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Abstract
Purpose of the Review In this review, we attempt to summarize the most updated studies that applied resting-state functional 
magnetic resonance imaging (rs-fMRI) in the field of Parkinsonisms and related dementia.
Recent Findings Over the past decades, increasing interest has emerged on investigating the presence and pathophysiol-
ogy of cognitive symptoms in Parkinsonisms and their possible role as predictive biomarkers of neurodegenerative brain 
processes. In recent years, evidence has been provided, applying mainly three methodological approaches (i.e. seed-based, 
network-based and graph-analysis) on rs-fMRI data, with promising results.
Summary Neural correlates of cognitive impairment and dementia have been detected in patients with Parkinsonisms along 
the diseases course. Interestingly, early functional connectivity signatures were proposed to track and predict future progres-
sion of neurodegenerative processes. However, longitudinal studies are still sparce and further investigations are needed to 
overcome this knowledge gap.
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Introduction

Cognitive impairment has been increasingly identified as 
a relevant condition for the majority of patients with Par-
kinsonism, potentially presenting from the earliest disease 
phases to the advanced stages [1].

Parkinsonisms are heterogeneous neurodegenerative dis-
orders characterised by clinical parkinsonian features that 
may be differently associated with other motor and nonmo-
tor symptoms [2]. The deposition of aggregated proteins 
into intracellular inclusion bodies is a common neuropatho-
logical denominator for these disorders, with pathological 

changes typically spreading into the brain over specific ana-
tomical patterns that are characteristic for each disease.

Tau and α-synuclein are the most abundant proteins that 
may be found in pathological aggregates occurring typically 
in the presynaptic and axonal portion of neurons, but also 
in glial cells [1, 2].

Abnormal aggregates of α-synuclein, such as Lewy bod-
ies (LB) and Lewy neurites have been indeed implicated in 
the pathophysiology of Parkinson’s disease (PD), Demen-
tia with Lewy bodies (DLB) and Multiple systems atrophy 
(MSA), thereby leading to the umbrella term of synucle-
inopathies [1, 2].

Similarly, tauopathies are neurodegenerative disorders 
characterized by the deposition of abnormal tau protein in 
both neurons and glial cells, such as progressive supranu-
clear palsy (PSP), corticobasal degeneration (CBD) and 
frontotemporal lobar degeneration with tauopathy (FTLD-
Tau) [1, 2].

However, the watershed behind this classification is 
blurred and mixed pathological forms have been recognized 
[3]. Similarly, overlapping clinical manifestations between 
synucleinopathies and tauopathies make the differential 
diagnosis challenging in the spectrum of neurodegenerative 
diseases [2, 3].
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Cognitive impairment is common and heterogenous in 
PD, often extending as a continuum from subjective cogni-
tive impairment to mild cognitive impairment (MCI) and 
dementia (PDD) [4].

The early pattern of PD-related cognitive dysfunction 
mainly involves executive and attentive/working memory 
domains with a slow progression over time. Memory, 
language and visuospatial impairments usually occur 
later in the disease course and have been associated to an 
increased risk to develop clinical overt dementia [1, 4]. 
This parallels with the “dual syndrome hypothesis”, that 
pictures the dopaminergic failure of frontostriatal connec-
tions as occurring early in the disease, leading to execu-
tive deficits with mild progression over time, whereas the 
involvement of the cholinergic system could determine a 
more “posterior” cognitive dysfunction, with higher risk 
to convert into dementia [1, 4].

Interestingly, along with motor (i.e. postural and gait 
disturbances) and demographic features (i.e. male sex, 
older age at onset), the presence of specific nonmotor 
symptoms (i.e. REM sleep behavioural disorders, neu-
ropsychiatric symptoms, autonomic dysfunction) has been 
suggested to increase the risk of developing dementia in 
PD [1, 4].

While cognitive impairment in PD occurs usually later 
in the disease course with respect to motor symptoms, DLB 
should be diagnosed when dementia occurs before or con-
currently with parkinsonism, with prominent hallucinations 
and visuospatial dysfunction [5].

MSA is clinically characterized by a variable combination 
of autonomic dysfunction, levodopa-unresponsive parkin-
sonism, and cerebellar signs [1–3, 6]. Cognitive disturbances 
were previously considered as a non-supporting feature of 
MSA. However, according to more recent findings and 
updated diagnostic criteria, cognitive symptoms have been 
recognized as not uncommon in this disease [7].

Among tauopathies, PSP is a rapidly progressive neuro-
degenerative disease with four clinical cornerstones such as 
ocular motor dysfunction, postural instability, akinesia and 
cognitive dysfunctions [8]. Cognitive deficits are present up 
to 58% of PSP patients at the disease onset, with an earlier 
presentation in the Richardson’s syndrome than Parkinso-
nian phenotype [1, 8]. Executive, memory and visuospatial 
functions are typically impaired in these patients. [6]

CBD is characterised by cortical and extrapyramidal 
signs. Apraxia, cortical sensory deficits and alien limb 
phenomena are the most common cortical signs, whereas 
asymmetrical parkinsonism, dystonia and myoclonus com-
prise the motor signs [8, 9]. The prevalence of cognitive 
impairment in patients with CBD is 52% at disease onset, 
progressively increasing up to 70% over the disease course, 
with language as well as visuospatial dysfunctions being the 
most frequent clinical syndromes [8, 9].

Neuroimaging methods have greatly improved the ability 
to understand the pathophysiology of Parkinsonisms, sup-
port the diagnosis of parkinsonian syndromes, and detect 
and monitor disease progression [10]. Among different tech-
niques, resting-state functional magnetic resonance imaging 
(rs-fMRI) has been widely applied to this purpose in patients 
with Parkinsonisms.

Rs-fMRI is based on the spontaneous oscillation of the 
blood oxygen level dependent (BOLD) signals [11, 12], that 
derive from the processing of neuronal information at the 
synaptic level in specific brain areas according to the para-
magnetic properties of blood [11–14]. The temporal coher-
ence of neuronal firing patterns from different brain areas 
represents the so-called functional connectivity (FC) [11]. 
Different analytic approach may be applied to rs-fMRI data, 
such as seed-based FC, network-based independent compo-
nent analysis and graph theory [12].

Seed-based analysis determines the FC patterns as emerg-
ing from a predefined seed or region of interest (ROI) to 
the whole-brain voxels or other seeds/ROIs voxels [11–14].

Independent component analysis is a data-driven method 
that can be applied to rs-fMRI data to isolate large-scale spa-
tially distributed FC networks, called resting-state networks 
(RSNs). This method does not necessarily need a previous 
assumption [11–14].

Finally, graph analysis measures and techniques have 
been used to understand the global topological organization 
of brain networks. By applying this approach to rs-fMRI 
data, anatomic brain regions are considered to be nodes, 
linked by edges, which represent the FC between nodes 
[11–14]. Such wiring diagram of the brain is called con-
nectome and support an efficient global integration between 
high-specialized segregated areas. Interestingly, it has been 
proposed that the connectome architecture could play a 
direct role in spreading misfolded proteins across the brain, 
also explaining the stereotypical patterns of neurodegenera-
tion [15].

In this narrative review, we aimed at summarizing the 
most updated studies that applied rs-fMRI to investigate the 
neural correlates of cognitive impairment in patients with 
tau and α-synuclein-based Parkinsonisms.

Search Strategy

Articles published in on PubMed in the last 3 years until 
August 2023 were systematically checked for the purpose 
of this review, considering only English-written articles 
published in peer-reviewed journals, with the use of the fol-
lowing words: “Parkinson’s disease”, “Lewy body demen-
tia”, “Multiple system atrophy”, “Progressive supranuclear 
palsy”, “Corticobasal degeneration”, which were each cross-
referenced with “resting state functional magnetic resonance 
imaging”.



463Current Neurology and Neuroscience Reports (2024) 24:461–477 

Two independent observers (NP and RDM) evaluated the 
results, excluding duplicates and articles judged irrelevant 
by title and abstract screening. The same raters performed 
the quality check of selected studies and the most relevant 
ones for the topic were finally included in this narrative 
review (Tables 1, 2 and 3).

Functional MRI Studies in Patients 
with Synucleinopathies (Tables 1, 2 and 3)

PD and PDD

Heterogeneous patterns of rs-fMRI FC alterations were 
found to be associated to PD-related cognitive impairment. 
This may be potentially due to the inclusion of small sam-
ples, patients at different disease stages and/or in different 
medication states, and to the application of various fMRI 
approaches [16–18]. In the last three years, several studies 
have been performed in patients with PD-MCI, sometimes 
leading to conflicting results [17, 19]. A few studies have 
been performed in patients with PDD.

The most reported large-scale RSN associated with cog-
nition in PD is the default-mode network (DMN) [17, 19], 
mainly involved in self-centered mental imagery, mind-
wandering and episodic memory retrieval. Several studies 
reported the presence of decreased FC within the DMN as 
associated with cognitive processing deterioration in PD 
[17–19]. Recent findings have confirmed these results show-
ing that decreased FC in DMN is correlated with episodic 
memory/working memory, executive/attentive or altered 
information processing speed, visuospatial dysfunctions 
and worse general cognition [20–23]. A similar pattern of 
DMN involvement, particularly its posterior hubs, has been 
found also in early and/or drug-naive PD-MCI patients and 
in the absence of grey matter atrophy [20–23], suggesting 
that FC rearrangements within this network may reflect the 
presence of pathological processes (i.e. as misfolded pro-
tein accumulation) that not directly lead to neuronal death 
but may induce synaptic activity disturbances, which have 
been correlated with rs-fMRI signal strength [13]. These 
correlates may be detected early in the disease and may be 
potentially tested as biomarkers to monitor disease progres-
sion and treatment-response.

On the other hand, also increased FC within DMN has 
been reported in PD-MCI patients and in cognitive normal 
patients (PD-CN) in advanced stages [24, 25].

Even though decreased FC may be straightforward asso-
ciated to loss of neural function, it is important to note that 
“hyper-connectivity” has also pathologic implications. 
Indeed, increased FC may be compensatory, representing 
a network response to the local neuronal injury that allows 
for the maintenance of the same global performance in non-
demented PD patients to delay the development of clinical 

overt dementia. Moreover, what we see as “hyper-con-
nected” may be underlined by the loss of networks dynamic 
properties to shift between different states (i.e. from a 
“hyper- “ to a “hypo-connected” state), which has been also 
related to the presence of cognitive impairment in PD [26].

This is in line with the finding of decreasing FC within 
the DMN over 3 years of follow-up in PD patients, along 
with progressive cognitive decline [27].

Together with DMN, other relevant RSNs such as the 
frontoparietal (FPN), dorsal and ventral attention (DAN/
VAN), salience (SN), executive-control (ECN) and visual 
(VN) networks, have been studied to investigate the potential 
association with cognitive impairment in PD.

The FPN is mainly involved in decision making and 
executive functioning. Decreased FC within this network 
has been consistently found in PD-MCI patients, also asso-
ciated with progressive visuospatial, memory and attention 
dysfunctions [28–33].

The DAN plays a key-role in the top-down processes to 
control voluntary movements while the VAN is involved in 
the bottom-up detection of relevant stimuli [19]. Decreased 
FC has been revealed within both DAN and VAN as asso-
ciated with impaired attention and executive functioning, 
suggesting the presence of altered high cognitive control in 
PD-MCI [29, 32, 34, 35].

Two recent studies have focused the amnestic (aMCI) and 
non-amnestic (naMCI) subtypes of PD-related MCI, show-
ing divergent findings. Indeed, Chung and colleagues [29] 
performed a multimodal MRI study and found increased FC 
within the SN in PD-aMCI compared to PD-naMCI patients. 
Interestingly, in a longitudinal sub-cohort of PD, patients 
with PD-aMCI patients exhibited a higher risk of conversion 
to dementia compared to PD-naMCI. Conversely, Kawabata 
et al. revealed the presences of DMN changes characterising 
PD patients with aMCI from healthy controls (HC), while 
VN and cerebellar-brainstem network was found to be spe-
cifically altered in naMCI [36]. These conflicting results may 
stem from the inclusion of different PD samples along with 
the application of heterogenous diagnostic criteria and meth-
odological rs-fMRI approaches. Nonetheless, these findings 
support previous evidence of different cognitive syndromes 
in PD patients [1, 4] that may not include an Alzheimer’s 
disease (AD)-like phenotype [37], determining a slower but 
progressive multidomain deterioration of the brain efficiency 
and functioning that might eventually lead to dementia [38].

Beyond FC alterations within each network, the interac-
tion between different RSNs has been found to be associated 
with cognitive impairment in PD patients [17, 20, 28, 34, 
39, 40]. Overall, a functional coupling/decoupling patterns 
have been reported between the RSNs, with specific direc-
tions that seem critical to generate and maintain an efficient 
behavioral and cognitive performance, with several evidence 
in PD patients [17, 20, 28, 34, 39–42].



464 Current Neurology and Neuroscience Reports (2024) 24:461–477

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 th
e 

m
os

t u
pd

at
ed

 M
R

I s
ee

d-
ba

se
d 

fu
nc

tio
na

l c
on

ne
ct

iv
ity

 st
ud

ie
s i

n 
pa

tie
nt

s w
ith

 sy
nu

cl
ei

no
pa

th
ie

s

Re
fe

re
nc

es
R

s-
fM

R
I a

pp
ro

ac
h

Su
bj

ec
ts

M
ai

n 
fin

di
ng

s

H
ou

 e
t a

l.,
 N

eu
ro

ra
di

ol
og

y 
20

20
Se

ed
-b

as
ed

 a
na

ly
si

s (
D

M
N

 R
O

Is
)

28
 d

ru
g-

na
ïv

e 
PD

-M
C

I, 
19

 d
ru

g-
na

ïv
e 

PD
-C

N
 

an
d 

28
 H

C
Re

du
ce

d 
FC

 in
 th

e 
do

rs
om

ed
ia

l P
FC

, i
n 

te
m

po
-

ro
pa

rie
ta

l j
un

ct
io

n,
 a

nd
 b

et
w

ee
n 

do
rs

om
ed

ia
l 

PF
C

 a
nd

 P
C

C
 in

 P
D

-M
C

I r
el

at
iv

e 
to

 H
C

C
as

co
ne

 e
t a

l.,
 C

om
m

un
 B

io
l 2

02
1

Se
ed

-b
as

ed
 a

na
ly

si
s (

FP
N

 R
O

Is
)

37
 P

D
-M

C
I, 

22
 P

D
-C

N
 a

nd
 2

1 
H

C
Re

du
ce

d 
to

po
lo

gi
ca

l b
ra

in
-n

et
w

or
k 

re
si

lie
nc

e 
of

 F
PN

 in
 P

D
-M

C
I p

at
ie

nt
s a

ss
oc

ia
te

d 
w

ith
 

co
gn

iti
ve

 d
ec

lin
e

Ru
pp

er
t e

t a
l.,

 H
um

 B
ra

in
 M

ap
p 

20
21

IC
A

- a
nd

 se
ed

-b
as

ed
 a

na
ly

si
s (

D
M

N
, F

PN
, 

D
A

N
, S

M
N

, V
N

)
12

 P
D

-M
C

I, 
36

 P
D

-C
N

 a
nd

 1
6 

H
C

In
cr

ea
se

d 
D

M
N

 c
on

ne
ct

iv
ity

 in
 P

D
-M

C
I 

co
m

pa
re

d 
bo

th
 to

 P
D

-C
N

 a
nd

 H
C

. F
C

 w
ith

in
 

D
M

N
 c

or
re

la
te

d 
w

ith
 g

lo
ba

l c
og

ni
tiv

e,
 e

xe
cu

-
tiv

e,
 a

tte
nt

iv
e 

an
d 

vi
su

os
pa

tia
l f

un
ct

io
ns

 in
 

PD
-M

C
I

W
an

g 
et

 a
l.,

 In
t J

 G
en

 M
ed

. 2
02

1
Se

ed
-b

as
ed

 a
na

ly
si

s (
PC

C
 a

s D
M

N
 R

O
I)

20
 P

D
-M

C
I, 

13
 P

D
-C

N
 a

nd
 1

3 
H

C
D

ec
re

as
ed

 F
C

 in
 P

C
C

 in
 P

D
-M

C
I p

at
ie

nt
s 

re
la

tiv
e 

to
 H

C
, c

or
re

la
te

d 
w

ith
 w

or
se

 p
er

-
fo

rm
an

ce
s i

nf
or

m
at

io
n 

pr
oc

es
si

ng
 sp

ee
d,

 
ep

is
od

ic
 m

em
or

y 
an

d 
ge

ne
ra

l c
og

ni
tio

n
C

he
n 

et
 a

l.,
 F

ro
nt

 N
eu

ro
sc

i 2
02

2
Se

ed
-b

as
ed

 a
na

ly
si

s (
PC

C
 a

s D
M

N
 R

O
I)

50
 P

D
 a

nd
 5

0 
H

C
In

cr
ea

se
d 

FC
 b

et
w

ee
n 

th
e 

PC
C

 a
nd

 th
e 

rig
ht

 
pr

ec
un

eu
s, 

le
ft 

cu
ne

us
, a

nd
 ri

gh
t a

ng
ul

ar
 

gy
ru

s i
n 

PD
 p

at
ie

nt
s r

el
at

iv
e 

to
 H

C
 su

pp
os

ed
 

to
 b

e 
re

sp
on

si
bl

e 
fo

r c
og

ni
tiv

e 
de

cl
in

e
B

yu
n 

et
 a

l.,
 S

le
ep

 M
ed

 2
02

0
Se

ed
-b

as
ed

 a
na

ly
si

s (
th

al
am

us
)

37
 R

B
D

 a
nd

 1
5 

H
C

In
cr

ea
se

d 
FC

 b
et

w
ee

n 
th

al
am

us
 a

nd
 o

cc
ip

ita
l 

re
gi

on
s i

n 
R

B
D

 p
at

ie
nt

s r
el

at
iv

e 
to

 H
C

, c
or

re
-

la
te

d 
w

ith
 c

og
ni

tiv
e 

dy
sf

un
ct

io
ns

, p
ar

tic
ul

ar
ly

 
m

em
or

y
W

ak
as

ug
i e

t a
l.,

 P
ar

ki
ns

on
is

m
 R

el
at

 D
is

or
d 

20
21

IC
A

- a
nd

 se
ed

-b
as

ed
 a

na
ly

si
s (

D
M

N
, E

C
N

, 
SM

N
, B

G
N

)
50

 R
B

D
 a

nd
 7

0 
H

C
D

ec
re

as
ed

 F
C

 in
 E

C
N

 (f
ro

nt
o-

str
ia

ta
l),

 S
M

N
 

(p
re

 a
nd

 p
os

t-c
en

tra
l r

eg
io

ns
) a

nd
 B

G
N

 in
 

R
B

D
 p

at
ie

nt
s r

el
at

iv
e 

to
 H

C
Jia

 e
t a

l.,
 F

ro
nt

 A
gi

ng
 N

eu
ro

sc
i 2

02
2

Se
ed

-b
as

ed
 a

na
ly

si
s (

PC
C

 a
s D

M
N

 R
O

I)
18

 P
D

-p
R

B
D

, 2
8 

PD
-n

o-
pR

B
D

 a
nd

 2
2 

H
C

D
ec

re
as

ed
 F

C
 in

 fr
on

ta
l r

eg
io

ns
 in

 P
D

-p
R

B
D

 
pa

tie
nt

s, 
co

rr
el

at
ed

 w
ith

 e
xe

cu
tiv

e 
dy

sf
un

c-
tio

ns
 th

at
 g

et
 w

or
se

 o
ve

r 3
 y

ea
rs

 o
f f

ol
lo

w
-u

p
H

ua
ng

 e
t a

l.,
 F

ro
nt

 P
sy

ch
ia

try
 2

02
0

Se
ed

-b
as

ed
 a

na
ly

si
s (

an
te

rio
r/p

os
te

rio
r i

ns
ul

a)
17

 P
D

-D
ep

, 1
7 

PD
-n

oD
ep

 a
nd

 1
7 

H
C

D
ec

re
as

ed
 F

C
 b

et
w

ee
n 

in
su

la
 a

nd
 fr

on
to

-
pa

rie
ta

l r
eg

io
ns

 in
 P

D
-D

ep
 p

at
ie

nt
s r

el
at

iv
e 

to
 

PD
-n

oD
ep

 p
at

ie
nt

s a
nd

 H
C

, c
or

re
la

te
d 

w
ith

 
w

or
se

 g
lo

ba
l c

og
ni

tiv
e 

fu
nc

tio
ns

Li
ao

 e
t a

l.,
 F

ro
nt

 N
eu

ro
sc

i. 
20

20
 (d

a 
co

n-
tro

la
re

)
Se

ed
-b

as
ed

 a
na

ly
si

s (
pr

ec
en

tra
l, 

pa
ra

ce
nt

ra
l 

an
d 

m
ed

ia
l f

ro
nt

al
 g

yr
i)

33
 P

D
-D

ep
, 6

0 
PD

-n
oD

ep
 a

nd
 4

7 
H

C
D

ec
re

as
ed

 F
C

 b
et

w
ee

n 
RO

Is
 a

nd
 te

m
po

ro
-

oc
ci

pi
ta

l r
eg

io
ns

 a
nd

 a
s w

el
l a

s b
et

w
ee

n 
pr

ec
en

tra
l /

m
ed

ia
l f

ro
nt

ra
l g

yr
i a

nd
 S

M
A

 
in

 P
D

-D
ep

 p
at

ie
nt

s r
el

at
iv

e 
to

 P
D

-n
oD

ep
 

pa
tie

nt
s a

nd
 H

C
Y

in
 e

t a
l.,

 F
ro

nt
 A

gi
ng

 N
eu

ro
sc

i 2
02

2
Se

ed
-b

as
ed

 a
na

ly
si

s
30

 P
D

-D
ep

 (m
in

or
), 

32
 P

D
-D

ep
 (m

aj
or

), 
26

 
PD

-n
oD

ep
 a

nd
 3

0 
H

C
D

ec
re

as
ed

 F
C

 b
et

w
ee

n 
te

m
po

ra
l a

nd
 c

er
eb

el
-

la
r r

eg
io

ns
 a

s w
el

l a
s i

n 
fro

nt
o-

in
su

la
r l

oo
p 

in
 P

D
-D

ep
 (m

aj
or

) r
el

at
iv

e 
to

 P
D

-n
oD

ep
 

pa
tie

nt
s, 

co
rr

el
at

ed
 w

ith
 w

or
se

 d
ep

re
ss

iv
e 

sy
m

pt
om

s



465Current Neurology and Neuroscience Reports (2024) 24:461–477 

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
R

s-
fM

R
I a

pp
ro

ac
h

Su
bj

ec
ts

M
ai

n 
fin

di
ng

s

C
he

n 
et

 a
l.,

 H
el

iy
on

 2
02

3
Se

ed
-b

as
ed

 a
na

ly
si

s (
am

yg
da

la
)

13
 P

D
-A

nx
 2

0 
PD

-n
oA

nx
, a

nd
 1

9 
H

C
D

ec
re

as
ed

 F
C

 b
et

w
ee

n 
am

yg
da

la
 a

nd
 h

ip
-

po
ca

m
pu

s, 
co

rr
el

at
ed

 w
ith

 a
nx

ie
ty

 se
ve

rit
y 

sy
m

pt
om

s, 
as

 w
el

l a
s i

nc
re

as
ed

 F
C

 b
et

w
ee

n 
th

e 
am

yg
da

la
 a

nd
 p

ar
ie

ta
l a

re
as

 in
 P

D
-A

nx
 

re
la

tiv
e 

to
 P

D
-n

oA
nx

 p
at

ie
nt

s. 
Re

du
ce

d 
FC

 
be

tw
ee

n 
am

yg
da

la
 a

nd
 p

ut
am

en
 in

 P
D

-A
nx

 
pa

tie
nt

s r
el

at
iv

e 
to

 H
C

M
at

a-
m

ar
in

 e
t a

l.,
 B

ra
in

 C
on

ne
ct

 2
02

1
IC

A
-b

as
ed

 a
na

ly
si

s (
D

M
N

, S
M

N
, E

C
N

 a
nd

 
SN

) a
nd

 se
ed

-b
as

ed
 a

na
ly

si
s (

m
ot

or
, a

ss
o-

ci
at

iv
e,

 a
nd

 li
m

bi
c 

str
ia

tu
m

)

17
 P

D
-H

S 
+

 , 1
5 

PD
-H

S-
 a

nd
 1

7 
H

C
In

cr
ea

se
d 

FC
 in

 S
N

 a
nd

 d
is

co
nn

ec
tio

n 
be

tw
ee

n 
as

so
ci

at
iv

e 
an

d 
lim

bi
c 

str
ia

tu
m

 w
ith

 p
re

cu
-

ne
us

 a
nd

 su
pe

rio
r p

ar
ie

ta
l l

ob
e 

in
 P

D
-H

S 
+

 
D

uj
ar

di
n 

et
 a

l.,
 B

ra
in

 Im
ag

in
g 

B
eh

av
. 2

02
0

IC
A

- a
nd

 se
ed

-b
as

ed
 a

na
ly

si
s (

V
N

 a
nd

 D
M

N
)

9 
PD

-V
H

In
cr

ea
se

d 
FC

 in
 V

N
. I

nc
re

as
ed

 st
ab

ili
ty

 in
 

D
M

N
 c

or
re

la
te

d 
w

ith
 V

H
 se

ve
rit

y
Th

om
as

 e
t a

l.,
 B

ra
in

 C
om

m
un

. 2
02

3
IC

A
- a

nd
 se

ed
-b

as
ed

 a
na

ly
si

s (
LG

N
, m

ed
ia

l 
th

al
am

us
, p

rim
ar

y 
vi

su
al

 c
or

te
x,

 h
ip

po
ca

m
-

pu
s a

nd
 P

FC
 a

s R
O

Is
 fo

r V
N

)

15
 P

D
-V

H
 a

nd
 7

5 
PD

-n
o-

V
H

D
ec

re
as

ed
 b

ot
to

m
-u

p 
FC

 fr
om

 b
ila

te
ra

l L
G

N
 

to
 p

rim
ar

y 
vi

su
al

 c
or

te
x;

 a
nd

, i
nc

re
as

ed
 

to
p-

do
w

n 
FC

 fr
om

 le
ft 

PF
C

 to
 p

rim
ar

y 
vi

su
al

 
co

rte
x 

an
d 

m
ed

ia
l t

ha
la

m
us

 in
 P

D
-V

H
 re

la
tiv

e 
to

 P
D

-n
o-

V
H

 p
at

ie
nt

s
C

ha
br

an
 e

t a
l.,

 A
lz

he
im

er
s R

es
 T

he
r 2

02
0

Se
ed

-b
as

ed
 a

na
ly

si
s (

ke
y 

no
de

s a
s R

O
Is

 fo
r 

D
M

N
, S

N
, F

PN
 a

nd
 D

A
N

)
92

 D
LB

, 7
0 

A
D

, a
nd

 2
2 

H
C

D
ec

re
as

ed
 F

C
 w

ith
in

 S
N

 a
nd

 F
PN

 (f
ro

nt
-p

ar
i-

et
al

 R
O

Is
), 

an
d 

be
tw

ee
n 

FP
N

-D
A

N
; i

nc
re

as
ed

 
FC

 w
ith

in
 D

M
N

 (m
ed

ia
l P

FC
), 

SN
 (r

os
tra

l 
PF

C
) a

nd
 F

PN
 (l

at
er

al
 P

FC
) i

n 
LB

D
 p

at
ie

nt
s 

re
la

tiv
e 

to
 H

C
D

ec
re

as
ed

 F
C

 w
ith

in
 S

N
 a

nd
 D

M
N

, a
nd

 
in

cr
ea

se
d 

FC
 b

et
w

ee
n 

D
M

N
-S

N
 in

 A
D

 
pa

tie
nt

s r
el

at
iv

e 
to

 H
C

D
ec

re
as

ed
 F

C
 w

ith
in

 S
N

 (f
ro

nt
o-

in
su

la
r)

 a
nd

 
be

tw
ee

n 
SN

-D
A

N
, S

N
-F

PN
, S

N
-D

M
N

, a
nd

 
in

cr
ea

se
d 

FC
 w

ith
in

 D
M

N
 (p

ar
ie

ta
l/P

C
C

) a
nd

 
be

tw
ee

n 
FP

N
-D

A
N

 in
 L

B
D

 re
la

tiv
e 

to
 A

D
 

pa
tie

nt
s

Th
e 

se
ve

rit
y 

of
 fl

uc
tu

at
io

ns
 in

 D
LB

 p
at

ie
nt

s 
po

si
tiv

el
y 

co
rr

el
at

ed
 w

ith
 F

C
 b

et
w

ee
n 

SN
-

D
A

N
, a

nd
 n

eg
at

iv
el

y 
co

rr
el

at
ed

 w
ith

 F
C

 
be

tw
ee

n 
SN

-D
M

N
 a

nd
 b

et
w

ee
n 

FP
N

-D
M

N
Sc

hu
m

ac
he

r e
t a

l.,
 B

ra
in

 2
02

1
IC

A
-b

as
ed

 a
na

ly
si

s (
po

ste
rio

r D
M

N
) a

nd
 

w
ho

le
 b

ra
in

 R
O

I-
to

-R
O

Is
 a

na
ly

si
s

27
 D

LB
, 2

6 
A

D
 a

nd
 9

9 
H

C
N

o 
di

ffe
re

nc
es

 w
er

e 
fo

un
d 

be
tw

ee
n 

gr
ou

ps



466 Current Neurology and Neuroscience Reports (2024) 24:461–477

Graph-analysis MRI studies also provided intriguing 
findings to support the pathophysiology of PD-related 
cognitive dysfunction. Overall, altered connectomic met-
rics within the DMN, FPN and VN have been found to be 
associated with cognitive impairment in PD patients, sug-
gesting the presence of both local and global information 
processing changes of the brain architecture [24, 30, 43, 
44]. Indeed, a progressive shift from a global integrated to 
a small-world highly segregated organisation has been pro-
posed to determine the development of MCI in PD. This 
would allow PD-MCI patients to confine affected nodes 
which are direct targets of early degenerative processes, 
while potentiating still-functioning networks to maintain 
an efficient brain functioning at a clinical level.

Despite the heterogeneity in rs-fMRI methodology, 
compelling evidence suggests the influence of the dopa-
minergic replacement therapy (DRT) on these neural pat-
terns [45, 46]. A recent study [40] in early PD patients 
showed that along with the normalization of FC within 
motor networks, acute levodopa administration also 
enhances FC metrics in nonmotor areas (i.e. frontal and 
limbic regions). Further studies are needed to clarify 
whether this effect may be detrimental for brain function-
ing, likely leading to the development of cognitive and 
behavioural disturbances over time.

The presence of specific nonmotor symptoms, such as 
REM sleep behavioural disorders (RBD), depression, anxi-
ety, impulsive compulsive disorders (ICD) and visual hal-
lucinations (VHs), have been associated with an increased 
risk of dementia in PD patients. Interestingly, rs-fMRI stud-
ies allowed to highlight specific changes over cognitive-
related brain regions and networks in PD patients with these 
symptoms, even in the absence of clinical overt cognitive 
impairment.

RBD is a parasomnia characterized by loss of atonia dur-
ing REM sleep [4, 47]. RBD may present as a prodromal 
symptom of PD, occurring even 10 years before the onset of 
motor features [4, 47], and in the absence of overt signs of 
neurodegeneration (idiopathic RBD). Epidemiological stud-
ies recognized RBD as a risk factor for future development 
of cognitive impairment in PD patients [48, 49]. Previous 
studies have reported decreased FC within striato-frontal 
and temporo-parietal areas [50–52] as well as increased FC 
between basal ganglia and occipital cortex in patients with 
idiopathic RBD [53]. Widespread FC disruption and poten-
tial maladaptive compensatory changes involving mainly 
the dorsolateral prefrontal cortex (PFC) and posterior corti-
cal regions have been found in cognitively unimpaired PD 
patients with RBD, correlated with attention and memory 
cognitive outcomes [52, 54–56]. The presence of such FC 
rearrangements may be tested as a potential future biomarker 
of an early vulnerability to develop dementia [54], as often 
seen in PD patients with RBD.Ta
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Neuropsychiatric symptoms including depression and 
anxiety have a great impact on PD patients’ quality of life, 
motor disability and caregiver burden. Their association 
with cognitive impairment in PD patients has been already 
reported, also suggesting a predictive role for the future 
development of dementia [57, 58].

In PD patients with depressive symptoms, previous imag-
ing studies have demonstrated the presence of hypoconnec-
tivity in fronto-temporo-parietal, insular and cerebellar areas 
as well as hyperconnectivity in limbic regions, that corre-
lated with symptoms severity and cognitive deficits, particu-
larly executive/attentive, even in the earliest stages [59–66]. 
Overall, these changes have been proposed to be associated 
to the failure of frontal-limbic modulation of cognitive con-
trol, affective processing and emotional regulation [59–66]. 
Moreover, a disrupted top-down cognitive control over cor-
tico-limbic networks has been hypothesized to be involved in 
the onset/maintenance of depression in PD patients [67, 68].

Epidemiological studies have found a higher prevalence 
of anxiety symptoms in PD patients with cognitive impair-
ment [57, 58]. Both decreased and increased striato-limbic 
and posterior FC was found in PD patients with anxiety cor-
related with severity of anxiety symptoms [58, 63, 69, 70]. 
Taken together, these findings support the hypothesis that 
decreased top-down emotion regulation, limbic-prefrontal 
disconnection and abnormal cognitive control may represent 
potential pathophysiological mechanisms underlying neu-
ropsychiatric symptoms in PD that may potentially lead to 
the development of cognitive impairment over time.

Clinical and neuroimaging evidence support the presence 
of a link between cognition and ICD in PD patients [17]. 
Increased FC within striato-limbic and posterior regions has 
been associated with impulsivity in PD patients with ICD 
[71–73], potentially linked to increased perception of reward 
stimuli and internally-oriented ruminating compulsion. Sim-
ilarly, decreased FC within the fronto-striatal network has 
been associated with stronger impulsivity and weaker behav-
ioural control on decision making, leading to risky or inap-
propriate actions [71–74]. These findings support the cru-
cial role of cognitive functioning to maintain efficient risk/
benefit evaluation and decision-making, which may explain 
the presence of FC changes over cognitive-related regions.

Finally, VHs are common nonmotor symptoms in PD, 
regarding up to 40% of patients [75, 76]. Their presence 
is commonly linked to a higher risk of cognitive decline 
and dementia over time [77]. In PD patients with VHs, pre-
vious rs-fMRI studies have demonstrated the presence of 
decreased FC within temporo-occipital areas and thalamic-
visual network as well as increased FC in VN and between 
thalamus and frontal areas. Overall, these data suggest 
that altered integration of high order visual and cognitive 
processing may underlie the development of VHs in these 
patients [78–80].Ta
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Table 3  Summary of the most updated MRI graph-analysis functional connectivity studies in patients with synucleinopathies

References Rs-fMRI approach Subjects Main findings

Hou et al., J Neurol sci 2020 Graph-analysis 22 drug-naïve PD-MCI, 19 drug-naïve 
PD-CN and 28 HC

Decreased clustering coefficient, local 
efficient and path length, and increased 
global coefficient in PD-MCI and 
PD-CN relative to HC. Decreased 
nodal centralities in SMN, DMN and 
the ventral aPFC, and increased nodal 
centralities in nodes of the cingulo-
opercular network, occipital network, 
and the ventral lPFC in PD-MCI 
patients relative to HC. Increased 
nodal centrality in the cingulo-opercu-
lar network negatively correlated with 
cognitive scores

Chen et al., Front Neurosci 2020 Graph-analysis 45 early PD-MCI, 22 early PD-CN and 
18 HC

Decreased clustering coefficient and 
small-world index, increased charac-
teristic path length, increased nodal 
centrality in DMN, ECN, VN and 
decreased nodal centrality in SMN in 
PD-MCI relative to PD-CN and HC

Suo et al., Cerebral cortex 2022 Graph-analysis 24 PD-MCI, 17 early PD-CN and 24 
HC

At the global level, decreased clustering 
coefficient, global efficiency and local 
efficiency, and increased path length in 
PD-MCI and PD-CN relative to HC; 
path length and global efficiency were 
correlated with language alterations 
in PD-MCI. At the regional level, 
decreased nodal metrics in sensorimo-
tor regions in PD-MCI and PD-CN 
relative to HC. Lower intramodular 
connectivity in DMN, subcortical-cer-
ebellum loop, and lower intermodular 
connectivity between DMN and FPN 
in PD-MCI relative to DP-CN corre-
lated with cognitive global scores

Campabadal et al., Neuroimage Clin 
2020

Graph-analysis 20 RBD and 25 HC Decreased FC strength in temporo-
parietal areas, correlated with mental 
processes slowness, and lower nodal 
centrality in parietal lobe in RBD 
patients relative to HC

Li et al., Front. Neurol 2020 Graph-analysis 30 PD-pRBD, 62 PD-no-pRBD and 
20 HC

Decreased betweenness centrality in 
the right dorsolateral superior frontal 
gyrus as well as increased nodal 
efficiency in the bilateral thalamus cor-
related with RBD severity symptoms, 
and increased betweenness centrality 
in the insula in PD-pRBD relative 
to PD-no-pRBD patients. Increased 
nodal efficiency, degree centrality, and 
between centrality in fronto-limbic, 
subcortical and pareital areas in PD-
pRBD relative to HC. Decreased nodal 
clustering coefficient in frontal lobe, 
nodal efficiency in parietal/occipital 
lobe, nodal centrality in occipital lobe 
in PD-pRBD relative to HC
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DLB

DLB is the primary diagnosis of approximately 5% of 
patients with dementia [81]. Clinically, patients with DLB 
present with dementia which may be variously associated 
with hallucinations, cognitive fluctuations, parkinsonism, 
and RBD.

In the last 3 years, only a few studies have been pub-
lished that investigated the potential FC changes associated 
to DLB, also reporting controversial results with respect to 
previous evidence [81, 82].

Two studies reported a similar pattern of FC altera-
tions within the posterior DMN in DLB and AD patients 
compared to HC, even in the absence of clinical overt 
dementia [83, 84]. When compared to HC, PDD and AD 
patients, DLB patients showed disrupted FC within the 
DMN (mainly the anterior portion), FPN, SN, SMN, VAN 
as well as within striato-frontal, striato-temporal, striato-
occipital, temporo-occipital and parieto-occipital areas 
and cerebellar regions [81, 82, 85–91]. Moreover, the pres-
ence of functional decoupling within the most reported 
neurocognitive networks has also been reported [81, 82, 

Abbreviations: Rs-fMRI, resting-state functional magnetic resonance imaging; C: cerebellar; CN, cognitive normal; DMN, default mode network; 
ECN, Executive control network; FC, functional connectivity; FPN, frontoparietal network; HC, healthy controls; MCI, Mild Cognitive Impair-
ment; MSA, multiple sistem atrophy; MSA-C, cerebellar MSA; MSA-P, parkinsonian MSA; PD, Parkinson’s disease; PFC, prefrontal cortex; 
aPFC, anterior prefrontal cortex; lPFC, lateral prefrontal cortex; SMN, sensorimotor network; SN, salience network; pRBD, probable RBD; 
RBD, REM sleep behavior disorder; VAN, ventral attentive network; VN, visual network

Table 3  (continued)

References Rs-fMRI approach Subjects Main findings

Oltra et al., Scientific Reports 2021 Graph-analysis 27 PD-pRBD, 32 PD-no-pRBD and 
30 HC

Decreased FC strength and increased 
path length in posterior regions in PD-
pRBD patients relative both to PD-no-
RBD patients and HC, correlated with 
worse visuoperceptual, processing 
speed and verbal memory functions

Naval-Potro et al., Park related disord 
2020

Graph-analysis 16 PD-ICD, 20 PD-noICD and 17 HC Increased local efficiency in SN in PD-
ICD relative to PD-noICD patients 
and HC

Zheng et al., Aging 2020 Graph-analysis 24 MSA-C and 20 HC Decreased local efficiency and weighted 
degree in cerebellum, and weighted 
degree in vermis 6;

increased betweenness centrality in 
dorsolateral PFC and crus 9 of cer-
ebellu in MSA patients relative to HC. 
Decreased weighted degree in vermis 
6 and increased betweenness centrality 
in dorsolateral PFC and crus 9 of cer-
ebellum correlated with MSA severity

Ge et al., Front Aging Neurosci. 2022 Graph-analysis 29 MSA-C and 27 HC Decreased FC between cerebellum 
lobues and fronto-parietal areas, and 
increased FC between intra-cerebellar 
regions, and between cerebellum and 
fonto-temporal areas /ACC in MSA-C 
patients

Chen et al., Hum Brain Mapp. 2023 Graph-analysis 76 MSA-P, 53 PD and 88 HC Decreased local efficiency in MSA-P 
relative to HC, and decreased cluster 
coefficient in both groups relative 
To HC. Decreased nodal centralities 
in fronto-temporal regions in both 
MSA-P and PD patients relative to 
HC, negatively correlated with disease 
severity in the second group

Decreased FC intercerebellar and 
cerebellar‐DMN in MSA-P relative to 
PD patients; decreased FC in the DMN 
and BGN in PD relative to MSA-P 
patients
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85–91]. Overall, a mismatch between the bottom-up inputs 
from the visual network and the top-down processing of 
visual stimuli from the prefrontal areas has been proposed 
to underlie the development of DLB core symptoms [81, 
82]. On the other hand, other studies reported increased 
FC within the DMN (mainly the posterior portion), the 
VAN as well as between basal ganglia and posterior cor-
tices, fronto-parietal and visuoperceptual areas in DLB 
patients relative to HC and AD [81, 86, 90], that have been 
hypothesized to exert a potential compensatory role.

MSA

MSA is a rare synucleinopathy characterized primarily by 
the presence of autonomic dysfunction associated with par-
kinsonian (i.e. MSA parkinsonian variant, MSA-P) or/and 
cerebellar (i.e. MSA, cerebellar variant, MSA-C) symptoms 
[6, 92]. Moreover, approximately 30% of MSA patients pre-
sents MCI, with executive/attentive, visuospatial and ver-
bal functions being the most impaired cognitive domains 
[6]. Most MRI studies in MSA patients have been focused 
on brain structural alterations, while a few reports have 
explored functional neural correlates in these patients.

Rs-fMRI studies have compared MSA patients with PD 
patients and HC, considering the two variants together and 
also separately, leading to controversial results. Many studies 
demonstrated the presence of disrupted FC within the DMN, 
SMN, VN and cerebellar regions, and between the cerebel-
lum and the neurocognitive networks in MSA patients, par-
ticularly in MSA-C, relative to HC and PD patients [93–99]. 
FC changes within the cerebellum-striato-cortical network 
have been also associated with the presence of cognitive 
dysfunction in these patients. Interestingly, in patients with 
MSA, FC changes within the cerebello-prefrontal network 
have been associated with verbal fluency and memory defi-
cits whereas disconnection within the cerebello-limbic/tem-
poral loop has been involved in language and visuospatial 
impairment [96, 100].

Functional rearrangements within cognitive-related brain 
areas have been found in both MSA clinical phenotypes. 
Indeed, an increased FC between the dentate nucleus and 
posterior cingulate cortex has been demonstrated in MSA-P 
relative to PD patients and HC, while an increased FC 
between cerebellar and temporo-parietal regions and within 
the ponto-cerebellar network was found in MSA-C patients 
relative to HC [93, 95, 99], with a potential compensatory 
role.

Finally, increased FC between cerebellum and frontal 
areas/anterior cingulate cortex was also reported in MSA 
patients and supposed to be related to neuropsychiatric 
symptoms such as anxiety and/or depression [95].

Functional MRI Studies in Patients with Tauopathies 
(Table 4)

PSP

Among the tauopathies, PSP is a heterogeneous neurode-
generative disorder [8], with several phenotypic variants. 
PSP-Richardson’s syndrome (PSP-RS) and PSP parkin-
sonian variant (PSP-P) are the most frequent [8]. Beyond 
postural instability and oculomotor dysfunction, the great 
majority of PSP patients present also with early cognitive 
impairment. Frontal executive and verbal fluency dysfunc-
tion are the most characteristic and early deficits in PSP 
patients [8]. However, memory, naming, visuospatial and 
social cognition deficits may also develop in these patients 
over the disease course [8]. Growing and consistent struc-
tural MRI findings have increased the interest on neuroim-
aging correlates that may support clinical and pathological 
features in PSP [8, 101]. However, very little is known 
about rs-fMRI neural patterns that may be associated to 
the clinical spectrum of cognitive deficits in PSP.

Most studies demonstrated the presence of decreased FC 
within the most reported rs-fMRI networks, particularly in 
prefrontal areas and basal ganglia, that are associated with 
worse cognitive performances. Decreased FC within the 
midbrain has also been found and related to worse execu-
tive functions and vertical gaze impairment. Finally, rs-
fMRI alterations within the thalamus and cerebellum have 
been also reported in PSP patients [102–109]. Contrarily, 
some studies demonstrated the presence of increased FC 
within the DMN and the thalamo-cerebello-midbrain path-
way, that correlated with worse cognitive status. Thus, this 
pattern could potentially underlie the presence of mala-
daptive FC between these areas, that eventually exert a 
detrimental effect on cognitive processing.

The presence of FC changes within the neurocognitive 
networks was also recently investigated in studies compar-
ing PSP-RS and PSP-P patients, with PSP-RS showing more 
diffuse alterations within the DMN, SN, FPN networks as 
well as motor, limbic, cerebellar, occipito-temporal and tha-
lamic areas potentially linked to increased neuropathological 
changes [108, 110].

CBD/FTD

CBD is a rare and progressive tauopathy with different clini-
cal presentations [9, 111]. The most common presentation 
of CBD is the corticobasal syndrome (CBS). Together with 
parkinsonian symptoms, CBS patients present with altered 
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high cortical functioning and behavioral changes [9]. To 
date, rs-fMRI evidence in these patients is scarce.

Decreased FC between thalamus and fronto-striatal and 
cerebellar regions as well as between lateral VN and auditory 
networks were found in CBS patients relative to HC [106, 
109]. Decreased FC within the cortico-subcortical-thalamic 
network may reflect the presence of specific neuropathologi-
cal changes in these regions, that may in turn explain the 
presence of parkinsonian signs/symptoms. Similarly, the func-
tional disconnection between auditory and visual networks 
may be related to altered high order multisensory inputs inte-
gration that may be related to the presence of cortical signs/
symptoms in CBS patients [106, 109, 111]. On the other hand, 
an increased FC has been demonstrated in CBS patients rela-
tive to HC within the DMN, SMN, ECN, cerebellar, fronto-
cerebellar and insular networks, and have been supposed to be 
linked to altered motor planning-preparation and executive/
emotional control on movements [106, 109, 111, 112].

To the best of our knowledge, only one study has explored 
rs-fMRI changes in patients with Fronto-temporal dementia 
and parkinsonism (FTD-P), demonstrating the presence of 
decreased FC between the striatum and the supplementary 
motor area compared to HC, potentially responsible for fail-
ure in cognitive and motor processing in these patients [113].

Conclusion

This review resumes the most updated findings of rs-fMRI 
studies in patients with Parkinsonisms and related dementia.

Overall, in patients with Parkinsonisms and cognitive 
impairment, both synucleinopathies and tauopathies, aber-
rant increased and/or decreased FC alterations within the 
most reported neurocognitive networks have been found, 
further supporting a potential role for rs-fMRI as a surrogate 
biomarker of cognitive outcome.

Interestingly, FC changes within cognitive-related areas 
have been also found in PD patients with specific nonmotor 
symptoms which are known to be associated with high risk 
of dementia, even in the absence of cognitive impairment. 
This could potentially support the identification of early neu-
ral correlates that may be used to predict future conversion 
to dementia in PD patients.

While consistent results have been collected in patients 
with PD, a more intricate scenario emerged in other Parkin-
sonisms, with some studies showing also conflicting find-
ings. More complex neuropathological patterns, also includ-
ing the coexistence of different types of protein aggregates, 
as well as heterogenous clinical presentations compared to 
PD, may potentially explain this issue, still limiting the use 
of rs-fMRI as a reliable tool to help clinicians in the dif-
ferential diagnosis.
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