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Abstract
Purpose of Review Traumatic brain injury (TBI) has a significant burden of disease worldwide and outcomes vary widely.
Current prognostic tools fail to fully account for this variability despite incorporating clinical, radiographic, and biochemical data.
This variance could possibly be explained by genotypic differences in the patient population. In this review, we explore single
nucleotide polymorphism (SNP) TBI outcome association studies.
Recent Findings In recent years, SNP association studies in TBI have focused on global, neurocognitive/neuropsychiatric, and
physiologic outcomes. While the APOE gene has been the most extensively studied, other genes associated with neural repair,
cell death, the blood-brain barrier, cerebral edema, neurotransmitters, mitochondria, and inflammatory cytokines have all been
examined for their association with various outcomes following TBI. The results have been mixed across studies and even within
genes.
Summary SNP association studies provide insight into mechanisms by which outcomes may vary following TBI. Their indi-
vidual clinical utility, however, is often limited by small sample sizes and poor reproducibility. In the future, they may serve as
hypothesis generating for future therapeutic targets
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Introduction

Traumatic brain injury (TBI) is a condition with a major glob-
al burden of disease with significant variance in outcomes [1].
The International Mission for Prognosis and Analysis of
Cl inical Trials in TBI (IMPACT) and Cort icoid
Randomization After Significant Head injury (CRASH) prog-
nostic models have been developed to prognosticate utilizing
known variables such as age, presenting Glasgow Coma Scale
(GCS), pupil reactivity, and various CT and laboratory find-
ings. Even with all of these initial parameters as inputs, the
predictive ability of these models is incomplete with areas
under the receiver operator curve as low as between 0.65
and 0.71 in some datasets [2].

These predictive models all focus mainly on characteristics
of the initial insult and fail to account for the burden of ongo-
ing secondary insult. The modification of secondary insult to
improve outcomes is the goal of neurocritical and neurosurgi-
cal care; however, a growing body of evidence supports that
certain genetic factors may impact outcomes following TBI.
In this paper, we take an outcomes-based approach to
reviewing recent literature on the implications of genetics on
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TBI. We will explore recent developments on global, neuro-
psychiatric, and physiologic outcomes and their association
with single nucleotide genetic polymorphisms (SNPs) in
TBI populations.

Global Outcomes

In this section, we explore the relationship between various
SNPs and global patient outcomes following TBI. Often, these
are measured utilizing the Glasgow Outcome Scale (GOS) or
extended GOS (GOSE). These findings are summarized in
Table 1.

Apolipoprotein E

The most extensively studied polymorphism in relation to
outcomes following TBI is the APOE gene which codes for
apolipoprotein E, a protein that plays a central role in central
nervous system lipid transport and neural repair. Three com-
mon alleles of the APOE gene have been identified, ε2, 3, and
4, which code for protein isoforms E2, E3, and E4 respective-
ly. Outside of TBI literature, the ε4 allele has been associated
with a variety of negative neuropsychiatric outcomes includ-
ing an increased risk of late-onset Alzheimer’s disease.[30]

The connection between the ε4 allele of APOE and global
outcomes was first identified by Teasdale et al. in the 1997
study of 93 head injury patients admitted to a neurosurgical
unit. The endpoint of an unfavorable outcome at 6 months
post-injury, as defined as a GOS of 1–3 (i.e., dead, vegetative
state, or severe disability), was found to be significantly more
common in those with an APOE ε4 allele (57% vs 27%, p =
0.006). This significant difference persisted even when age,
GCS, and CT finding at presentation were accounted for (p =
0.024) [3].

Since this original landmark paper, numerous studies have
looked to evaluate the association between the APOE ε4 allele
and poor outcomes following TBI. There have been four in-
dependent meta-analyses that have looked to summarize this
body of literature, two of which were in the last 5 years [4–7].
In 2008, Zhou et al. published a meta-analysis of 14 cohort
studies including 2527 patients and found that while posses-
sion of an APOE ε4 allele was not associated with initial
injury severity it was significantly associated with poor out-
comes (GOS of 1–3 or GOSE of 1–4) at 6 months after injury
(RR = 1.36; 95% CI, 1.04–1.78) [4]. This work was expanded
on in 2014 by Zeng et al. in a meta-analysis of 13 cohort
studies with 2276 TBI patients which found that APOE ε4
allele was associated with a poor prognosis (OR = 0.68:
95%CI 0.48–0.96; p = 0.027). Furthermore, subgroup analy-
sis found that this association was present in those with severe
TBI (OR= 0.43; 95%CI 0.21–0.87; p = 0.020) but not those
with mild or moderate TBI (p > 0.05) [5].

Most recently, McFadyen et al. published in 2019 a meta-
analysis of 14 studies and 2 cohorts of unpublished data total-
ing 2593 subjects and found a higher likelihood of a favorable
outcome following TBI in those not possessing an APOE ε4
allele as compared with homozygotes and carriers (OR = 1.39;
95%CI 1.05–1.84; p = 0.02). In this study, no subgroup anal-
ysis was done to examine the effect on severe, moderate, and
mild TBI separately [6•].

In 2016, Kassam et al. published a meta-analysis of 6 stud-
ies encompassing 358 cases of pediatric (3 to 18 years of age)
TBI examining the relationship of possessing an APOE ε4
allele and poor outcome (GOS score 1–3 or GOSE score 1–
4). They found a significantly higher probability of a poor
outcome at 6 months post-injury for those with an APOE ε4
allele (OR = 2.36; 95%CI 1.26–4.42; p = 0.007) [7].

These publications seem to point to a strong association
between poor outcomes following TBI and the APOE ε4 al-
lele. The prevailing belief is that the neurochemical mecha-
nism for the toxic effect of the APOE ε4 allele is a result of the
change in tertiary structure of the apolipoprotein E secondary
to an amino acid substitution found in the E4 variant. This
altered tertiary structure results in abnormal lysing of the pro-
tein in the endoplasmic reticulum with subsequent release of
neurotoxic by-products that impair mitochondrial and cyto-
skeletal function [6•]. There is however data indicating that
this may not be true over all ethnicities. Zeng et al. reported in
a subgroup analysis of their meta-analysis that the association
was significant in Asian populations (OR = 0.46; 95%CI
0.21–0.99; p = 0.046), but not in Caucasian populations (OR
= 0.75; 95%CI 0.53–1.08; p = 0.120) [5]. Furthermore, in a
2015 study of 150 Kashmiri TBI patients, Yousuf et al. re-
ported no association between the presence of a APOE ε4
allele and unfavorable outcomes (p = 0.92) [8].

Neural Repair and Cell Death–Associated
Polymorphisms

Following TBI neural repair and apoptotic pathways are
thought to play a pivotal role in recovery. One neurotropic
factor that has been linked to neurogenesis and neuronal sur-
vival is brain-derived neurotropic factor (BDNF) [31]. Three
studies have examined the association of various polymor-
phisms of BDNF gene and global outcomes following TBI
[9–11].

Failla et al. reported in 2015 a study of 315 patients receiv-
ing care for closed head injuries. SNPs of the BDNF gene
rs6265 (Val66Met) and rs7124442 (T>C) were evaluated for
their association with mortality in the acute period (0–7 days)
vs the post-acute period (8–365 days) post-injury. Individuals
that were less than 45 years old being homozygous for rs6265
Val and rs71244 T had the highest probability of survival in
the post-acute period [9]. This may point to an age-related
interaction with the ability of BDNF gene polymorphism’s
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ability to predict mortality following TBI. In 2016, Failla et al.
expanded on this work and found that these BDNF gene poly-
morphisms interact with serum BDNF levels to predict mor-
tality through multi-variate modeling (HR = 0.987; p = 0.047)
[10]. Munoz et al. built on this work by examining the inter-
action CSF cortisol levels have with these polymorphisms in
predicting mortality following TBI. They found that models
that incorporated CSF cortisol and these BDNF gene SNPs
were able to predict mortality in those less than 48 years of age
(p = 0.0004).While the pathway is far from clear, these studies
point to prognostic value in BDNF gene polymorphisms
rs6265 and rs71244 when combined with CSF cortisol and
serum BDNF levels in younger patients.

Neural repair and apoptotic pathways often produce by-
products that have been examined as biomarkers in TBI
[32]. Polymorphisms in genes encoding for TBI biomarkers
have been examined for their utility at predicating global out-
comes following TBI. In a study of 305 severe TBI patients,
Osier et al. examined 18 SNPs in biomarker-encoding genes.
The primary endpoint was GOS at 3, 6, 12, and 24 months.
One SNP of the gene encoding for S100 calcium-binding
protein B (S100B), rs1051169 (G>C), was associated with
higher scores on the GOS at 3 months (OR = 0.39; p =
0.04), 6 months (OR = 0.34; p = 0.02), 12 months (OR =
0.32; p = 0.02), and 24 months (OR = 0.30; p = 0.02).
Multiple SNPs in genes encoding for glial fibrillary acid pro-
tein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1)
were not found to be associated with global outcomes follow-
ing TBI [12].

Neuronal apoptosis following TBI is a well-known phe-
nomenon and is mediated by TP53 gene located on chromo-
some 17q13.1 that codes for p53 protein [13]. The Arg/Arg
homozygous form of the rs1042522 (Arg72Pro) SNP of the
TP53 gene is at least 5 times more efficient at inducing apo-
ptosis than the other variants [33]. This promptedMellett et al.
to study its association with global outcomes in 429 patients
with severe TBI. Patients with the homozygous arginine ge-
notype had worse outcomes at 24 months by GOS (p = 0.048)
and Disability Rating Scale (DRS, p = 0.022) [13].

Blood-Brain Barrier– and Cerebral Edema–Associated
Polymorphisms

The blood-brain barrier (BBB) integrity has been speculated
to contribute to various CNS pathologies and recently its role
in recovery following TBI has been explored. ATP-binding
cassette (ABC) transporters are the main proteins responsible
for regulating transport across the BBB. Genetic polymor-
phisms in genes that code for this family of transport proteins
have been examined recently to see if they are associated with
global outcomes following TBI [14–16]. The ABCB1 gene
SNPs were examined byWang et al. in 2015. In their cohort of
182 TBI patients, the 6-month GOS was found to be

associated with the ABCB1 gene polymorphism rs1045642
(C3435T) with the T homozygous genotype associated with a
worse outcome as compared to other variants (OR = 2.71;
95% CI = 1.12–6.86) [14].

The ABCG2 transporter is one of the primary CNS efflux
transporters and was the subject of a study by Adam et al. in
2018. GOS scores were obtained at 3, 6, 12, and 24 months
following severe TBI for 436 patients. The rs2231142
(C421A) polymorphism, a common missense polymorphism
that results in decreased protein expression, was identified for
all patients. They found that patients that had at least one
variant (A) allele had significantly improved odds of having
a higher GOS score at all time points so long as age was less
than 34. This did not hold true for patients over the age of 34
[15]. This points to a possible age-dependent association with
prognosis following severe TBI.

In a study conducted by Jha et al. in 2018, 410 severe TBI
patients were examined for an association with GOS at 3
months post-injury and 15 SNPs in the gene coding for the
ABCC8 transporter protein. Three SNPs were found to be
associated with GOS at 3 months. The homozygous T geno-
type of the rs2237982(C>T) SNP decreased odds of a favor-
able outcome (OR = 0.43; p = 0.010) and concordantly pres-
ence of a C allele increased odds of a favorable outcome (OR
= 2.45; p = 0.006). Rs11024286 (G>A) heterozygotes had
increased odds of favorable outcome (OR = 2.57; p = 0.000)
versus those homozygous for the G allele. Additionally, the A
allele was an independent predictor of a favorable outcome
(OR = 2.40; p = 0.000). Finally in the rs4148622 (G>A) SNP,
possessing a G allele decreased odds of a favorable outcome
(OR = 0.40; p = 0.01) [16••].

Mitochondrial-Associated Polymorphisms

Mitochondrial dysfunction following TBI has been observed
in animal studies and associated alterations in energy metab-
olism following injury have also been observed [34, 35]. It has
been hypothesized that variations in mitochondrial function
following injury may be genetically based. The role of
mitochondrial-associated polymorphisms in TBI outcomes
has been examined in three studies [17–19]. The B cell lym-
phoma 2 (BCL2) protein is a proto-oncogene that prevents
apoptosis and is reassessed during mitochondrial damage
and plays a role as a cell survival promoter [36]. Hoh et al.
examined polymorphisms of the BCL2 gene in 205 patients
with severe TBI. Global outcomes were measured for all pa-
tients at 3, 6, 12, and 24 months. While multiple SNPs were
examined, the only polymorphism association that remained
significant with Bonferroni correction was rs17759659 (A>G)
where the presence of the variant allele was associated with
poorer outcomes by GOS (p = 0.001) and higher mortality
(OR = 4.23; 95%CI 1.31–13.61; p = 0.02) [17].
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In 2014, Bulstrode et al. analyzed the mitochondrial DNA
(mtDNA) of 1094 TBI patients and identified that those with
haplogroup K had an association with favorable outcomes by
6-month GOS (OR = 1.64; 95%CI 1.08–2.51; p = 0.02). In the
same year, Conley et al. examined the roles of mtDNA poly-
morphisms 1 year after severe TBI in 136 patients and found
that the A10398G SNP was associated with DRS at 6 and 12
months (p = 0.02) with the A allele associated with slower
recovery.

Neurotransmitter-Associated Polymorphisms

Gene polymorphisms in those that code for proteins in neuro-
transmitter pathways have been examined for their association
with global outcomes following TBI. One such protein is cat-
echol-O-methyltransferase (COMT) which is an enzyme that
is intricately involved in the degradation of dopamine. In
2014, a report byWillmott et al. of 223 patients with moderate
to severe TBI found that the SNP rs4680 (Val158Met) on the
COMT gene was not associated with outcomes at 12 and 24
months post injury as defined by the GOSE [20]. Contrary to
this, Winkler et al. reported an association with the rs4680
Met allele and higher GOSE scores following moderate TBI
in 93 patients 6 months post-injury (OR = 2.87; 95%CI 1.20–
6.86; p < 0.05). However, this association failed to reach
significance when accounting for comorbid post-traumatic
stress disorder (PTSD) by multivariable analysis [21].

Failla et al. studied SNPs in the neurotransmitter-associated
genes dopamine D2 receptor (DRD2) and ankyrin repeat and
kinase domain (ANKK1). In 108 severe TBI patients, when
adjusting for age, GCS, and education, the DRD2 rs6279
(C>G) (p = 0.0430) and ANKK1 rs1800497 (C>T) (p =
0.0468) SNPs had an association with improved outcomes at
6 months when the variant allele was present. This association
failed to meet significance under multiple comparisons cor-
rection [22].

Inflammatory Cytokine–Associated Polymorphisms

Following TBI, a series of inflammatory cascades are initiated
with many of these associated with secondary injury.
Neuroinflammatory cytokines in cerebral spinal fluid follow-
ing acute brain injury have been found to be associated with
global outcomes and their use as biomarkers following TBI
has been facilitated by cerebral microdialysis [37, 38]. This
spurred work in the early 2000s to examine the associations
with SNPs in genes coding for inflammatory cytokines and
global outcomes following brain injury. Early work mostly
found SNPs in interleukin (IL) 1α and IL-6 genes not to be
associated with outcomes following brain injury [23, 24, 26].
There were, however, studies that produced positive results
with Uzan et al. finding an association with two IL-1β SNPs
and GOS 6 months following TBI in 69 patients [25].

The past decade has seen similarly mixed results. A 2011
study by Dalla Libera et al. reexamined the IL-6 gene SNP
rs1800795 (G>C), which is associated with levels of IL-6.
Here, 77 male patients were monitored following severe
TBI. The G homozygous genotypewas foundmore frequently
in patients who survived than those who did not (67% vs 41%;
p < 0.05) and those G allele carriers were also found more
frequently in the survivor group than in the non-survivor
group (81% vs 65%; OR = 2.39; 95%CI 1.07–5.36; p =
0.031) [27]. Counter to this, a much larger study of 1096
TBI patients failed to associate the IL-6 gene SNP
rs1800795 with GOS at 6 months. In fact, of the 11 SNPs
screened for in IL-1α, IL-1β, IL-6, tumor necrosis factor-α
(TNF-α), and transforming growth factor-β (TGF-β) genes,
only the TNF-α SNP rs1800629 (G>A) was found to have an
association with the variant allele being associated with unfa-
vorable global outcomes (39% vs 31%; OR = 1.67; 95%CI
1.19–2.35; p = 0.003) [28•].

The lectin pathway is a less commonly known pro-
inflammatory pathway. Most recently, a study of 44 patients
with severe TBI failed to find an association with eight SNPs
in genes coding for lectin pathway proteins and mortality or
consciousness at 14 days. A favorable GOS at 90 days was
also not found to be associated with any of the eight SNPs
[29].

Neuropsychiatric and Neurocognitive
Outcomes

In recent years, SNP association studies in TBI have turned
their attention to neuropsychiatric and neurocognitive out-
comes. These studies are often plagued with heterogeneity
as, unlike with global outcomes, numerous tests are available
to analyze various neuropsychiatric and neurocognitive do-
mains. These findings are summarized in Table 2.

Apolipoprotein E

As discussed previously, APOE has become the quintessential
gene for association studies of global outcomes following
TBI. More recently, its association with neuropsychiatric
and neurocognitive outcomes following TBI has been ex-
plored. This can be traced back to a study done in 2007 by
Han et al. wherein 78mild tomoderate TBI patients the APOE
ε4 allele was actually found to be associated with marginal but
statistically significant improved outcomes in certain
neuropsychologic outcomes. A trend that was independent
of TBI severity [39].

While the study by Han et al. seemed to infer a protective
neuropsychiatric affect following TBI, subsequent research
has not demonstrated this positive association with the ε4
allele. In a study of 42 college athletes that sustained mild
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TBI, Merritt et al. reported that those with a ε4 allele had
significantly worse self-reported symptomatology at 3 months
post injury as determined by the Post-Concussion Symptom
Scale (PCSS, p < 0.05). When broken down into the domains
of physical, cognitive, affective, and sleep symptoms, signif-
icantly worse outcomes were found in the physical (p < 0.01)
and cognitive (p < 0.05) domains [40]. Further to this, 6-
month verbal memory outcomes were found to be worse in
ε4 carriers by Yue et al. in a cohort of 114 mild TBI patients
from the Transforming Research and Clinical Knowledge in
TBI Pilot (TRACK-TBI Pilot) study [41]. The APOE ε4 allele
was also found to be associated with worse neuropsychiatric
outcomes following mild to moderate TBI in a military pop-
ulation with worse score in the Beck Depression Inventory-II
(BDI-II; p = 0.008) and Beck Anxiety Inventory (BAI; p =
0.020) [42]. A similar study of 53 military veterans with mild
TBI showed that the ε4 allele was associated with worse
memory and processing speed as well as overall cognitive
impairment (p < 0.05) [43].

To confuse matters further, a number of studies have failed
to find any association with APOE ε4 allele status and neuro-
psychiatric and neurocognitive outcomes post-TBI. Padgett
et al. studied 170 TBI patients for an effect of APOE genotype
on information processing, executive function, and working
memory following injury but failed to find an association [44].
In 2017, Banks et al. did not find any association between
cognitive outcomes and APOE ε4 status in a cohort of profes-
sional fighters [45]. Finally, in a study of 57 college athletes
having sustained a concussion, no significant difference was
found between those with and without an ε4 allele in
neurocognitive standardized scores (p > 0.05) [56].

Neural Repair and Cell Death–Associated
Polymorphisms

The significant role that BDNF has on neural plasticity, sur-
vival, and growth has made the BDNF gene a key target in the
search for SNPs associated with neuropsychiatric and
neurocognitive outcomes. The rs6265 (Val66Met) SNP has
garnered particular attention due to its effect on the secretion
and neuroplastic effect of BDNF [57]. An early study done by
Krueger et al. in Vietnam combat veterans with frontal lobe
lesions attributable to penetrating TBI revealed that the variant
allele was associated with improved recovery of executive
function [46]. A follow-up work done by the same group in
the same cohort of patients found that while the Met allele
carriers did not differ from the Val homozygotes in general
cognitive ability before injury, following injury there was a
significant difference in general intelligence, verbal compre-
hension, perceptual organization, working memory, and pro-
cessing speed with the Val homozygotes having worse out-
comes [47]. A work done by McAllister et al. in a population
of 75 patients with mild TBI contradicted these results with

the Val allele being associated with better processing speed
following injury [48].

Bagnato et al. hypothesized that since emergence from a
vegetative state (VS) after a TBI implies that the brain un-
dergoes plastic changes and BDNF is involved in
neuroplasticity, perhaps there is a connection between the
rs6265 SNP and recovery from VS. They examined 53 pa-
tients in VS 1 month following TBI and scored cognitive
function at 1, 3, 6, and 12 months post-TBI but found no
association with the Met allele of rs6265 and recovery of
consciousness and cognitive functions [49].

More recent studies seem to point to worse neurocognitive
and neuropsychiatric outcomes following TBI in Met allele
carriers. Narayanan et al. examined cognition in 48 mild TBI
patients at admission and at 6-month follow-up and found that
those with the Met allele had lower scores in cognitive testing
in most domains at admission that remained impaired at 6
months post-injury [50]. In a study by Wang et al., the Beck
Anxiety Inventory (BAI) and Beck Depression Inventory
(BDI) scores for 192 minor TBI patients were determined in
the first and sixth weeks following injury. They found that in
male patients, the Met allele had higher scores of both BAI
and BDI in the first and sixth weeks [51].

Neurotransmitter-Associated Polymorphisms

Dopamine systems, especially those involved in the prefrontal
cortex, influence executive function, memory consolidation,
verbal language skills, and attention. All of these significantly
impact neurocognitive outcomes. It is no wonder then that
SNPs in genes that code for proteins in the dopamine path-
ways have been examined for their influence on
neurocognitive and neuropsychiatric outcomes following
TBI. Catechol-o-methyltransferase (COMT) is an enzyme that
mediates dopamine clearance and is coded for by the COMT
gene. In the past 5 years, SNPs of this gene have been exten-
sively examined for associations with neurocognitive out-
comes [52].

In a 2016 study, Mygra et al. looked at 90 survivors of
severe TBI and examined the interaction of depression, frontal
lobe dysfunction, and the SNP rs4680 (Val158Met) in the
COMT gene. They found that at 12 months post injury, in
those with depression, Met homozygotes were found to have
significantly worse behavior than Val carriers [52]. The asso-
ciation with verbal processing speed and the rs4680 SNP was
examined byWinkler et al. in 100 subjects from the TRACK-
TBI Pilot study with mild TBI. The Val homozygotes were
found to have worse processing speed thanMet carriers by the
Wechsler Adult Intelligence Test Processing Speed Index
Composite Score (WAIS-PSI; mean increase 7.9 points;
95%CI 1.4–14.3; p = 0.017) [53]. In a follow-up work done
by the same group that looked at 93 subjects from the
TRACK-TBI Pilot study with mild TBI, the Met allele was
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associated with lower incidences of PTSD following injury,
even when controlling for race (multivariable OR = 0.29;
95%CI 0.10–0.83) and pre-existing psychiatric disorders or
substance abuse (multivariable OR = 0.32; 95%CI 0.11–
0.97) [21].

Nekrosius et al. looked at 89 patients with mild to moderate
TBI during the first 4 days of their admission to hospital and
assessed them for signs of delirium. They found that Val ho-
mozygotes had an increased risk of delirium in multivariable
regression analyses adjusted for alcohol misuse, history of
neurological disorder, age, and admission GCS (OR = 4.57;
95%CI 1.11–18.9; p = 0.036) and the Met allele was associ-
ated with better functional outcomes in univariate analysis
(OR = 2.82; 95%CI 1.10–7.27; p = 0.031) [54].

The COMT gene is not the only dopamine-associated gene
that has been studied for its association with neurocognitive
and neuropsychiatric outcomes. DRD2 gene and ANKK1
gene SNPs have also been assessed. In a cohort of 108 severe
TBI survivors, functional recovery at 6 and 12 months was
examined using 8 neuropsychological tests targeting different
cognitive domains. When adjusting for age, GCS, and educa-
tion, DRD2 rs6279 C homozygotes and ANKK1 rs1800497
heterozygotes were found to have better cognitive composite
scores at 6 months. At 12 months, only the influence of
rs1800497 remained significant [22].

In the Mygra et al. study of 90 survivors of severe
TBI, ANKK1 rs1800497 genotyping was also performed
and frontal lobe dysfunction was found to be worse at
12 months post injury in C homozygotes compared to T
carriers in the bivariant analysis (p = 0.028) [52]. Yue
et al. looked at 6-month cognitive performance follow-
ing TBI in 492 patients and the association with
ANKK1 rs1800497 genotype. Using the CVLT-II Trial
1–5 Standard Score, a dose-dependent effect for the T
allele was found, with T/T homozygotes scoring the
lowest on language testing (T/T 45.1, C/T 51.1, C/C
52.1, ANOVA; p = 0.008) [55].

Much more work is needed before a consistent pattern of
influence of neurotransmitter-associated SNPs can be identi-
fied. The heterogeneity in outcomes tested, populations exam-
ined, and ultimately results makes deriving any clear conclu-
sion difficult at this time.

Physiologic Outcomes

A number of association studies have been done looking at the
correlation of different SNPs and various physiologic out-
comes such as cerebral perfusion, cerebral edema, and sei-
zures following TBI. While clinically important in and of
themselves, these studies help elucidate that causal by which
SNPs may influence more general outcomes.

Cerebral Perfusion–Associated Polymorphisms

In recent years, cerebral autoregulation (CA) dysfunction has
been revealed as a key prognostic marker following severe
TBI. This has prompted exploration into the possible mecha-
nisms of dysfunctional CA and more recently the association
between polymorphisms of genes that code for proteins spec-
ulated to be involved in CA and global outcomes following
TBI has been explored [58].

One such gene is the ACE gene that codes for angiotensin-
converting enzyme (ACE). ACE plays a pivotal role in the
regulation of vascular tone and blood pressure by activation of
the vasoconstrictor angiotensin II. There has also been work
showing that ACE is directly involved in modulating regional
cerebral blood flow autoregulation and the responsiveness of
the cerebral vasculature as measured by transcranial Doppler
[59]. In a 2015 study, Dardiotis et al. examined 363 prospec-
tively enrolled TBI patients. They were able to identify and
associate three SNPs of the ACE gene (rs4461142,
rs7221780, rs8066276) and 6-month GOS scores. The authors
noted that these SNPs were all located in the 3′ downstream
ACE gene region and point to the potential pharmacogenomic
implications of this region [60].

Cerebral Edema

In the previously discussed study performed by Jha et al. of
410 severe TBI patients, the associations between the ABCC8
polymorphisms and cerebral edema and ICP were also exam-
ined. This was done by examining radiographic edema on CT
scan as well as ICP measurements following TBI [16••].

The rs7105832 (A>C) SNP was significantly associated
with differences in average ICP (p = 0.003), peak ICP (p =
0.02), and acute CT edema (p = 0.012). Homozygote variants
were found to have a higher frequency of acute CT edema
(66%) versus heterozygotes (36.8%) and homozygous wild-
type (45.3%). They were also found to have higher mean ICPs
(13.0 ± 7.5 mmHg) and peak ICP (31.9 ± 19.0 mmHg) versus
heterozygotes (mean ICP 10.0 ± 4; p = 0.004; peak ICP 24.2 ±
10.3, p = 0.045) and homozygous wild-type (mean ICP 10.0 ±
3, p = 0.004; peak ICP 28.8 ± 17, p = 0.099). Notably, this
SNP was not found to be associated with 3-month GOS (p =
0.358) [16••].

The rs2237982 (C>T) allele which was found to be asso-
ciated with 3-month outcomes (p = 0.015) was also found to
be associated with higher mean ICP (p = 0.0107), peak ICP (p
= 0.0190), and acute CT edema (p = 0.0204) with, once again,
the homozygous variant having the worst outcomes (mean
ICP 12.4 ± 7.8 mmHg; peak ICP 31.6 ± 18.3 mmHg; acute
CT edema 56.7%). Notably, the rs11024286 and rs4148622
SNPs that were associated with global outcomes were not
significantly associated with these physiologic parameters.
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Seizures and Epilepsy

Post-traumatic seizures and epilepsy are known phenomena and
recently attempts have been made to find an association with
various SNPs and post-traumatic epilepsy (PTE)/post-traumatic
seizures (PTS). In a study of 256 patients with moderate to severe
TBI, Diamond et al. examined IL-β gene SNPs for an association
with post-traumatic epilepsy. They found that, of the three SNPs
tested, the rs1143634 (C>T) SNP was associated with PTE with
the heterozygotes having an increased risk compared to homozy-
gotes (HR = 2.845; 95%CI 1.372–5.900; p = 0.005). Notably, the
heterozygote group also had lower serum IL-1β levels (p = 0.014)
and higher IL-1β CSF/serum ratios (p = 0.093) [61].

Diamond et al. further investigated the association of SNPs
and PTE in a cohort of 162 adults with moderate to severe TBI.
In this group, SNPs in the gene involved in adenosine homeo-
stasis were examined, including adenosine kinase (ADK), ecto-
5'-nucleotidase (NT5E, CD73), and equilibrative nucleoside
transporter type-1 (ENT-1) genes. Nine ADK, three CD73, and
two ENT-1 tagging SNPs were genotyped in each individual in
the cohort. After adjusting for injury severity score (ISS), isolated
TBI status, and SDH inmultivariate Coxmodels, two SNPswere
associated with PTE. The rs11001109 (ADK; G>A) SNP had an
increased risk of PTE when the homozygous variant allele was
present (HR = 4.47; 95%CI 1.27–15.7; p = 0.020). The
rs9444348 (NT5E; G>A) SNP was also associated with PTE
with the highest risk found in the heterozygotes (HR = 2.95;
95%CI 1.19–7.31; p = 0.019) [62].

Ritter et al. hypothesized that excitotoxicity may influence
epileptogenesis following severe TBI and so they examined
32 SNPs in the neuronal glutamate transporter genes SLC1A1
and SLC1A6 in a cohort of 253 severe TBI patients to find an
association with seizure rates up to 3 years post-injury. After
adjusting for covariates known to be associated with PTS
(SDH and depressed skull fracture), the SNPs rs7858819
(SLC1A1; C>T; HR 3.4; 95%CI 1.1–10.5; p = 0.023) and
rs10974620 (SLC1A1; C>G; HR 3.4; 95%CI 1.3–9.3; p=
0.017) were found to be associated with PTS when comparing
the variant homozygotes to the wild-type homozygotes [63].

The hypothesis of excitotoxicity influencing epileptogenesis
following severe TBI was further examined in a recent study by
Kumar et al. which examined 267 severe TBI patients over a 3-
year period following TBI. In this study, 39 SNPs in the
SLC1A2 and SLC1A3 genes were analyzed. After adjusting
for covariates, the SLC1A3 SNP rs4869682 (T>G) was found
to be associated with PTS risk with the GG homozygote having
an increased risk (HR = 2.08; 95%CI 1.20–3.62; p = 0.009) [64].

Future Directions

There are several limitations to the clinical utility of SNP
association studies following TBI. Small sample sizes often

mean that reproduction of results is often rare as can be seen in
this review. The different distributions of SNPs in various
populations and geographic regions both limit generalizability
and make these studies susceptible to unknown confounders.
These may be mitigated by large, multi-center international
collaboration studies. A new approach has been to incorporate
various SNPs into a gene score. These utilize multiple SNPs to
create a prognostic model. Those that currently exist are sim-
ple and only utilize a handful of SNPs and are able to provide
reasonable predictive value. In the future, given advances in
computational power and machine learning, it is likely that
clustering algorithmsmay be used to identify genotypes, char-
acterized by hundreds of SNPs that are predictive of certain
phenotypic outcomes. Ultimately, SNP association studies,
taken on their own, provide no therapeutic intervention. By
their very nature, they relate to non-modifiable factors.
Perhaps the more practical utility of SNP association studies
is as hypothesis generators. These studies give insight into
molecular pathways that play a key role in recovery following
TBI. These pathways may then go on to become therapeutic
targets that may meaningfully impact outcomes following
TBI.

Conclusions

Numerous SNP association studies have been performed to try
to explain the high degree of variance in outcomes following
TBI. Many of these have been able to identify associations
with numerous SNPs and specific outcome metrics. The clin-
ically relevant inferences that can be drawn from these studies,
however, are questionable. Even when large meta-analyses
are performed, the strength of their conclusions is tempered
by the nature of the individual studies. Large collaborative,
multi-institution networks may provide data with sufficient
power to identify true causal relationships. The individual
association studies discussed in this paper, while often not
suitable to determine clinically significant relationships, do
serve to identify targets for further scientific exploration.
Hypothesis generating in nature, they give clues to the mech-
anisms of secondary brain injury and eventually may even
lead to therapeutic targets.
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