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Abstract

Purpose of Review Sleep disturbances are an important nonmotor feature of Parkinson’s disease (PD) that can cause poly-
somnographic (PSG) alterations. These alterations are already present in early PD and may be associated with a specific
disease course. This systematic review describes the role of PSG variables as predictors of sleep dysfunction, motor and
cognitive dysfunction progression in PD.

Recent Findings Nineteen longitudinal cohort studies were included. Their main findings were that (1) REM sleep behavioral
events, REM sleep without atonia (RSWA), and electroencephalography (EEG) changes (mainly microsleep instability) are
predictors of the development of REM sleep behavior disorder (RBD); (2) RBD, RSWA, and lower slow-wave sleep energy
predict motor progression; (3) RBD, EEG slowing, and sleep spindles changes are predictors of cognitive deterioration;
and (4) OSA is associated with severe motor and cognitive symptoms at baseline, with inconsistent findings on the effect of
continuous positive airway pressure (CPAP) therapy for these symptoms.

Summary The results of our systematic review support a role of the video-PSG in disease progression prediction in PD and
its usefulness as a biomarker. However, future studies are needed to investigate whether treatment of these PSG abnormali-
ties and sleep disturbances may have a neuroprotective effect on disease progression.

Keywords Parkinson’s disease - Polysomnography - Sleep dysfunction - Motor progression - Cognitive dysfunction

Introduction

Background

This article is part of the Topical Collection on Sleep.
Parkinson’s disease (PD) is one of the most prevalent neu-

rodegenerative diseases that affects over 6 million people
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worldwide [1]. Although PD is regarded as a classical
movement disorder, patients also suffer from a spectrum of
nonmotor symptoms, such as autonomic dysfunction, psy-
chiatric symptoms, and cognitive deterioration [2]. Sleep
dysfunction is another important nonmotor feature that can
cause alterations on a video-polysomnography (PSG). The
most famous and investigated example is the rapid-eye-
movement (REM) sleep behavior disorder (RBD), a REM
sleep parasomnia characterized by persistent muscle tonus
during REM sleep (REM sleep without atonia [RSWA]), and
dream-enacting behavior [3]. However, previous research
suggests that the sleep-related PD spectrum is much broader
than RBD. A recent large meta-analysis that compared PSGs
of patients with PD with healthy controls found a reduction
in total sleep time, REM sleep percentage, slow-wave sleep
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percentage and sleep efficiency, and a higher apnea—hypo-
pnea index (AHI) and periodic limb movement during sleep
(PLMS) index in PD patients [4e]. Furthermore, electroen-
cephalogram (EEG) abnormalities (spectral changes, sleep
spindles abnormalities) [5—8], lower REM density [9], lower
heart rate variability [10—12], and supine body position
[13—15] during sleep have been described in PD.

The example of RBD, which is regarded as a specific pro-
dromal PD symptom and can be present 10-20 years before
PD diagnosis [16], suggests that sleep disturbances and PSG
alterations often precede motor and cognitive deterioration
in PD. Sleep disturbance is also suggested to be a risk and
progression factor in PD [17e]. However, whether these PSG
alterations are also associated with development of specific
PD symptoms or influence disease progression in PD is less
clear. This systematic review investigates whether PSG vari-
ables predict sleep dysfunction, motor progression, and cog-
nitive deterioration in PD. This may give more insight in the
relation between the neurophysiology of sleep dysfunction,
other PD symptoms, and disease course in PD. Furthermore,
it may underline the clinical relevance of the video-PSG as a
biomarker for disease progression prediction in PD and sleep
as a possible therapeutic target in PD.

The Video-Polysomnography

In sleep medicine, the widely used instrument to determine
the neurophysiologic correlates of sleep and sleep disorders
is the video-PSG (Fig. 1). The video-PSG consists of several
channels for an electro-oculogram (EOG), electro-myogram
(EMG), and EEG. These channels are used to measure sleep
stages and abnormalities in cerebral activity and muscle
activity during sleep. Furthermore, several respiratory vari-
ables are recorded to evaluate sleep-related breathing disor-
ders, with nasal airflow channels, respiratory effort channels,
oximetry channels, and snoring detector channels. Finally, a
video-PSG includes an electrocardiography channel, a pulse
transit time channel, a position detector, a light detector, and
a video to record abnormal movements and behavior dur-
ing sleep. With all these variables combined, a video-PSG
comprehensively evaluates all physiological aspects of sleep
and sleep dysfunction.

A video-PSG is traditionally analyzed visually for macro-
architecture, movements during sleep and sleep-related
breathing events, according to standardized criteria from
the American Academy of Sleep Medicine (AASM) [18].
Although time-consuming, this is currently the gold stand-
ard for clinical practice. Novel techniques are being devel-
oped for automated PSG scoring and more comprehensive
methods are being developed for PSG data analysis [19].
These methods, for example, focus on sleep micro-architec-
ture analysis, EEG and EMG quantification, and machine
learning algorithms that combine different PSG variables.

@ Springer

Most of them, however, are currently only used for research
purposes.

Method
Search Strategy

We searched Medline, Web of Science, and the Cochrane
library between 26/05/2022 and 01/06/2022 with the terms
“Parkinson’s disease” and “polysomnography.” Our com-
plete search strategies for the databases are available in S1-3.
References of all included articles were searched as well.
Abstracts were screened for eligibility. Studies with a lon-
gitudinal design were included, that investigated:

— Patients with a clinical diagnosis of PD as study popu-
lation (not patients with PD versus healthy controls or
patients with PD in the prediagnostic stage).

— Polysomnographic variables as independent variables.

— Sleep dysfunction progression, (2) motor progression,
and (3) cognitive deterioration or a combination as out-
come variables.

Only original research papers were included. Papers
written in English or Dutch were included. Papers that
investigated a specific intervention with sleep dysfunction
as an outcome variable (such as the impact of deep brain
stimulation on sleep dysfunction, treatment with Melatonin,
etc.) were excluded, except for continuous positive airway
pressure (CPAP) therapy. If similar variables from the same
cohort were published in different reports, we included the
study with the longest follow-up design. The number of
records identified was recorded in a PRISMA flow chart
[20] (Fig. 2). We used the Newcastle—Ottawa Quality (NOS)
assessment scale for cohort studies for quality assessment
[21]. According to the NOS score standard, cohort studies
could be classified as low-quality (scores of 0—4), moderate-
quality (scores of 5-6), and high-quality (scores > 7).

Results
Search Results

The search strategy resulted in 1577 reports. After removing
duplicates and screening the title and abstracts, 19 studies
that fulfilled the inclusion criteria were selected (Fig. 2).
Their results are summarized in Table 1 and the NOS qual-
ity assessment results are available in table S4. Seventy-nine
percent of the studies had a NOS score > 7 (high-quality).
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Fig. 1 The video-polysomnography. A polysomnograpic 18-s epoch
with 2 electro-oculography (EOG) channels (LSO-A2 and RIO-A2),
4 electroencephalography (EEG) channels, an elecrocardiography
(ECG) channel, a chin electromyography (EMG) channel, and a leg
EMG channel (covering both tibialis anterior muscles). A NREM
sleep stage 2 with sleep spindles, K complexes and periodic limb
movement. B NREM sleep stage 3 with slow wave sleep. C Rapid-
eye-movement (REM) sleep with REM sleep without atonia (RSWA).

REM Sleep Variables

Ten studies have investigated the predictive value of REM
sleep-related variables in disease progression prediction in
PD [22-31]. Most studies focused on RBD. Zimansky and
coworkers investigated sleep dysfunction as the outcome var-
iable, in a cohort of 158 de novo PD patients with 6 years of

5‘,

I—]mp 16% 190% 31sH Hmpno% xaﬂ Hn.p 117% 180% 31:H Hmp 116% 119% ¥17

54 52

D A 3-min epoch with respiratory-related variables: a snoring detec-
tor channel, a pulse transit time channel, a peripheral pulse oximetry
channel, nasal airflow channels, and 2 respiratory effort channels on
thorax and abdomen. Several obstructive hypopneas are shown. Blue
arrows: periodic limb movements. Green arrows: sleep spindles. Red
arrow: rapid-eye-movements on the ocular channels. Yellow arrow:
RSWA on the chin EMG channel. Grey arrow: obstructive hypopnea

follow-up and PSG data both at baseline and follow-up [22].
They showed that the prevalence of RBD increased from 24
to 52%. PSG predictors for the development of RBD were
REM sleep behavioral events (RBE, motor events without a
sufficient amount of RSWA) and RSWA (the persistent mus-
cle tonus during REM sleep without dream-enacting behav-
ior). RSWA severity also increased during the follow-up

@ Springer
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Fig.2 The PRISMA flow-
chart. The results of the search [

Identification of studies via databases and registers ]

strategy are summarized in the

)
PRISMA flow diagram
_S Records identified from: Records removed before
§ - Medline (n = 839) screening:
= - Web of science (n = 659) > Duplicate records removed
t - Cochrane library (n = 75) (n = 544)
3 - References (n = 4)
—
A
—
Records screened » | Records excluded
(n =1035) (n=1008)
A
Reports sought for retrieval »| Reports not retrieved
g| | "2 (n=0)
c
o
3
» A4

Full-text articles assessed for

eligibility »| Reports excluded:

(n = 25) - Cohorts with longer follow-
up data about the same PSG
predictors or outcomes in
other included studies (n = 4)
- Differences in outcomes
only tested between different

— PD groups and healthy
— v controls, not within the PD
- groups (n=1)
3 Included studies - No PSG predictors
% (n=19) investigated (n = 1)
£
—/

period. These results were confirmed in other cohorts:
Nomura and coworkers also reported RSWA as predictor
of the development of RBD, in a cohort of 82 PD patients
with a follow-up period of 21 months [23]. Figorilli and
coworkers investigated a cohort of 22 patients with PD and
RBD at baseline and 3 years of follow-up and confirmed an
increase in RSWA severity during the follow up period [24].
RBD severity remained stable in most patients. Bugalho
and coworkers investigated predictors of other sleep-related
symptoms and showed that RBD at baseline is a predictor of
excessive daytime sleepiness (measured by SCOPA-SLEEP
[32]) and both RBD and RSWA are predictors of disturbed
nighttime sleep (measured by SCOPA-SLEEP) during fol-
low-up [25].

The results of RBD as a predictor of motor progression
in PD are inconsistent. For example, Sommerauer and cow-
orkers investigated 59 PD patients (15 with RBD, 22 with
RSWA, and 22 with normal REM sleep) and reported both

@ Springer

RBD and RSWA as predictors of the Unified Parkinson Dis-
ease Rating Scale (UPDRS)-3 [33] increment over a period
of 2.5 years of follow-up [27]. However, Mollenhauer and
coworkers [26] and Bugalho and coworkers [25], however,
found no effect of RBD at baseline on the UPDRS-3 score
during follow-up.

The relation between RBD and cognitive deterioration
has been investigated in several studies. Anang and cowork-
ers [29] described a cohort of 80 PD patients with a mean
follow-up of 4.4 years. They found that 34% of the patients
developed dementia. RBD at baseline was a significant pre-
dictor for the development of dementia with an odds ratio
of 49.7. The patients who converted also had higher RSWA
severity at baseline. These results were validated in a larger
cohort of 135 patients, with a follow-up of 4.2 years and a
dementia conversion percentage of 22%. An odds ratio of 5.4
was found [30]. In a subgroup of this cohort, RSWA without
DEB was no significant predictor of dementia conversion
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[23]. Other studies describe that RBD and RSWA at baseline
can predict more subtle cognitive changes, such as the devel-
opment of hallucinations [31] and an increase in (cognitive)
global deterioration scale [28]. Mollenhauer and coworkers
[26] and Bugalho and coworkers [25], however, found no
effect of RBD at baseline on change in Mini-Mental State
Examination (MMSE) [34] score or Montreal Cognition
Assessment (MoCA) [35] score during follow-up.

OSA and Sleep-Related Breathing Variables

Five studies investigated the predictive value of OSA in dis-
ease progression prediction in PD, all of which are CPAP
therapy trials [36—40]. Neikrug and coworkers [36] investi-
gated the impact of CPAP therapy on sleep dysfunction in 38
patients with PD and OSA, with a randomized placebo-con-
trolled cross-over design: 6 weeks of treatment or 3 weeks of
placebo, followed by 3 weeks of therapeutic CPAP. Patients
with therapeutic CPAP treatment showed a significant
decrease in AHI, amount of time with SaO, <90%, NREM
stage 2% and arousal index, with a significant increase in
NREM stage 3%. Furthermore, there was a decrease in day-
time sleepiness, measured by the Multiple Sleep Latency
Test (MSLT). Harmell and coworkers [37] investigated the
impact of OSA and CPAP therapy on cognitive deteriora-
tion in the same cohort of patients with PD with a follow-up
duration of 6 months. Patients with OSA had significantly
lower MMSE and MoCA scores at baseline, compared to
patients without OSA. However, no effect of CPAP therapy
was reported on any domain of a complete neuropsychologi-
cal evaluation during follow-up.

Meng and coworkers [38] investigated the impact of OSA
and CPAP therapy on motor progression in 67 patients with
PD (20 patients without OSA, 26 patients with OSA, who
received CPAP therapy, and 21 patients with OSA, who did
not receive CPAP therapy). At baseline, patients with OSA
had higher UPDRS part 3 scores than those without OSA.
After 1 year of follow-up, UPDRS part 3 and timed up and
go (TUG) [41] scores decreased in patients with OSA and
CPAP therapy, while patients without OSA and patients with
OSA without CPAP therapy had a similar increment in both
tests. Kaminska and coworkers investigated the impact of
OSA and CPAP therapy on cognitive deterioration in the
same cohort of patients with PD [39]. There was no sig-
nificant difference in MoCA score, between patients with
OSA and without OSA at baseline. However, after 1-year
follow-up, there was a significant improvement in MoCA
score in the group treated with CPAP therapy, while MoCA
scores remained stable in the group without OSA and the
group with OSA without CPAP therapy. The improvement in
MoCA score in the CPAP group was only found in patients
with baseline cognitive impairment (MoCA score < 26). Fur-
thermore, there was an improvement in Parkinson’s Disease

@ Springer

Sleeping Scale (PDSS) in the CPAP group and Epworth
Sleepiness Scale (ESS) [42] scores remained stable during
follow-up.

Terzaghi and coworkers [40] investigated the impact of
CPAP therapy on both cognitive deterioration and sleep
dysfunction in 36 patients with PD and OSA. At 3-month
follow-up, there was a drop out of 75% of patients, due to
CPAP intolerance. In the 9 patients that continued CPAP
therapy, there was no significant change in ESS score or
neuropsychological evaluation at 3 months. However, the
follow-up PSG showed a significant decrease in AHI and
a trend toward significance in NREM stage 3% increment.

EEG Variables and Sleep Stages

Five studies investigated the predictive value of EEG-related
PSG variables in disease progression prediction in PD [25,
43-46]. Cesari and coworkers investigated PSG predic-
tors of RBD development, using an automated data-driven
model based on EEG and EOG recordings, in 107 de novo
PD patients (54 patients with normal REM sleep, 26 patients
with RBD, and 27 patients with RBE without RSWA) [43].
Micro-sleep structure, EEG spectral, EEG coherence, EEG
complexity features, and EOG energy features were tested,
using machine learning. The final model, which included
mainly micro-sleep structure features and EEG spectral
features, had a sensitivity and specificity of over 80% in
differentiating RBD from nonRBD at baseline. The same
model could predict which patients with RBE at baseline
developed RBD after 2 years of follow-up (AUC 0.87, sen-
sitivity 77.78%, and specificity 87.5%). However, the model
could not predict which patients without RBE developed
RBD at follow-up.

Schreiner and coworkers investigated if slow-wave sleep
could predict motor progression in 129 patients with PD
[44]. Slow wave activity (delta power 0.5-4.5 Hz) and
slow-wave energy (accumulated power in the slow-wave
activity band) in NREM sleep stages 2 and 3 were com-
puted. Patients were classified as high slow-wave energy
or low slow-wave energy. After a follow-up of 4.6 years,
patients with high slow-wave energy had significantly slower
UPDRS-3 increment. The higher slow-wave activity was
strongly associated with slower increase of axial UPDRS
3 scores.

Three studies investigated if EEG variables could
predict cognitive deterioration in PD [25, 45, 46]. First,
Latreille and coworkers investigated EEG spectral vari-
ables in 58 non-demented patients with PD [45]. After
a follow-up of 4.5 years, 18 patients developed demen-
tia. Baseline predictors for the development of dementia
are slowing ratios in posterior regions during REM sleep,
slowing ratios in temporal regions during wake and lower
dominant occipital frequency. In the same cohort, sleep
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spindle density and amplitude at baseline were lower in
patients who developed dementia [46]. No differences
were found in the percentage of slow-wave sleep (NREM
stage 3) between patients who developed dementia and
those without dementia. Bugalho and coworkers investi-
gated 25 patients with PD and reported that a lower per-
centage of NREM stage 3 sleep was associated with a
MoCA score decrease after a follow-up of 4 years [25].

Other PSG Variables

Two studies investigated the predictive value of the PLMS
index in disease progression prediction in PD [25, 26].
Bugalho and coworkers investigated 25 patients with
PD and reported that a higher PLMS index at baseline
predicted daytime sleepiness increment (measured by
SCOPA-SLEEP) after a follow-up of 4 years [25]. No asso-
ciation was found between the PLMS index at baseline and
motor progression (UPDRS-3) and cognitive deterioration
(MoCA) at follow-up. Mollenhauer and coworkers, how-
ever, investigated 135 de novo PD patients and found that
after 4 years of follow-up, an elevated PLMS index was a
significant predictor of cognitive deterioration (measured
by MMSE) [26]. No association between PLMS index at
baseline and motor progression at follow-up (measured by
UPDRS 3) was found.

Bugalho and coworkers reported no association between
total sleep time or sleep efficiency and progression of sleep
dysfunction, motor progression of cognitive deteriora-
tion in PD [25]. In addition, no studies that investigated
changes in heart rate variability, REM density, or body
position during sleep as predictors of sleep dysfunction,
motor progression, or cognitive deterioration in PD were
found.

Discussion
Summary of Findings

Our systematic review describes 19 cohort studies inves-
tigating the role of PSG predictors for sleep dysfunction,
motor progression, and cognitive dysfunction progression in
PD. Their main findings are that (1) RBE, RSWA, and EEG
changes (mainly microsleep instability) are predictors of the
development of RBD; (2) RBD, RSWA, and lower slow-
wave sleep energy predict motor progression; (3) RBD, EEG
slowing, and sleep spindles changes are predictors of cog-
nitive deterioration; and (4) OSA is associated with severe
motor and cognitive symptoms at baseline, with inconsistent
findings on the effect of CPAP therapy for these symptoms.

Sleep Dysfunction

Most of the included studies with sleep dysfunction as the
outcome variable investigated the development of RBD in PD
[22-24, 31, 43]. The findings of an increase in PSG-confirmed
RBD prevalence from 24 to 52% in de novo PD patients after
6 years of follow-up align with RBD prevalences reported in
cross-sectional studies and longitudinal studies that investigated
RBD without PSG confirmation [47, 48]. The results suggest
that RBD does not always precede the onset of motor symp-
toms in PD and does not follow an “all-or-nothing” principle
[22]. Instead, RBD development seems to be a more gradual
process caused by neurodegeneration in the locus coeruleus and
projecting areas [49]. Both RBE and RSWA are PSG predictors
that increase over time and RBE patients also show a specific
RBD-related EEG pattern. This is in line with the hypothesis
that RBE and RSWA are prodromal features of RBD [16, 50,
51]. The included studies confirmed this hypothesis in patients
diagnosed with PD. These results underline the relevance of
investigating the role of RBE and RSWA as prodromal RBD
and PD biomarkers in patients without a diagnosis of PD or a
related disorder. They may help to expand the RBD spectrum
and identify more patients with PD or another synucleinopathy
in the prediagnostic stage in the future.

Motor Progression

The included studies report the presence of RBD, RSWA,
OSA, and decreased slow-wave energy as PSG variables that
predict motor progression in PD [27, 38, 44]. The results
of RBD as motor progression predictor are consistent with
other cohort studies in PD that investigated RBD without
PSG confirmation [52-54]. Pagano and coworkers found
lower cerebrospinal fluid alpha-synuclein levels and lower
striatal [123I] FP-CIT- uptake (in SPECT images) in PD
patients with RBD and faster motor progression, suggest-
ing more alpha-synuclein related pathology and dopamine
deficits in these patients [52]. This may explain the faster
motor progression. Furthermore, previous studies suggested
a link between RBD and the non-tremor dominant PD sub-
type (with more frequent falls and less response to levodopa)
that may result in faster motor progression [55, 56]. How-
ever, not all studies included in our review found an associa-
tion between RBD at baseline and motor progression [25,
26], which suggest that besides RBD there are multiple other
variables involved in motor progression prediction in PD.
Meng and coworkers report worse motor severity at base-
line in patients with PD and OSA [38], consistent with cross-
sectional study results [57¢]. The relation between PD motor
severity and OSA might be bidirectional [57¢]: patients with
more severe motor symptoms may have worse nocturnal mobil-
ity with the tendency to sleep on their back, which is a risk fac-
tor for OSA [14]. In return, OSA causes intermittent cerebral
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hypoxia, which may result in increased neuroinflammation and
oxidative stress at cell level. The substantia nigra is especially
prone to hypoxia [58]. OSA also causes sleep fragmentation
and reduced slow-wave sleep. In rodent models, manipulation
of slow wave sleep influences cerebral alpha-synuclein accu-
mulation [59] and Schreiner and coworkers indeed described
less motor progression in PD patients with higher slow-wave
sleep energy [44]. Previous research found a positive correla-
tion between EEG delta power and glymphatic system func-
tion, that is responsible for clearance of cerebral waste products,
such as alpha-synuclein and amyloid-f3 [60]. Dysfunction of the
glymphatic system has been described in patients with OSA
[61] and is hypothesized to aggravate alfa-synuclein pathology
and disease progression in PD [62]. Finally, the relation can be
indirect, in which OSA causes excessive daytime sleepiness,
resulting in worse (motor) performance during the day [57¢].
Meng and coworkers report a beneficial effect of CPAP
on motor function in PD after 1 year of follow-up (less motor
progression), which suggests a stabilizing effect of CPAP
therapy on motor function [38]. However, the group with
placebo CPAP and the group of patients with PD with OSA
showed no differences in motor progression, which weakens
the hypothesis that OSA influences motor progression. Since
the OSA group had higher motor severity at baseline, an
alternative explanation may be that the mUPDRS increases
more slowly in advanced disease which may explain the
rapid motor progression in the group without OSA [38].
Future longitudinal studies are necessary to investigate the
role of OSA and CPAP therapy in motor progression in PD.

Cognitive Deterioration

The included studies report that RBD, OSA, EEG slowing,
and sleep spindles changes are PSG predictors of cognitive
deterioration in PD [23, 29-31, 37, 39, 45, 46].

RBD as a predictor of cognitive deterioration in PD has been
a consistent finding in the included studies as well as in cross-
sectional studies and longitudinal studies that investigated RBD
without PSG confirmation [52-54, 63]. Both RBD and cognitive
decline in PD are associated with cholinergic deficits on acetylcho-
linesterase [''C]PMP PET scan [64], suggesting that both symp-
toms might be caused by cholinergic dysfunction. Furthermore,
as mentioned above, RBD is associated with a specific malignant
PD subtype: characterized by more severe motor symptoms (espe-
cially postural instability gait disorder), autonomic dysfunction,
RBD, psychiatric symptoms, and cognitive deterioration, with
more cerebral atrophy and dopaminergic deficits on neuroimag-
ing, lower cerebrospinal fluid amyloid-8, and amyloid-/t-tau
ratios at baseline and with faster motor progression and cognitive
decline over the years [65]. This subtype may have an important
overlap with dementia with Lewy bodies, in which RBD also is a
prominent feature [66, 67]. Early signs of RBD on a PSG in PD
or prodromal PD may be the first manifestation of this subtype.
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OSA is also associated with more severe cognitive symptoms
at baseline, which might be explained by the same mechanisms
in which OSA causes more severe motor symptoms in PD [57e].
However, the association between OSA and cognitive symptoms
is not restricted to PD, but is also present in the general popula-
tion and other neurodegenerative diseases such as Alzheimer’s
disease (AD) [68], so the effect of OSA in PD might not be
PD-specific. In AD, studies consistently reported a positive
effect of CPAP therapy on cognitive symptoms and less AD
pathology progression [68]. However, the included studies in our
review showed inconsistent results on the effect of CPAP ther-
apy on cognitive symptoms in PD, ranging from no effect [37,
40] to a mean improvement in MoCA score of 1.7 points after
12 months [39]. These findings suggest that the impact of OSA
on PD pathology and the beneficial effect of CPAP therapy is
less straightforward than in AD pathology. All studies, however,
had small sample sizes and a maximal follow-up of 1 year. Since
PD patients with OSA, in general, were included (not specifi-
cally patients with MCI or dementia), the latter may not be long
enough to measure a longitudinal effect of OSA or a beneficial
effect of CPAP therapy on cognitive decline. Future studies with
larger sample size, a longer follow-up period, or inclusion of
patients with MCI are necessary to investigate the longitudinal
impact of OSA (treatment) on cognitive decline in PD.

The predictive value of EEG for cognitive decline and devel-
opment of dementia in PD has been previously investigated
in several quantitative EEG studies that reported a slowing of
background EEG frequency with theta or delta band dominance
as a predictor of cognitive decline in PD [69-73]. Latreille and
coworkers confirmed slowing of EEG spectral frequency on
PSG during wake, mainly in posterior and temporal regions,
but also during REM sleep as dementia predictors [45]. Besides
REM slowing, patients who developed dementia also showed
sleep spindle changes at baseline [46]. An increase in theta and
delta power is associated with diffuse cortical and subcorti-
cal grey matter dysfunction and cholinergic failure [74], which
both play an important role in cognitive impairment in PD [75].
Sleep spindles originate from the thalamo-cortical loop, are
cholinergic- and GABAergic-driven, and are involved in sleep
maintenance, brain plasticity, and memory consolidation [74,
76]. Early findings of REM sleep EEG slowing and sleep spin-
dle changes (lower density and amplitude) in PD may reflect
subtle alterations in these regions and the cholinergic system,
that are not severe enough yet to cause cognitive symptoms.

Limitations

This systematic review highlights limitations in the current liter-
ature about PSG predictors for disease progression in PD. First,
there are some discrepancies in findings between the included
studies. These discrepancies may be due to methodological dif-
ferences between studies, such as differences in (small) sample
size, study population, follow-up duration, treatment, correction
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for possible confounders, and outcome measures. Differences
in PSG analysis methods may have also contributed. Cohort
studies with larger sample sizes, use of multiple PSG and clini-
cal variables, and a longer follow-up period are necessary to
clear up these discrepancies. Furthermore, the discrepancies
underline that multiple variables besides the investigated PSG
variables are involved in disease progression in PD.

Secondly, most included studies focused on 1 or a few PSG
variables. This review, however, describes that several PSG
variables are involved in disease progression prediction. Many
PSG variables generally make studies vulnerable to publica-
tion bias or type 1 errors. Studies that investigate a combina-
tion of PSG variables in more advanced analysis models, such
as Cesari and coworkers [43], may increase the power of the
PSG in disease progression prediction in PD in the future.

Thirdly, although a consistent association between sev-
eral PSG variables and disease progression was found, the
causality of most associations remains unclear. The question
remains whether treatment of the specific sleep disorder will
significantly influence disease progression in PD. Until now,
no disease-modifying PD medication exists so neuroprotective
sleep medicine interventions may be of great value. However,
the sleep disturbances and PSG alterations may also be part
of a malignant disease course in PD without a causal effect.

Fourthly, the PSG might not reflect the complete spec-
trum of PD-related sleep dysfunction. No studies were
included that investigated insomnia, circadian rhythm disor-
ders, or hypersomnia as predictors for disease progression in
PD, although both are common symptoms in early PD. The
reason for this might be that most studies investigating them
probably used different methods (such as questionnaires).

Practical Implications

Our review shows that in the different cohorts (of mainly
early PD patients), multiple PSG variables are already
abnormal at baseline. The PSG abnormalities also correlate
with sleep-related symptoms and other symptoms in PD.
These findings highlight the importance of sleep dysfunction
in PD. Performing a video-PSG in early PD in the clinical
setting may be useful (1) for a comprehensive evaluation
of the disease spectrum, (2) to diagnose different sleep and
wake disorders in PD (such as RBD and OSA), and (3) for
the treatment of these sleep disorders. This might be espe-
cially useful in patients with sleep-related symptoms and/or
a malignant or atypical disease course.

Conclusions and Future Directions
In conclusion, our review describes that different REM

sleep variables, sleep-related breathing variables, and EEG
variables on the PSG can predict the progression of sleep

dysfunction, motor symptoms, and cognitive decline in PD.
The results support a role of the video-PSG in disease pro-
gression prediction in PD. Future studies should focus on
how these PSG variables can be used as biomarkers in clini-
cal practice in clinical PD and in the prediagnostic PD stages
and whether treatment of the PSG abnormalities, such as
OSA and RBD will have a neuroprotective effect on disease
progression.
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