

Chromatin Remodeling

HEY1-NCOA2 exerts, at least to some extent, its pathogenetic
impact by affecting chromatin configuration. Pathogenesis may
involve recruitment of coactivators or corepressors through
NCOA2 or HEY1 domains to HEY1 target genes, respectively
(Fig. 5). Therefore, in mesenchymal chondrosarcoma, chroma-
tin modulation through DNA methylation and HDAC inhibi-
tors might also be useful as epigenetic modifier treatments.

Apoptosis

A recent report showed that malignant mesenchymal
chondroblasts have higher expression of CD99, PKC-α,
PDGFR-α, and Bcl-2 antigens, with proliferation pathways
centering around PKC-α and PDGFR-α networks [72]. A

separate study confirmed the high protein expression of Bcl-2
and Bcl-xL in mesenchymal chondrosarcoma [73]. Activated
PKC-α phosphorylates Bcl-2 and subsequently slows apopto-
sis. CD99 is a mediator of MAPK pathway activation via the
PKC pathway and has been shown to be positive in mesenchy-
mal chondrosarcoma [74–76]. Compared to malignant
chondrocytes, malignant mesenchymal chondroblasts exhibit
higher expression of Akt and mTOR [77]. PDGFR-α is an
upstream inducer of Akt signaling in mesenchymal
chondrosarcoma. Therefore, it is worth mentioning the poten-
tial role of mTOR and/or PDGFR inhibitors in the management
of mesenchymal chondrosarcoma.

TGF-β1 Signaling

Transforming growth factor beta (TGF-β) superfamily repre-
sents a large group of conserved genes that encode ligands and
receptors which interact with Smad transcription factors to
regulate gene transcription [78]. Along with BMP, TGF-β
signaling assists in the regulation and maintenance of SOX9,
which is considered the master regulator of cartilage develop-
ment. VanOosterwijk et al. have demonstrated that mesenchy-
mal chondrosarcoma expresses high levels of p-SMAD2 by
immunohistochemistry, particularly in the small cell compo-
nents of the tumor [73]. This protein directly interacts with
TGF-β. Furthermore, p-SMAD1 and PAI-1 were highly
expressed in approximately half of the small cell component
and in the third of the cartilaginous components. These find-
ings suggest a possible therapeutic role for small molecule
inhibitors of the TGF-β signaling pathway.

Limitations

Efforts have been made to generate mesenchymal
chondrosarcoma cell lines that will provide researchers tools
to study this disease. It was not until recently that a novel
mesenchymal chondrosarcoma cell line (MCS170) was re-
ported by the Leiden group in the Netherlands, in which the
HEY1-NCOA2 translocation was identified by FISH, RT-
PCR, and sequencing analyses [79••]. A crucial driver role
of a genetic translocation is implied by its recurrence, its as-
sociation with few or no other genetic abnormalities, and its
current restriction to one tumor phenotype [80]. Despite the
fact that the HEY1 DNA-binding and the NCOA2 transcrip-
tional activation domains are always preserved in the generat-
ed HEY1-NCOA2 translocation, the contribution of each re-
gion to the effects of the fusion may be context and cell de-
pendent (Fig. 5). The area that is responsible for the normal
function of the wild-type protein might also be absent in the
genetic fusion [80]. This is the case of NCOA2 that is charac-
terized by its DNA-binding domain, which is lacking in the
HEY1-NCOA2 translocation. There also might be a difference
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in the genes regulated by the wild-type transcription factor
compared to its respective chimeric counterpart. Moreover,
the activity of the amino-terminal end seems more complicat-
ed than being a simple potentiator of the transcription of the
carboxy-terminal partner targets [81].

Conclusions

Discovery of theHEY1-NCOA2 translocation as a specific and
recurrent fusion in mesenchymal chondrosarcoma is an im-
portant breakthrough for characterizing and understanding the
pathogenesis of this disease. The subsequent identification of
the pathways modulated by this fusion would help guide and
develop drugs to assess their efficacy in treating mesenchymal
chondrosarcoma. Based on the available data on individual
HEY1 and NCOA2, HEY1-NCOA2 fusion evokes many dif-
ferent mechanisms to promote sarcomagenesis, such as direct
DNA binding, protein-protein interaction, and epigenetic
modification. It is likely that the combination of these pathway
dysregulations is what allows this single translocation and
resulting chimeric fusion protein to drive the biology of this
rare and aggressive sarcoma.
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