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Abstract The gut microbiome consists of trillions of bacteria
which play an important role in human metabolism. Animal
and human studies have implicated distortion of the normal
microbial balance in obesity and metabolic syndrome.
Bacteria causing weight gain are thought to induce the expres-
sion of genes related to lipid and carbohydrate metabolism
thereby leading to greater energy harvest from the diet.
There is a large body of evidence demonstrating that alteration
in the proportion of Bacteroidetes and Firmicutes leads to the
development of obesity, but this has been recently challenged.
It is likely that the influence of gut microbiome on obesity is
much more complex than simply an imbalance in the propor-
tion of these phyla of bacteria. Modulation of the gut
microbiome through diet, pre- and probiotics, antibiotics, sur-
gery, and fecal transplantation has the potential to majorly
impact the obesity epidemic.
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Introduction

The human microbiome encompasses several trillion mi-
crobes residing in the gut and the genes that are encoded by
them [1, 2]. Themajority of these microbes reside in the colon,

where they are present in a concentration of 109–1012 CFU/
mL [3]. There is clear evidence from animal and human stud-
ies that the gut microbiome plays a crucial role in the func-
tioning of the digestive tract and in harvesting energy from the
diet [4, 5].

The microbiome maintains the integrity of the intestinal
epithelial barrier thereby offering protection from pathogenic
bacterial colonization [6, 7]. In addition, the microbiome is
essential for metabolizing indigestible polysaccharides and
in the absorption of short-chain fatty acids produced by bac-
terial fermentation [8]. It also plays a key role in the regulation
of intestinal transit, thereby affecting the amount of energy
absorbed from the diet [9]. These and other key functions
elucidate the crucial role of the microbiome in weight gain
and metabolism and are reviewed in more detail [10, 11].

Current data estimates that approximately 600 million peo-
ple around the world are obese, with an additional 1.9 billion
people being overweight [12]. One of the most cited
microbiome related factors differentiating obese and healthy
individuals has been the shift in the proportion of bacterial
flora belonging to the Firmicutes and Bacteroidetes phyla
which together comprise about 90 % of the microbiota of
the adult gut [13]. The Firmicutes phylum comprises gram
positive organisms from greater than 200 different genera in-
cluding Catenibacterium, Clostridium, Eubacterium, Dorea,
Faecalibacterium, Lactobacillus, Roseburia, Ruminococcus,
and Veillonella while the Bacteroidetes phylum consists of
gram negative bacteria from approximately 20 genera includ-
ing Bacteroides,Odoribacter, Prevotella, and Tannerella [14].
Studies using 16S rRNA gene sequencing of the distal gut
microbiota of ob/ob mice show that there is significant reduc-
tion in the abundance of Bacteroidetes and a similar increase
in the Firmicutes phyla in obese mice [8]. However, subse-
quent studies have shown discrepancies in the proportion of
Bacteroidetes/Firmicutes and its relation to obesity and it is
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likely that the influence of the gut microbiome on obesity is
much more complex than simply an imbalance in the propor-
tion and or interaction of these phyla.

Obesity as a Risk Factor for Cancer

Recent studies suggest that obesity is a risk factor for devel-
oping cancers of the endometrium, breast, cervix, ovary, colon
and rectum, esophagus, kidney, pancreas, prostate as well as
several hematological malignancies [15]. Obesity is also asso-
ciated with increased mortality and worse outcomes in cancer
patients [16]. This makes obesity a major preventable risk
factor in the development of cancer. However, most weight
reduction strategies are often unsuccessful in the long term
and there is an increased focus on weight loss maintenance
strategies [17]. With its close interaction with energy balance
and metabolism, the gut microbiome is likely to be a major
component in future weight loss and cancer prevention strat-
egies. In this paper, the key findings from animal and human
studies as well as the role of diet and modulation of the
microbiome are discussed.

Experimental Evidence for the Link
Between Microbiome and Obesity

Studies in animals have demonstrated that the association be-
tween the microbiome and fat deposition and resultant develop-
ment of metabolic syndrome may begin as early as the prenatal
period [18•]. Bacteria from pregnant mice gut have been dem-
onstrated inmesenteric lymph nodes and are thought to possibly
be transferred through the placenta into the fetus, where bacteria
have been demonstrated in meconium, which is the first stool
passed by the fetus and thought to be sterile except for the
bacterial flora ingested during the process of birth [19]. The
mode of delivery determines the initial bacterial composition
of the gut with vaginally born piglets showing higher numbers
of Bacteroides, Prevotella, and Clostridium species compared
to piglets born by C-section [20].

Germ free mice have been shown to remain lean despite a
high-fat, sugar rich diet [21]. This is thought to be secondary
to twomechanisms: elevated levels of fasting-induced adipose
factor (Fiaf), a circulating lipoprotein lipase inhibitor, and in-
creased activity of phosphorylated AMP-activated protein ki-
nase (AMPK) [21]. Bacteria in the gut suppresses the expres-
sion of Fiaf and of AMPK in the liver and skeletal muscle,
leading to weight gain from a carbohydrate and fat rich diet
[21]. One of the landmark animal studies demonstrating the
role of gut microbiota in obesity demonstrated that the intro-
duction of normal cecal microbiota from conventional mice
led to a 60% increase in body fat and insulin resistance within
2 weeks in adult germ free mice despite reduced food intake

[4]. This was thought to be secondary to the role of bacteria in
the absorption of monosaccharides from the gut with down-
stream induction of triglyceride production in the liver and
insulin resistance [4].

Animal models have also been key to understanding the
role of microbiota in energy harvest from the diet. Using distal
gut bacterial 16S rRNA sequencing, Turnbaugh et al. demon-
strated that ob/obmice have a 50% reduction in Bacteroidetes
and an proportional increase in Firmicutes and Archaea
resulting in increased fermentation of dietary polysaccharides
and lesser energy remaining in feces as measured by bomb
calorimetry [8]. This trait was also thought to be transmissible,
with the introduction of ob/ob mice microbiota in germ free
mice resulting in a 20 % greater increase in total body fat than
introduction of lean mice microbiota [8].

The findings of microbial alteration in obesity demonstrat-
ed in animal studies have been largely mirrored in human
studies [22]. Ley et al. demonstrated that obese participants
on a calorie-restricted diet had an increase in the proportion of
Bacteroidetes using 16S rRNA sequencing over the period of
12 months which correlated with weight loss [23]. Reduced
levels of Bacteroidetes and microbial diversity have been
demonstrated in monozygotic and dizygotic obese twins com-
pared to their lean twins with the metagenomes of the obese
group being higher in energy harvesting genes related to lipid
and carbohydrate metabolism [24]. However, there is conflict-
ing data regarding Bacteroidetes, with other studies showing
none or positive association with weight gain and obesity
[25–27]. Key studies on the role of the gut microbiome on
development of obesity in humans from literature and their
findings are summarized in Table 1.

Dietary Influences on Microbiome and Obesity

Being the substrate for microbial metabolism, diet has a major
role to play in shaping the individual microbiome [38•]. The
mode of delivery has a large role in the initial composition of
microbiota in newborns, with infants with vaginal births having
gut flora dominated by Lactobacillus, Prevotella, or Sneathia
whereas cesarean birth babies had predominance of skin flora
such as Staphylococcus , Corynebacter ium , and
Propionibacterium [39]. Postnatally, breast fed babies have
been demonstrated to have a predominance of Bacteroidetes,
while formula fed infants have higher Firmicutes and
Verrucomicrobia [40]. The effect of diet is clearly demonstrated
by the changes seen in infant gut microbiome with introduction
of different foods. This was elegantly demonstrated in a study
by Koenig et al. where successive fecal samples were collected
from one infant along with a diary of diet and health over a
period of 2.5 years to study the development of the infant
microbiome and study the effect of diet and health status on
bacterial composition [41]. Using 16S rRNA gene sequencing,
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the authors demonstrated increasing bacterial diversity over
time, with ingestion of solid foods causing a sustained increase
in Bacteroidetes spp., fecal short-chain fatty acid levels, enrich-
ment of genes associated with carbohydrate utilization, vitamin
biosynthesis, and xenobiotic degradation [41].

The impact of different diets on themicrobiome has beenwell
demonstrated. In a study comparing the gut microbiota of chil-
dren consuming a high fiber diet in Burkina Faso to a modern
western high-fat/high-sugar diet in Europe, De Filippo et al.
demonstrated that the gut flora in children from West Africa
had a higher prevalence of Bacteroidetes and depletion in
Firmicutes with some bacterial species being unique for fiber
degradation such as Prevotella and Xylanibacter which were
absent in the children from Europe [42]. In comparison,
European children had higher Firmicutes and Proteobacteria
[42]. Studies in animals have shown similar results, with intro-
duction of a western high-fat high-sugar diet leading to
restructuring of the gut microbiota with increase in the normally
low abundance Mollicute lineage in the Firmicutes to flourish
and causing suppression of Bacteroidetes [43]. Microbial trans-
plantation of thisMollicute rich flora in to germ free mice led to
higher adiposity than transplantation of flora from lean mice
suggesting that the restructured flora may promote superior pro-
cessing of sugars and fat [43]. Weight loss in obese humans with
either a fat- or carbohydrate-restricted diet has been demonstrated
to lead to a decrease in this Mollicute predominance with an
associated increase in the abundance of Bacteroidetes [44].
However, the population shift in bacterial flora is not restricted
only to changes in fat and sugars in diet.

With the obesity epidemic mirroring the increase in pro-
cessing of food, there is also emerging data that the gut
microbiome is adversely impacted by the use of preservatives
and emulsifiers used in the packaging of food. Chassaing et al.
demonstrated that the use of relatively low concentrations of
two commonly used emulsifiers, namely carboxymethylcellu-
lose and polysorbate-80, induced alterations in the gut flora
with reduced Bacteroidetes and increase in Ruminococcus,
Verrucomicrobia, and Proteobacteria [45••]. This change
was associated with the development of colitis and onset of
metabolic syndromewith increase in adiposity and weight and
impaired glycemic control. This trait was also transmissible by
fecal transplantation into germ free mice [45••]. Furthermore,
environmental influences may also alter the composition and
biodiversity of the gut microbiome which ultimately impacts
the aforementioned pathways [46].

Modulation of the Microbiome Using Pre-
and Probiotics

The significant impact of diet on the microbiome in the devel-
opment of obesity and metabolic syndrome has led to renewed
interest in modulation of the human gut microbiota, especially

through the use of pre- and probiotics [47]. This effect can
both be positive and negative on the development of obesity,
as evidenced in animal husbandry where probiotics containing
Lactobacillus, Bifidobacterium, and Enterococcus species
have long been used for inducing weight gain [48].
Prebiotics are nonviable food components that confer health
benefit on the host associated with modulation of the gut mi-
crobiota such as inulin, fructo-oligosaccharides, and galacto-
oligosaccharides, resistant starch, xylo-oligosaccharides, and
arabinoxylan-oligosaccharides [47, 49, 50]. Prebiotics pro-
mote the growth of beneficial bacteria and could slow adipos-
ity by inducing short-chain fatty acid (SCFA) production
which modulates appetite regulating hormones and enzymes
involved in lipogenesis [51]. Prebiotics such as inulin have
also been thought to stimulate glucagon-like peptide 1 secre-
tionwhich could improve glucose homeostasis [51–53]. Some
of these positive effects of prebiotics have also been seen with
increased use of dietary fibers, which also alter the gut
microbiome and could work through similar mechanisms
[54]. Probiotics are living microorganisms such as
Lactobacillus and Bifidobacteria which, when ingested, pro-
vide health benefits, either directly or through interactions
with the host or other microorganisms [55]. These bacteria
compete for nutrients with existing microbiota thereby
diminishing the numbers of bacteria with negative effects. In
addition, probiotics could decrease adiposity by de-
conjugation of bile acids which are less efficient at lipid ab-
sorption from the diet [56]. There are abundant data in animals
and limited data in humans that prebiotics mitigate lipogene-
sis, inflammation and insulin resistrance and promote weight
loss [57]. A combination of pre-and probiotics has been
termed synbiotics, and these could have a higher impact on
the composition of the host microbiome by introducing bac-
teria while inducing an environment more favorable to the
newly ingested bacteria. As we learn more about the gut
microbiome and its impact on obesity, there is the potential
to engineer a favorable metabolic environment for improved
lipid and glucose metabolism through synbiotics.

Influence of Antibiotics on the Microbiome

Along with diet, pre- and probiotics, the use of antibiotics is
the other major intervention which can significantly impact
the development of obesity by altering the gut microbiota
(Fig. 1 [48]). This is well established in the agricultural indus-
try which widely uses antibiotics such as bambermycin,
avilamycin, efrotomycin, and ionophore antibiotics
(monensin, salinomycin, narasin, and lasalocid) exclusively
for weight gain and increased growth [58]. In a study admin-
istering low dose penicillin, chlortetracycline, or vancomycin
to young mice at weaning, Cho et al. demonstrated increased
adiposity in young mice along with taxonomic changes in the
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microbiome, changes in copies of key genes involved in the
metabolism of carbohydrates to short-chain fatty acids, in-
creases in colonic short-chain fatty acid levels, and alterations
in the regulation of hepatic metabolism of lipids and choles-
terol [59]. In a follow up study by the same group using low
dose penicillin in weaning mice, Cox et al. demonstrated
changes in ileal expression of genes involved in immunity as
well as enhancement in the effect of diet-induced obesity by
its effects of gene expression in the liver, metabolic hormone
levels, and visceral adiposity [60••]. This trait was transferra-
ble, with germ free mice transplanted with the microbiota of
the treated mice showing similar effects showing that the al-
tered microbiota and not the antibiotics per se cause promo-
tion of adiposity [60••]. This effect of antibiotics inducing
weight gain has also been demonstrated in humans with a
study by Thuny et al. showing ≥10 % increase in BMI in
adults older than 65 years after a 6-week course of vancomy-
cin and gentamicin for infective endocarditis but not in con-
trols or patients treated with other antibiotics [61]. The eradi-
cation ofHelicobacter pyloriwith antibiotics has also been an
area of interest, with the population decline in H. pylori
mirroring the increase in obesity [62]. H. pylori eradication
has been demonstrated to significantly increase post-prandial
ghrelin and leptin levels, with previously H. pylori positive
individuals having significantly greater increase in BMI over
18 months compared to negative individuals [63]. However,
this effect could be mediated by the antibiotics used in treat-
ment and not associated with H. pylori, since studies from
developing countries show positive association of H. pylori
infection with obesity [64, 65].

Iatrogenic Gut Microbiota Alteration

Though diet and the use of pre- and probiotics modulate the gut
microbiome [66], their effect is relatively gradual compared to
two widely used treatments with more drastic and lasting
change in the microbiota, namely fecal transplantation and

gastric bypass surgery. Fecal transplantation for recurrent C.
difficile bacteremia has been shown to be very effective for cure
with the rates of resolution of symptoms of diarrhea beingmuch
superior to antibiotics [67]. However, the long term effects of
fecal transplant are still unknown with the FDA classifying
fecal transplantation as an experimental treatment. Alang et al.
reported a case of a 32-year-old woman with a 41-lb uninten-
tional weight gain following fecal transplantation from a relat-
ed, overweight donor [68•]. This is not surprising, given the
large body of evidence from animal studies showing increased
weight gain in germ free mice with fecal transplantation from
obese mice [8]. With increasing number of fecal transplanta-
tions, studies focusing on the long term effects on weight gain
and changes in the metabolic profiles of recipients will need to
be done. Another area of emerging interest is the change in the
gut microbiome induced by bariatric surgery [69•]. A study by
Zhang et al. showed significant decrease in Firmicutes in post-
gastric-bypass individuals compared to normal-weight and
obese individuals [37]. These results were also mirrored by
Furet et al. who demonstrated increased Firmicutes to
Bacteroidetes at baseline in obese patients before Roux-en-Y
gastric bypass (RYGB) surgery and a subsequent decrease in
this ratio at 3 and 6 months post-surgery with accompanying
weight loss, Table 1 [31]. The post-RYGB gut microbiome is
also unique, given the lack of an acidic stomach which enables
easier modulation of the gut flora with probiotics. A random-
ized trial using supplementation of Lactobacillus probiotics
post-RYGB demonstrated 9 % greater weight loss in the treat-
ment arm than in the placebo arm at 3 months [36].

Conclusion

There is strong evidence from animal and human studies
supporting the role of the gut microbiome in the development
of obesity. Modulation of the gut microbiota through diet, pre-
and probiotics, antibiotics, and surgery provides the unique
ability to influence weight and metabolic profile in either

Fig. 1 Modulation of the
microbiome influences
development of obesity and
metabolic syndrome
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direction. Future studies will be needed to further clarify the
complex interactions between the various species of bacteria
and to generate evidence toward interventions which will help
slow down the escalating global epidemic of obesity.
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