
Response Assessment Challenges in Clinical Trials
of Gliomas

Patrick Y. Wen & Andrew D. Norden & Jan Drappatz &

Eudocia Quant

Published online: 8 January 2010
# Springer Science+Business Media, LLC 2010

Abstract Accurate, reproducible criteria for determining
tumor response and progression after therapy are critical for
optimal patient care and effective evaluation of novel
therapeutic agents. Currently, the most widely used criteria
for determining treatment response in gliomas is based on
two-dimensional tumor measurements using neuroimaging
studies (Macdonald criteria). In recent years, the limitation of
these criteria, which only address the contrast-enhancing
component of the tumor, have become increasingly apparent.
This review discusses challenges that have emerged in
assessing response in patients with gliomas and approaches
being introduced to address them.
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Introduction

Gliomas are the most frequent and deadly form of
malignant primary brain tumors in adults, with an annual
incidence of about five to six cases per 100,000 [1, 2].

Despite optimal therapy, most patients eventually succumb
to their disease. There is an urgent need to develop more
effective treatments.

Currently, the effectiveness of therapies for these tumors
is determined either by measuring overall survival, or more
commonly, by determining the radiographic response rate
or progression-free survival (PFS) [3, 4]. There is a need for
accurate response criteria to determine tumor response and
progression after therapy. This review discusses emerging
challenges in determining treatment response in both
high- and low-grade gliomas.

Evaluation of Response in High-Grade Gliomas

High-grade gliomas (glioblastomas, anaplastic astrocytomas,
anaplastic oligodendrogliomas, and oligoastrocytomas)
account for more than 75% of malignant primary brain
tumors [2]. Accurate and reproducible response criteria are
critical for optimal patient care and effective evaluation of
novel therapeutic agents [5]. The standard criteria used to
determine response in systemic malignancies involve
one-dimensional tumor measurements. Response Evaluation
Criteria in Solid Tumors (RECIST) criteria were first
introduced in 2000 [6] and recently updated in 2009
(RECIST version 1.1) [7]. Several studies have compared
the RECISTcriteria with two-dimensional, three-dimensional,
and volumetric measurements in high-grade gliomas [8–10].
These studies generally show good concordance between
the RECIST criteria and two-dimensional and volumetric
measurements in patients with high-grade gliomas
[8–10]. However, studies prospectively validating the
RECIST criteria in high-grade gliomas have not been
performed and these criteria are rarely used in clinical
trials.
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Macdonald Criteria

Currently, the most widely used criteria for assessing
response in high-grade gliomas involve two-dimensional
measurements of enhancing tumor (the product of the
maximal cross-sectional enhancing diameters) on CT or
MRI scans [11]. These Macdonald criteria also account
for the use of corticosteroids and changes in the
neurologic status of the patient. They provide an objective
radiologic assessment of tumor response and enable
comparison of response rates among clinical trials. Since
their introduction almost 20 years ago, these have been the
most widely used response criteria in clinical trials of
glioma.

In the Macdonald criteria, complete response is defined
as the complete disappearance of all enhancing measurable
and nonmeasurable disease sustained for at least 4 weeks.
There must be no new lesions and the patient must be
clinically stable or improved and not on any cortico-
steroids other than those used for adrenal replacement.
Partial response is defined as ≥50% decrease, compared
with baseline, in the sum of products of perpendicular
diameters of all measurable enhancing lesions sustained
for at least 4 weeks. There must be no new lesions, the
patient must be clinically stable or improved, and on stable
or reduced doses of corticosteroids. Progression is defined
as a≥25% increase in the sum of the products of
perpendicular diameters of enhancing lesions, the appear-
ance of any new lesions, or clinical deterioration. Stable
disease applies to patients who do not qualify for complete
or partial response, or progression, and are stable
clinically.

Limitations

There is increasing consensus that the Macdonald criteria
have important limitations [5••, 12•, 13•, 14••]. These
limitations include interobserver variability, the lack of
assessment of the nonenhancing component of the tumor,
the difficulty of measuring irregularly shaped tumors, lack
of guidance for the assessment of multifocal tumors, and
the difficulty in measuring enhancing lesions in the wall of
cystic or surgical cavities. Most importantly, the Macdonald
criteria use only contrast-enhancement as a surrogate for
tumor size. A significant increase in the size of contrast
enhancement (≥ 25%) is considered tumor progression and
requires a change in therapy. However, contrast enhance-
ment is nonspecific and primarily reflects the passage of
contrast material across a disrupted blood-tumor barrier.
Enhancement can be affected by differences in radiologic
techniques or the amount of contrast agents administered.
Increased enhancement can also be caused by various
processes not caused by the tumor itself, such as

postsurgical changes, infarction, treatment-related inflam-
mation, seizure activity, subacute radiation effects, and
radiation necrosis [15–18]. In addition, the extent of
contrast enhancement can be significantly affected by
changes in corticosteroid doses [19, 20]. The limitations
of equating changes in the enhancing area with changes
in tumor size have become even more evident with the
increased incidence of pseudoprogression in patients
receiving chemoradiotherapy and the use of antiangio-
genic therapies that affect the permeability of tumor
vasculature. These limitations are discussed in greater
depth below.

Enhancement Caused by Local Effects of Therapies

After surgical resection of gliomas, increased enhance-
ment usually develops in the wall of the surgical cavity
within 48–72 h [15, 21–23]. It is generally recommended
that a baseline MRI scan should be obtained within
24–48 h after surgery (no later than 72 h) to avoid
interpretation of postoperative changes as residual enhancing
disease. Unfortunately, these recommendations are not often
followed.

Increasingly, as diffusion-weighted imaging (DWI) is
incorporated into the immediate postoperative MRI
scans, it has become apparent that ischemic changes are
relatively common [13•, 17]. These changes may lead to
subsequent enhancement that can be mistaken for
postoperative residual tumor or tumor recurrence. The
routine incorporation of DWI in the postoperative MRI
scan help differentiate these ischemic changes from
residual postoperative disease.

A number of locally administered therapies can
result in transient increases in enhancement that can be
difficult to distinguish from recurrent disease. These
therapies include chemotherapy wafers (polifeprosan 20
with carmustine implant), immunotoxins delivered by
convection-enhanced delivery such as cintredekin besudo-
tox, regionally administered gene and viral therapies, and
local immunotherapies, as well as focal irradiation with
brachytherapy and stereotactic radiosurgery [5••, 14••,
24–30]. In addition, systemic immunotherapies may poten-
tially induce an inflammatory response that results in
increased enhancement and may be mistaken for recurrent
or progressive disease. Differentiating treatment effects from
recurrent disease can be difficult. Imaging modalities
such as perfusion imaging, MR spectroscopy, and
positron emission tomography (PET) scans may some-
times be helpful [31–34]. However, no imaging modality
currently has adequate sensitivity and specificity to
conclusively differentiate recurrent tumor from treatment
effects, and surgery may be necessary to obtain tissue for a
definitive diagnosis.
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Pseudoprogression and Radiation Necrosis

Pseudoprogression

Currently, the standard therapy for glioblastoma involves
maximal tumor resection followed by radiotherapy with
concurrent and adjuvant temozolomide [35]. About 40% to
50% of patients undergoing their first MRI 4 weeks after
completion of radiotherapy show increased contrast
enhancement [36•, 37, 38•]. In half of these patients, the
increased enhancement represented true tumor progression.
However, in the other half of patients, the increased
enhancement eventually subsided with no change in
therapy, suggesting that it resulted from transiently
increased permeability of the tumor vasculature from
irradiation [36•, 38•]. This phenomenon, termed pseudo-
progression, is enhanced by the addition of temozolomide
to radiotherapy [36•, 39–41], but can also be seen with
radiotherapy alone [42, 43]. Patients with pseudoprogres-
sion are frequently asymptomatic, but when extensive,
pseudoprogression can be associated with neurologic
deterioration (Fig. 1).

Pseudoprogression is now recognized as a common and
important clinical problem that complicates the determination
of tumor progression immediately after completion of
radiotherapy and has important implications for patient
management [5••, 35•, 37•]. Failure to recognize pseudo-
progression may result in patients being prematurely
discontinued from an effective therapy, decreasing the
perceived benefit of the treatment involved. Conversely,
enrollment of patients with pseudoprogression into clinical
trials for recurrent tumors will lead to artificially improved
outcomes, and the false perception that the agent under
investigation is active.

There is intense interest in finding methods to differentiate
pseudoprogression from true tumor progression. Imaging
techniques such as MR spectroscopy, diffusion imaging, and
PET are being evaluated [44] but have not been particularly
helpful [39]. A more promising approach may be dynamic
susceptibility-weighted contrast-enhanced perfusion MRI,
which determines relative cerebral blood volume [45, 46].

O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation status is another test that may help
differentiate pseudoprogression from true tumor progression

Fig. 1 A 39-year-old man with a
deep left frontal/temporal
glioblastoma after subtotal
resection (a, axial T1 with
contrast; b, axial fluid attenuated
inversion recovery [FLAIR]) and
4 weeks after radiotherapy with
concomitant temozolomide
(c, axial T1 with contrast;
d, axial FLAIR) showing
significant increase in enhance-
ment and edema. The patients
underwent a reoperation. The
pathology showed mainly
necrosis, suggesting that the
radiologic changes were
primarily caused by
pseudoprogression
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[38•]. In a series of 103 patients with glioblastoma, Brandes
et al. [38•] found almost 50% of these patients had
worsening of the first postradiotherapy scan. Of the patients
who developed pseudoprogression, 66% had tumors with
methylated MGMT promoters, whereas 34% had unmethy-
lated MGMT promoters. In contrast, of the patients who
developed true progression, 89% had an unmethylated
MGMT promoter and only 11% had a methylated MGMT
promoter [38•]. Moreover, those patients with pseudoprog-
ression had improved survival compared with those who did
not. These data suggest that patients with a methylated
MGMT promoter are more likely to have pseudoprogression.
Although further studies will be necessary to validate these
findings, MGMT methylation status may be useful in
differentiating pseudoprogression from true progression.

During the past 2 years, an international Response
Criteria in Neuro-Oncology (RANO) working group has
been developing updated criteria for determining response
in brain tumors [5••, 13••, 46]. Given the difficulties in
differentiating pseudoprogression from true progression,
the RANO working group has suggested that patients
should generally be excluded from clinical trials during
the first 3 months after radiotherapy, when pseudoprog-
ression is most likely. Patients suspected of having
pseudoprogression, or who have little or no symptoms,
can continue on their present therapy and be followed
closely with serial MRIs [5••].

Radiation Necrosis

As the name implies, radiation necrosis is associated with
frank necrosis of tissue. It appears as increased contrast
enhancement with surrounding edema and can be difficult
to differentiate from recurrent tumor [16]. Radiation
necrosis is generally a late effect of radiotherapy, occurring
months to years after completion of treatment, in contrast to
pseudoprogression that occurs within the first 3–6 months
of therapy [16, 39, 48]. It is estimated to occur in less than
5% of patients undergoing standard radiotherapy for
high-grade gliomas (6000 cGy in 200 cGy fractions) [49].
Therapies that increase the radiation dose to the tumor bed,
such as interstitial brachytherapy or stereotactic radio-
surgery, are associated with a higher incidence of radiation
necrosis. Other factors such as large volumes and certain
locations are also associated with a higher risk. Radiation
necrosis from interstitial brachytherapy and stereotactic
radiosurgery usually occurs several months after therapy
[50]. As with pseudoprogression, differentiating radiation
necrosis from recurrent disease can be difficult. PET
with 18F-fluorodeoxyglucose has relatively low sensitivity
and specificity [51]. Dual-phase PET may potentially be
more useful [52]. Amino acid PET such as 11C-methionine
[53] and 18F-fluoroethyl-l-tyrosine [54] also show promise.

MR spectroscopy [55] and perfusion imaging [46] are also
being evaluated. When the diagnosis remains in doubt,
surgery may be required to obtain tissue for histology.

Pseudoresponses After Treatment with Antiangiogenic
Therapies

High-grade gliomas produce large amounts of vascular
endothelial growth factor (VEGF). This increases vascular
permeability and contributes to the contrast enhancement and
peritumoral edema associated with these tumors. Antiangio-
genic agents, especially those targeting VEGF, such as
bevacizumab and aflibercept, or the VEGF receptors
(VEGFR), such as cediranib, can significantly reduce vascular
permeability. Recent trials with these agents have produced
high radiologic response rates of 25% to 60% [56–59].
However, these apparent responses to antiangiogenic therapy
may be due partly to normalization of abnormally permeable
tumor vessels, decreasing contrast enhancement, and not
necessarily to a true antiglioma effect because the reduction
in contrast enhancement can occur as early as 1 day after
initiation of therapy [5••, 14••, 57]. This phenomenon has
been termed pseudoresponse. There is emerging evidence
that patients who respond to bevacizumab have increased
survival, suggesting that there is also a real antitumor effect
[60]. Nonetheless, radiologic responses in studies with
antiangiogenic agents will have to be interpreted with
caution. The high response rates observed with these agents
have been associated with little or no survival benefit,
suggesting that at least some of the radiologic improvement
may be artifactual [5••, 61]. Although response rate will
remain an important criteria for assessing efficacy of
therapeutic agents, for antiangiogenic agents the duration of
response or stable disease (PFS) or overall survival may be a
more accurate indicator of a true antitumor effect.

Nonenhancing Tumor

A major limitation of the Macdonald criteria is a failure to
account for the nonenhancing tumor. Most World Health
Organization grade III gliomas, and some glioblastomas,
have extensive areas of nonenhancing tumor which are not
currently unaccounted. In addition, as experience with
anti-VEGF and VEGFR therapies increase, it has become
apparent that some patients treated with these agents
experience an initial reduction in contrast enhancement
followed by the development of nonenhancing infiltrating
disease, which appear as areas of increasing T2/fluid
attenuated inversion recovery (FLAIR) signal abnormality
[5••, 62•, 63–65]. These changes are frequently associated
with clinical deterioration. There is increasing preclinical
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evidence suggesting that anti-VEGF therapy may increase
the tendency of tumor cells to coopt existing blood vessels,
resulting in invasive, non-enhancing tumor [66, 67•, 68•, 69].
Differentiation of the T2/FLAIR signal caused by infiltrating
tumor from other causes can be difficult. Almost all patients
with recurrent malignant glioma will have increased T2/
FLAIR signal on MRIs from radiation effects. Other
conditions that should be considered before making a
determination of progressive disease include demyelin-
ation, ischemic injury, decreased corticosteroid dosing,
infection, seizures, postoperative changes, or other
treatment effects. Currently, no imaging modality can
reliably differentiate increased T2/FLAIR caused by
infiltrating tumor from other causes, although emerging
data suggest that apparent diffusion coefficient maps may
be useful [70].

Updated Response Criteria in High-Grade Gliomas

As noted above, the increasing recognition of the limitations
of the Macdonald criteria has led to an international effort
in neuro-oncology to improve imaging response assessments
for gliomas. This multidisciplinary RANO working group
recently proposed updated response criteria for high-grade
gliomas [5••]. These criteria remain based on two-
dimensional tumor measurements because it was felt that
volumetric measurements were currently insufficiently
standardized and available for widespread use.

The main features of the updated criteria include 1) precise
definitions of measurable and nonmeasurable disease; 2)
guidance on the selection of the number of lesions in patients
with multiple lesions; 3) exclusion of most patients within the
first 3 months after radiotherapy from clinical trials to avoid
including patients with pseudoprogression; 4) strict criteria for
determining when a patient has progressed and becomes
eligible for enrollment into clinical trials; 5) more precise
definition of response and progression; and 6) inclusion of
nonenhancing disease as criteria for determining tumor
response.

These criteria are considered a work in progress. As
new volumetric and physiologic imaging techniques [71,
72], as well as other end points such as neuropsychologic
testing and quality-of-life measures, become validated and
more widely available, these parameters will be incorpo-
rated into future criteria determining response in high-
grade gliomas.

Evaluation of Response in Low-Grade Gliomas

Low-grade gliomas (LGG) include grade I and II astrocy-
tomas, oligodendrogliomas, and oligoastrocytomas. These

tumors present a particular challenge when determining the
efficacy of therapies. Most phase 3 studies include overall
survival as an end point [73, 74]. However, the slow growth
of these tumors results in very long studies. Ideally, earlier
measures of efficacy such as response and PFS would be
used to improve the efficiency of conducting studies in this
group of patients.

Determining response in LGG poses several problems.
First, most of these tumors are nonenhancing. As a
result, the Macdonald criteria, based on measurement of
two-dimensional enhancing tumor, does not strictly
apply. Many studies have used a modified Macdonald
criteria, in which the criteria for contrast-enhancing
tumors are applied to the nonenhancing T2/FLAIR
abnormality. Second, these tumors often have irregular
or ill-defined margins, making tumor measurements
difficult. Third, these tumors tend to respond slowly to
treatment and the reduction in tumor size is often less
than that seen in high-grade gliomas. As a result, the
50% reduction in cross-sectional area required by the
Macdonald criteria for determining partial response,
and the 25% increase in determining progression are
relatively insensitive measures for evaluating the efficacy
of particular therapies. Fourth, effective therapies may
lead to improvement in neurocognitive function, quality
of life, and reduction in seizure frequency without
significant changes in tumor size. These clinical benefits
are currently not captured by the standard Macdonald
criteria.

The RANO working group [14••, 47] is in the process of
developing updated criteria to improve the assessment of
response in LGG. It is likely that in addition to changes in
the assessment of tumor size, these criteria may suggest
incorporating measurements of neurocognitive function,
quality-of-life measurements, and seizure frequency. It is
hoped that these new criteria improve the accuracy and
efficiency of evaluating new therapies in patients with
LGG.

Conclusions

Recently, there have been important advances in the
treatment of gliomas. However, these new therapies,
such as chemoradiation for newly diagnosed glioblasto-
mas and anti-VEGF agents for recurrent high-grade
gliomas, have complicated the assessment of response in
clinical trials of glioma. The RANO working group has
proposed updated response criteria in gliomas to address
some of these challenges [5••]. These criteria will
continue to evolve and may eventually incorporate
volumetric measurements, advanced MRI, and assess-
ment of neurocognitive function and quality-of-life
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measurements as these become validated and more
widely available.
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