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Abstract

Purpose of the Review In this review, we attempt to summarize the most updated studies that applied resting-state functional
magnetic resonance imaging (rs-fMRI) in the field of Parkinsonisms and related dementia.

Recent Findings Over the past decades, increasing interest has emerged on investigating the presence and pathophysiol-
ogy of cognitive symptoms in Parkinsonisms and their possible role as predictive biomarkers of neurodegenerative brain
processes. In recent years, evidence has been provided, applying mainly three methodological approaches (i.e. seed-based,
network-based and graph-analysis) on rs-fMRI data, with promising results.

Summary Neural correlates of cognitive impairment and dementia have been detected in patients with Parkinsonisms along
the diseases course. Interestingly, early functional connectivity signatures were proposed to track and predict future progres-
sion of neurodegenerative processes. However, longitudinal studies are still sparce and further investigations are needed to

overcome this knowledge gap.
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Introduction

Cognitive impairment has been increasingly identified as
a relevant condition for the majority of patients with Par-
kinsonism, potentially presenting from the earliest disease
phases to the advanced stages [1].

Parkinsonisms are heterogeneous neurodegenerative dis-
orders characterised by clinical parkinsonian features that
may be differently associated with other motor and nonmo-
tor symptoms [2]. The deposition of aggregated proteins
into intracellular inclusion bodies is a common neuropatho-
logical denominator for these disorders, with pathological
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changes typically spreading into the brain over specific ana-
tomical patterns that are characteristic for each disease.

Tau and a-synuclein are the most abundant proteins that
may be found in pathological aggregates occurring typically
in the presynaptic and axonal portion of neurons, but also
in glial cells [1, 2].

Abnormal aggregates of a-synuclein, such as Lewy bod-
ies (LB) and Lewy neurites have been indeed implicated in
the pathophysiology of Parkinson’s disease (PD), Demen-
tia with Lewy bodies (DLB) and Multiple systems atrophy
(MSA), thereby leading to the umbrella term of synucle-
inopathies [1, 2].

Similarly, tauopathies are neurodegenerative disorders
characterized by the deposition of abnormal tau protein in
both neurons and glial cells, such as progressive supranu-
clear palsy (PSP), corticobasal degeneration (CBD) and
frontotemporal lobar degeneration with tauopathy (FTLD-
Tau) [1, 2].

However, the watershed behind this classification is
blurred and mixed pathological forms have been recognized
[3]. Similarly, overlapping clinical manifestations between
synucleinopathies and tauopathies make the differential
diagnosis challenging in the spectrum of neurodegenerative
diseases [2, 3].
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Cognitive impairment is common and heterogenous in
PD, often extending as a continuum from subjective cogni-
tive impairment to mild cognitive impairment (MCI) and
dementia (PDD) [4].

The early pattern of PD-related cognitive dysfunction
mainly involves executive and attentive/working memory
domains with a slow progression over time. Memory,
language and visuospatial impairments usually occur
later in the disease course and have been associated to an
increased risk to develop clinical overt dementia [1, 4].
This parallels with the “dual syndrome hypothesis”, that
pictures the dopaminergic failure of frontostriatal connec-
tions as occurring early in the disease, leading to execu-
tive deficits with mild progression over time, whereas the
involvement of the cholinergic system could determine a
more “posterior” cognitive dysfunction, with higher risk
to convert into dementia [1, 4].

Interestingly, along with motor (i.e. postural and gait
disturbances) and demographic features (i.e. male sex,
older age at onset), the presence of specific nonmotor
symptoms (i.e. REM sleep behavioural disorders, neu-
ropsychiatric symptoms, autonomic dysfunction) has been
suggested to increase the risk of developing dementia in
PD [1, 4].

While cognitive impairment in PD occurs usually later
in the disease course with respect to motor symptoms, DLB
should be diagnosed when dementia occurs before or con-
currently with parkinsonism, with prominent hallucinations
and visuospatial dysfunction [5].

MSA is clinically characterized by a variable combination
of autonomic dysfunction, levodopa-unresponsive parkin-
sonism, and cerebellar signs [1-3, 6]. Cognitive disturbances
were previously considered as a non-supporting feature of
MSA. However, according to more recent findings and
updated diagnostic criteria, cognitive symptoms have been
recognized as not uncommon in this disease [7].

Among tauopathies, PSP is a rapidly progressive neuro-
degenerative disease with four clinical cornerstones such as
ocular motor dysfunction, postural instability, akinesia and
cognitive dysfunctions [8]. Cognitive deficits are present up
to 58% of PSP patients at the disease onset, with an earlier
presentation in the Richardson’s syndrome than Parkinso-
nian phenotype [1, 8]. Executive, memory and visuospatial
functions are typically impaired in these patients. [6]

CBD is characterised by cortical and extrapyramidal
signs. Apraxia, cortical sensory deficits and alien limb
phenomena are the most common cortical signs, whereas
asymmetrical parkinsonism, dystonia and myoclonus com-
prise the motor signs [8, 9]. The prevalence of cognitive
impairment in patients with CBD is 52% at disease onset,
progressively increasing up to 70% over the disease course,
with language as well as visuospatial dysfunctions being the
most frequent clinical syndromes [8, 9].

@ Springer

Neuroimaging methods have greatly improved the ability
to understand the pathophysiology of Parkinsonisms, sup-
port the diagnosis of parkinsonian syndromes, and detect
and monitor disease progression [10]. Among different tech-
niques, resting-state functional magnetic resonance imaging
(rs-fMRI) has been widely applied to this purpose in patients
with Parkinsonisms.

Rs-fMRI is based on the spontaneous oscillation of the
blood oxygen level dependent (BOLD) signals [11, 12], that
derive from the processing of neuronal information at the
synaptic level in specific brain areas according to the para-
magnetic properties of blood [11-14]. The temporal coher-
ence of neuronal firing patterns from different brain areas
represents the so-called functional connectivity (FC) [11].
Different analytic approach may be applied to rs-fMRI data,
such as seed-based FC, network-based independent compo-
nent analysis and graph theory [12].

Seed-based analysis determines the FC patterns as emerg-
ing from a predefined seed or region of interest (ROI) to
the whole-brain voxels or other seeds/ROIs voxels [11-14].

Independent component analysis is a data-driven method
that can be applied to rs-fMRI data to isolate large-scale spa-
tially distributed FC networks, called resting-state networks
(RSNs). This method does not necessarily need a previous
assumption [11-14].

Finally, graph analysis measures and techniques have
been used to understand the global topological organization
of brain networks. By applying this approach to rs-fMRI
data, anatomic brain regions are considered to be nodes,
linked by edges, which represent the FC between nodes
[11-14]. Such wiring diagram of the brain is called con-
nectome and support an efficient global integration between
high-specialized segregated areas. Interestingly, it has been
proposed that the connectome architecture could play a
direct role in spreading misfolded proteins across the brain,
also explaining the stereotypical patterns of neurodegenera-
tion [15].

In this narrative review, we aimed at summarizing the
most updated studies that applied rs-fMRI to investigate the
neural correlates of cognitive impairment in patients with
tau and a-synuclein-based Parkinsonisms.

Search Strategy

Articles published in on PubMed in the last 3 years until
August 2023 were systematically checked for the purpose
of this review, considering only English-written articles
published in peer-reviewed journals, with the use of the fol-
lowing words: “Parkinson’s disease”, “Lewy body demen-

CEINNTS

tia”, “Multiple system atrophy”, “Progressive supranuclear
palsy”, “Corticobasal degeneration”, which were each cross-
referenced with “resting state functional magnetic resonance

imaging”.
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Two independent observers (NP and RDM) evaluated the
results, excluding duplicates and articles judged irrelevant
by title and abstract screening. The same raters performed
the quality check of selected studies and the most relevant
ones for the topic were finally included in this narrative
review (Tables 1, 2 and 3).

Functional MRI Studies in Patients
with Synucleinopathies (Tables 1, 2 and 3)

PD and PDD

Heterogeneous patterns of rs-fMRI FC alterations were
found to be associated to PD-related cognitive impairment.
This may be potentially due to the inclusion of small sam-
ples, patients at different disease stages and/or in different
medication states, and to the application of various fMRI
approaches [16—18]. In the last three years, several studies
have been performed in patients with PD-MCI, sometimes
leading to conflicting results [17, 19]. A few studies have
been performed in patients with PDD.

The most reported large-scale RSN associated with cog-
nition in PD is the default-mode network (DMN) [17, 19],
mainly involved in self-centered mental imagery, mind-
wandering and episodic memory retrieval. Several studies
reported the presence of decreased FC within the DMN as
associated with cognitive processing deterioration in PD
[17-19]. Recent findings have confirmed these results show-
ing that decreased FC in DMN is correlated with episodic
memory/working memory, executive/attentive or altered
information processing speed, visuospatial dysfunctions
and worse general cognition [20-23]. A similar pattern of
DMN involvement, particularly its posterior hubs, has been
found also in early and/or drug-naive PD-MCI patients and
in the absence of grey matter atrophy [20-23], suggesting
that FC rearrangements within this network may reflect the
presence of pathological processes (i.e. as misfolded pro-
tein accumulation) that not directly lead to neuronal death
but may induce synaptic activity disturbances, which have
been correlated with rs-fMRI signal strength [13]. These
correlates may be detected early in the disease and may be
potentially tested as biomarkers to monitor disease progres-
sion and treatment-response.

On the other hand, also increased FC within DMN has
been reported in PD-MCI patients and in cognitive normal
patients (PD-CN) in advanced stages [24, 25].

Even though decreased FC may be straightforward asso-
ciated to loss of neural function, it is important to note that
“hyper-connectivity” has also pathologic implications.
Indeed, increased FC may be compensatory, representing
a network response to the local neuronal injury that allows
for the maintenance of the same global performance in non-
demented PD patients to delay the development of clinical

overt dementia. Moreover, what we see as “hyper-con-
nected” may be underlined by the loss of networks dynamic
properties to shift between different states (i.e. from a
“hyper- “ to a “hypo-connected” state), which has been also
related to the presence of cognitive impairment in PD [26].

This is in line with the finding of decreasing FC within
the DMN over 3 years of follow-up in PD patients, along
with progressive cognitive decline [27].

Together with DMN, other relevant RSNs such as the
frontoparietal (FPN), dorsal and ventral attention (DAN/
VAN), salience (SN), executive-control (ECN) and visual
(VN) networks, have been studied to investigate the potential
association with cognitive impairment in PD.

The FPN is mainly involved in decision making and
executive functioning. Decreased FC within this network
has been consistently found in PD-MCI patients, also asso-
ciated with progressive visuospatial, memory and attention
dysfunctions [28-33].

The DAN plays a key-role in the top-down processes to
control voluntary movements while the VAN is involved in
the bottom-up detection of relevant stimuli [19]. Decreased
FC has been revealed within both DAN and VAN as asso-
ciated with impaired attention and executive functioning,
suggesting the presence of altered high cognitive control in
PD-MCI [29, 32, 34, 35].

Two recent studies have focused the amnestic (aMCI) and
non-amnestic (naMCI) subtypes of PD-related MCI, show-
ing divergent findings. Indeed, Chung and colleagues [29]
performed a multimodal MRI study and found increased FC
within the SN in PD-aMCI compared to PD-naMCI patients.
Interestingly, in a longitudinal sub-cohort of PD, patients
with PD-aMCI patients exhibited a higher risk of conversion
to dementia compared to PD-naMCI. Conversely, Kawabata
et al. revealed the presences of DMN changes characterising
PD patients with aMCI from healthy controls (HC), while
VN and cerebellar-brainstem network was found to be spe-
cifically altered in naMCI [36]. These conflicting results may
stem from the inclusion of different PD samples along with
the application of heterogenous diagnostic criteria and meth-
odological rs-fMRI approaches. Nonetheless, these findings
support previous evidence of different cognitive syndromes
in PD patients [1, 4] that may not include an Alzheimer’s
disease (AD)-like phenotype [37], determining a slower but
progressive multidomain deterioration of the brain efficiency
and functioning that might eventually lead to dementia [38].

Beyond FC alterations within each network, the interac-
tion between different RSNs has been found to be associated
with cognitive impairment in PD patients [17, 20, 28, 34,
39, 40]. Overall, a functional coupling/decoupling patterns
have been reported between the RSNs, with specific direc-
tions that seem critical to generate and maintain an efficient
behavioral and cognitive performance, with several evidence
in PD patients [17, 20, 28, 34, 39-42].
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Graph-analysis MRI studies also provided intriguing
findings to support the pathophysiology of PD-related
cognitive dysfunction. Overall, altered connectomic met-
rics within the DMN, FPN and VN have been found to be
associated with cognitive impairment in PD patients, sug-
gesting the presence of both local and global information
processing changes of the brain architecture [24, 30, 43,
44]. Indeed, a progressive shift from a global integrated to
a small-world highly segregated organisation has been pro-
posed to determine the development of MCI in PD. This
would allow PD-MCI patients to confine affected nodes
which are direct targets of early degenerative processes,
while potentiating still-functioning networks to maintain
an efficient brain functioning at a clinical level.

Despite the heterogeneity in rs-fMRI methodology,
compelling evidence suggests the influence of the dopa-
minergic replacement therapy (DRT) on these neural pat-
terns [45, 46]. A recent study [40] in early PD patients
showed that along with the normalization of FC within
motor networks, acute levodopa administration also
enhances FC metrics in nonmotor areas (i.e. frontal and
limbic regions). Further studies are needed to clarify
whether this effect may be detrimental for brain function-
ing, likely leading to the development of cognitive and
behavioural disturbances over time.

The presence of specific nonmotor symptoms, such as
REM sleep behavioural disorders (RBD), depression, anxi-
ety, impulsive compulsive disorders (ICD) and visual hal-
lucinations (VHs), have been associated with an increased
risk of dementia in PD patients. Interestingly, rs-fMRI stud-
ies allowed to highlight specific changes over cognitive-
related brain regions and networks in PD patients with these
symptoms, even in the absence of clinical overt cognitive
impairment.

RBD is a parasomnia characterized by loss of atonia dur-
ing REM sleep [4, 47]. RBD may present as a prodromal
symptom of PD, occurring even 10 years before the onset of
motor features [4, 47], and in the absence of overt signs of
neurodegeneration (idiopathic RBD). Epidemiological stud-
ies recognized RBD as a risk factor for future development
of cognitive impairment in PD patients [48, 49]. Previous
studies have reported decreased FC within striato-frontal
and temporo-parietal areas [50-52] as well as increased FC
between basal ganglia and occipital cortex in patients with
idiopathic RBD [53]. Widespread FC disruption and poten-

Decreased FC between right middle prefron-
tal gyrus and right inferior PFC, insula and
precuneus in MSA-CI relative to MSA-CN
patients. Decreased FC between right middle
prefrontal gyrus and fronto-insular cortices
in both MSA-CI and MSA-CN relative to
HC. Also decreased FC with left caudate
and cingulate-occipital cortices in MSA-CI
relative to HC. FC alterations correlated with
global cognitive performances in MSA-CI

Main findings

32 MSA-CI, 29 MSA-CN and 33 HC

Subjects

Seed-based analysis (Right middle prefrontal
gyrus)

Rs-fMRI approach

SMN, sensorimotor network; SN, salience network; inSN, medial SN; [aSN, lateral SN; pRBD, probable RBD; RBD, REM sleep behavior disorder; ROIs, Regions of interest; VH: visual halluci-

Dementia wit Lewy Body; DMN, default mode network; ECN, Executive control network; FC, functional connectivity; FPN, frontoparietal network; HC, healthy controls; HS, hypersexual;
ICA, Independent Component Analysis; LGN, lateral geniculate nucleus; MCI, Mild Cognitive Impairment; MSA, multiple sistem atrophy; PD, Parkinson’s disease; PFC, prefrontal cortex;

Abbreviations: Rs-fMRI, resting-state functional magnetic resonance imaging; AD, Alzheimer’s disease; CI, Cognitive impaired; CN, cognitive normal; DAN, dorsal attentive network; DLB,
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Neuropsychiatric symptoms including depression and
anxiety have a great impact on PD patients’ quality of life,
motor disability and caregiver burden. Their association
with cognitive impairment in PD patients has been already
reported, also suggesting a predictive role for the future
development of dementia [57, 58].

In PD patients with depressive symptoms, previous imag-
ing studies have demonstrated the presence of hypoconnec-
tivity in fronto-temporo-parietal, insular and cerebellar areas
as well as hyperconnectivity in limbic regions, that corre-
lated with symptoms severity and cognitive deficits, particu-
larly executive/attentive, even in the earliest stages [59-66].
Overall, these changes have been proposed to be associated
to the failure of frontal-limbic modulation of cognitive con-
trol, affective processing and emotional regulation [59-66].
Moreover, a disrupted top-down cognitive control over cor-
tico-limbic networks has been hypothesized to be involved in
the onset/maintenance of depression in PD patients [67, 68].

Epidemiological studies have found a higher prevalence
of anxiety symptoms in PD patients with cognitive impair-
ment [57, 58]. Both decreased and increased striato-limbic
and posterior FC was found in PD patients with anxiety cor-
related with severity of anxiety symptoms [58, 63, 69, 70].
Taken together, these findings support the hypothesis that
decreased top-down emotion regulation, limbic-prefrontal
disconnection and abnormal cognitive control may represent
potential pathophysiological mechanisms underlying neu-
ropsychiatric symptoms in PD that may potentially lead to
the development of cognitive impairment over time.

Clinical and neuroimaging evidence support the presence
of a link between cognition and ICD in PD patients [17].
Increased FC within striato-limbic and posterior regions has
been associated with impulsivity in PD patients with ICD
[71-73], potentially linked to increased perception of reward
stimuli and internally-oriented ruminating compulsion. Sim-
ilarly, decreased FC within the fronto-striatal network has
been associated with stronger impulsivity and weaker behav-
ioural control on decision making, leading to risky or inap-
propriate actions [71-74]. These findings support the cru-
cial role of cognitive functioning to maintain efficient risk/
benefit evaluation and decision-making, which may explain
the presence of FC changes over cognitive-related regions.

Finally, VHs are common nonmotor symptoms in PD,
regarding up to 40% of patients [75, 76]. Their presence
is commonly linked to a higher risk of cognitive decline
and dementia over time [77]. In PD patients with VHs, pre-
vious rs-fMRI studies have demonstrated the presence of
decreased FC within temporo-occipital areas and thalamic-
visual network as well as increased FC in VN and between
thalamus and frontal areas. Overall, these data suggest
that altered integration of high order visual and cognitive
processing may underlie the development of VHs in these
patients [78-80].

No differences were found between groups

Main findings

27 DLB, 26 AD and 99 HC

Subjects

ICA-based analysis (posterior DMN) and
whole brain ROI-to-ROIs analysis

Rs-fMRI approach

Dep, depression; DAN, dorsal attentive network; DLB, Dementia wit Lewy Body; DMN, default mode network; aDMN, anterior DMN; ip DMN, posterior superior DMN; spDMN, superior pos-
terior DMN; ECN, Executive control network; FC, functional connectivity; FPN, frontoparietal network; HC, healthy controls; HS, hypersexual; ICA, Independent Component Analysis; LGN,

lateral geniculate nucleus; MCI, Mild Cognitive Impairment; PD, Parkinson’s disease; PFC, prefrontal cortex; SMN, sensorimotor network; SN, salience network; inSN, medial SN; pRBD, prob-

Abbreviations: Rs-fMRI, resting-state functional magnetic resonance imaging; AD, Alzheimer’s disease; AN, attentive network; AUD, auditory network; C: cerebellar; CN, cognitive normal;
able RBD; RBD, REM sleep behavior disorder; ROIs, Regions of interest; VAN, ventral attentive network; VH: visual hallucinations; VN, visual network

Schumacher et al., Brain 2021

Table 2 (continued)

References
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Table 3 Summary of the most updated MRI graph-analysis functional connectivity studies in patients with synucleinopathies

References

Rs-fMRI approach ~ Subjects

Main findings

Hou et al., J Neurol sci 2020

Chen et al., Front Neurosci 2020

Suo et al., Cerebral cortex 2022

Campabadal et al., Neuroimage Clin
2020

Li et al., Front. Neurol 2020

Graph-analysis

Graph-analysis

Graph-analysis

Graph-analysis

Graph-analysis

22 drug-naive PD-MCI, 19 drug-naive

PD-CN and 28 HC

Decreased clustering coefficient, local
efficient and path length, and increased
global coefficient in PD-MCI and
PD-CN relative to HC. Decreased
nodal centralities in SMN, DMN and
the ventral aPFC, and increased nodal
centralities in nodes of the cingulo-
opercular network, occipital network,
and the ventral IPFC in PD-MCI
patients relative to HC. Increased
nodal centrality in the cingulo-opercu-
lar network negatively correlated with
cognitive scores

45 early PD-MCI, 22 early PD-CN and Decreased clustering coefficient and

18 HC

24 PD-MCI, 17 early PD-CN and 24

HC

20 RBD and 25 HC

30 PD-pRBD, 62 PD-no-pRBD and

20 HC

small-world index, increased charac-
teristic path length, increased nodal
centrality in DMN, ECN, VN and
decreased nodal centrality in SMN in
PD-MCI relative to PD-CN and HC

At the global level, decreased clustering
coefficient, global efficiency and local
efficiency, and increased path length in
PD-MCI and PD-CN relative to HC;
path length and global efficiency were
correlated with language alterations
in PD-MCI. At the regional level,
decreased nodal metrics in sensorimo-
tor regions in PD-MCI and PD-CN
relative to HC. Lower intramodular
connectivity in DMN, subcortical-cer-
ebellum loop, and lower intermodular
connectivity between DMN and FPN
in PD-MCI relative to DP-CN corre-
lated with cognitive global scores

Decreased FC strength in temporo-
parietal areas, correlated with mental
processes slowness, and lower nodal
centrality in parietal lobe in RBD
patients relative to HC

Decreased betweenness centrality in
the right dorsolateral superior frontal
gyrus as well as increased nodal
efficiency in the bilateral thalamus cor-
related with RBD severity symptoms,
and increased betweenness centrality
in the insula in PD-pRBD relative
to PD-no-pRBD patients. Increased
nodal efficiency, degree centrality, and
between centrality in fronto-limbic,
subcortical and pareital areas in PD-
pRBD relative to HC. Decreased nodal
clustering coefficient in frontal lobe,
nodal efficiency in parietal/occipital
lobe, nodal centrality in occipital lobe
in PD-pRBD relative to HC

@ Springer
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Table 3 (continued)

References

Rs-fMRI approach Subjects

Main findings

Oltra et al., Scientific Reports 2021

Graph-analysis

27 PD-pRBD, 32 PD-no-pRBD and
30 HC

Decreased FC strength and increased
path length in posterior regions in PD-

Naval-Potro et al., Park related disord
2020

Graph-analysis

Zheng et al., Aging 2020 Graph-analysis

Ge et al., Front Aging Neurosci. 2022 Graph-analysis

Chen et al., Hum Brain Mapp. 2023 Graph-analysis

16 PD-ICD, 20 PD-noICD and 17 HC

24 MSA-C and 20 HC

29 MSA-C and 27 HC

76 MSA-P, 53 PD and 88 HC

pRBD patients relative both to PD-no-
RBD patients and HC, correlated with
worse visuoperceptual, processing
speed and verbal memory functions

Increased local efficiency in SN in PD-
ICD relative to PD-noICD patients
and HC

Decreased local efficiency and weighted
degree in cerebellum, and weighted
degree in vermis 6;

increased betweenness centrality in
dorsolateral PFC and crus 9 of cer-
ebellu in MSA patients relative to HC.
Decreased weighted degree in vermis
6 and increased betweenness centrality
in dorsolateral PFC and crus 9 of cer-
ebellum correlated with MSA severity

Decreased FC between cerebellum
lobues and fronto-parietal areas, and
increased FC between intra-cerebellar
regions, and between cerebellum and
fonto-temporal areas /ACC in MSA-C
patients

Decreased local efficiency in MSA-P
relative to HC, and decreased cluster
coefficient in both groups relative
To HC. Decreased nodal centralities
in fronto-temporal regions in both
MSA-P and PD patients relative to
HC, negatively correlated with disease
severity in the second group

Decreased FC intercerebellar and
cerebellar-DMN in MSA-P relative to
PD patients; decreased FC in the DMN
and BGN in PD relative to MSA-P
patients

Abbreviations: Rs-fMRI, resting-state functional magnetic resonance imaging; C: cerebellar; CN, cognitive normal; DMN, default mode network;
ECN, Executive control network; F'C, functional connectivity; FPN, frontoparietal network; HC, healthy controls; MCI, Mild Cognitive Impair-
ment; MSA, multiple sistem atrophy; MSA-C, cerebellar MSA; MSA-P, parkinsonian MSA; PD, Parkinson’s disease; PFC, prefrontal cortex;
aPFC, anterior prefrontal cortex; [PFC, lateral prefrontal cortex; SMN, sensorimotor network; SN, salience network; pRBD, probable RBD;
RBD, REM sleep behavior disorder; VAN, ventral attentive network; VN, visual network

DLB

DLB is the primary diagnosis of approximately 5% of
patients with dementia [81]. Clinically, patients with DLB
present with dementia which may be variously associated
with hallucinations, cognitive fluctuations, parkinsonism,
and RBD.

In the last 3 years, only a few studies have been pub-
lished that investigated the potential FC changes associated
to DLB, also reporting controversial results with respect to
previous evidence [81, 82].

Two studies reported a similar pattern of FC altera-
tions within the posterior DMN in DLB and AD patients
compared to HC, even in the absence of clinical overt
dementia [83, 84]. When compared to HC, PDD and AD
patients, DLB patients showed disrupted FC within the
DMN (mainly the anterior portion), FPN, SN, SMN, VAN
as well as within striato-frontal, striato-temporal, striato-
occipital, temporo-occipital and parieto-occipital areas
and cerebellar regions [81, 82, 85-91]. Moreover, the pres-
ence of functional decoupling within the most reported
neurocognitive networks has also been reported [81, 82,

@ Springer
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85-91]. Overall, a mismatch between the bottom-up inputs
from the visual network and the top-down processing of
visual stimuli from the prefrontal areas has been proposed
to underlie the development of DLB core symptoms [81,
82]. On the other hand, other studies reported increased
FC within the DMN (mainly the posterior portion), the
VAN as well as between basal ganglia and posterior cor-
tices, fronto-parietal and visuoperceptual areas in DLB
patients relative to HC and AD [81, 86, 90], that have been
hypothesized to exert a potential compensatory role.

MSA

MSA is a rare synucleinopathy characterized primarily by
the presence of autonomic dysfunction associated with par-
kinsonian (i.e. MSA parkinsonian variant, MSA-P) or/and
cerebellar (i.e. MSA, cerebellar variant, MSA-C) symptoms
[6, 92]. Moreover, approximately 30% of MSA patients pre-
sents MCI, with executive/attentive, visuospatial and ver-
bal functions being the most impaired cognitive domains
[6]. Most MRI studies in MSA patients have been focused
on brain structural alterations, while a few reports have
explored functional neural correlates in these patients.

Rs-fMRI studies have compared MSA patients with PD
patients and HC, considering the two variants together and
also separately, leading to controversial results. Many studies
demonstrated the presence of disrupted FC within the DMN,
SMN, VN and cerebellar regions, and between the cerebel-
lum and the neurocognitive networks in MSA patients, par-
ticularly in MSA-C, relative to HC and PD patients [93-99].
FC changes within the cerebellum-striato-cortical network
have been also associated with the presence of cognitive
dysfunction in these patients. Interestingly, in patients with
MSA, FC changes within the cerebello-prefrontal network
have been associated with verbal fluency and memory defi-
cits whereas disconnection within the cerebello-limbic/tem-
poral loop has been involved in language and visuospatial
impairment [96, 100].

Functional rearrangements within cognitive-related brain
areas have been found in both MSA clinical phenotypes.
Indeed, an increased FC between the dentate nucleus and
posterior cingulate cortex has been demonstrated in MSA-P
relative to PD patients and HC, while an increased FC
between cerebellar and temporo-parietal regions and within
the ponto-cerebellar network was found in MSA-C patients
relative to HC [93, 95, 99], with a potential compensatory
role.

Finally, increased FC between cerebellum and frontal
areas/anterior cingulate cortex was also reported in MSA
patients and supposed to be related to neuropsychiatric
symptoms such as anxiety and/or depression [95].

@ Springer

Functional MRI Studies in Patients with Tauopathies
(Table 4)

PSP

Among the tauopathies, PSP is a heterogeneous neurode-
generative disorder [8], with several phenotypic variants.
PSP-Richardson’s syndrome (PSP-RS) and PSP parkin-
sonian variant (PSP-P) are the most frequent [8]. Beyond
postural instability and oculomotor dysfunction, the great
majority of PSP patients present also with early cognitive
impairment. Frontal executive and verbal fluency dysfunc-
tion are the most characteristic and early deficits in PSP
patients [8]. However, memory, naming, visuospatial and
social cognition deficits may also develop in these patients
over the disease course [8]. Growing and consistent struc-
tural MRI findings have increased the interest on neuroim-
aging correlates that may support clinical and pathological
features in PSP [8, 101]. However, very little is known
about rs-fMRI neural patterns that may be associated to
the clinical spectrum of cognitive deficits in PSP.

Most studies demonstrated the presence of decreased FC
within the most reported rs-fMRI networks, particularly in
prefrontal areas and basal ganglia, that are associated with
worse cognitive performances. Decreased FC within the
midbrain has also been found and related to worse execu-
tive functions and vertical gaze impairment. Finally, rs-
fMRI alterations within the thalamus and cerebellum have
been also reported in PSP patients [102—109]. Contrarily,
some studies demonstrated the presence of increased FC
within the DMN and the thalamo-cerebello-midbrain path-
way, that correlated with worse cognitive status. Thus, this
pattern could potentially underlie the presence of mala-
daptive FC between these areas, that eventually exert a
detrimental effect on cognitive processing.

The presence of FC changes within the neurocognitive
networks was also recently investigated in studies compar-
ing PSP-RS and PSP-P patients, with PSP-RS showing more
diffuse alterations within the DMN, SN, FPN networks as
well as motor, limbic, cerebellar, occipito-temporal and tha-
lamic areas potentially linked to increased neuropathological
changes [108, 110].

CBD/FTD

CBD is arare and progressive tauopathy with different clini-
cal presentations [9, 111]. The most common presentation
of CBD is the corticobasal syndrome (CBS). Together with
parkinsonian symptoms, CBS patients present with altered
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high cortical functioning and behavioral changes [9]. To
date, rs-fMRI evidence in these patients is scarce.

Decreased FC between thalamus and fronto-striatal and
cerebellar regions as well as between lateral VN and auditory
networks were found in CBS patients relative to HC [106,
109]. Decreased FC within the cortico-subcortical-thalamic
network may reflect the presence of specific neuropathologi-
cal changes in these regions, that may in turn explain the
presence of parkinsonian signs/symptoms. Similarly, the func-
tional disconnection between auditory and visual networks
may be related to altered high order multisensory inputs inte-
gration that may be related to the presence of cortical signs/
symptoms in CBS patients [106, 109, 111]. On the other hand,
an increased FC has been demonstrated in CBS patients rela-
tive to HC within the DMN, SMN, ECN, cerebellar, fronto-
cerebellar and insular networks, and have been supposed to be
linked to altered motor planning-preparation and executive/
emotional control on movements [106, 109, 111, 112].

To the best of our knowledge, only one study has explored
rs-fMRI changes in patients with Fronto-temporal dementia
and parkinsonism (FTD-P), demonstrating the presence of
decreased FC between the striatum and the supplementary
motor area compared to HC, potentially responsible for fail-
ure in cognitive and motor processing in these patients [113].

Conclusion

This review resumes the most updated findings of rs-fMRI
studies in patients with Parkinsonisms and related dementia.

Overall, in patients with Parkinsonisms and cognitive
impairment, both synucleinopathies and tauopathies, aber-
rant increased and/or decreased FC alterations within the
most reported neurocognitive networks have been found,
further supporting a potential role for rs-fMRI as a surrogate
biomarker of cognitive outcome.

Interestingly, FC changes within cognitive-related areas
have been also found in PD patients with specific nonmotor
symptoms which are known to be associated with high risk
of dementia, even in the absence of cognitive impairment.
This could potentially support the identification of early neu-
ral correlates that may be used to predict future conversion
to dementia in PD patients.

While consistent results have been collected in patients
with PD, a more intricate scenario emerged in other Parkin-
sonisms, with some studies showing also conflicting find-
ings. More complex neuropathological patterns, also includ-
ing the coexistence of different types of protein aggregates,
as well as heterogenous clinical presentations compared to
PD, may potentially explain this issue, still limiting the use
of rs-fMRI as a reliable tool to help clinicians in the dif-
ferential diagnosis.
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