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Abstract
Purpose of Review Neurocritical care combines the complexity of both medical and surgical disease states with the inherent
limitations of assessing patients with neurologic injury. Artificial intelligence (AI) has garnered interest in the basic management
of these complicated patients as data collection becomes increasingly automated.
Recent Findings In this opinion article, we highlight the potential AI has in aiding the clinician in several aspects of neurocritical
care, particularly in monitoring and managing intracranial pressure, seizures, hemodynamics, and ventilation. The model-based
method and data-driven method are currently the two major AI methods for analyzing critical care data. Both are able to analyze
the vast quantities of patient data that are accumulated in the neurocritical care unit.
Summary AI has the potential to reduce healthcare costs, minimize delays in patient management, and reduce medical errors.
However, these systems are an aid to, not a replacement for, the clinician’s judgment.
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Introduction

Neurocritical care combines the complexity of both medical
and surgical disease states with the inherent limitations of
assessing patients with neurologic injury. Multimodality mon-
itoring (MMM) allows the neurocritical care clinician to col-
lect vast amounts of data including intracranial pressure (ICP),
electroencephalograms (EEGs), hemodynamics, ventilation,
body temperature, serial neurological examinations, fluid in-
take-output, and other neurophysiologic parameters [1].
MMM has transformed care by automating and centralizing

patient data collection, allowing artificial intelligence (AI) to
utilize this information and manage basic patient care. Recent
advances have made it possible for AI to move from the ex-
perimental realm into the actual clinical setting in the intensive
care unit (ICU). These AI systems that demonstrate ambient
intelligence can interact with humans and are embedded,
adaptive, personalized, context aware, and anticipatory.
These traits allow AI systems to continuously monitor and
treat neurocritical care patients in real time. Early signs of
neurological deterioration could be detected more promptly
and appropriate measures taken more quickly, thereby
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improving patient outcomes. Furthermore, AI could reduce
costs and help patients in areas where neurocritical care is
not available [2]. In this article, we review the promise of AI
and its future potential directions in shaping neurocritical care.

Promise of Artificial Intelligence

AI systems have significantly advanced in the analysis of
high-resolution neurocritical care data and the associated al-
gorithmic decision-making [2]. Furthermore, iterative analysis
of updated data creates a closed-loop AI system that monitors
parameters, treats patients, and then modifies that treatment
based on updated parameter data. Ultimately, the AI can man-
age patient care in real time without any clinician input. The
combination of data analysis and decision-making creates the
potential for an AI system to manage the minutiae of
neurocritical patient management with minimal or no super-
vision, freeing the clinician to focus attention elsewhere [3–5].
Some potential parameters include anesthetics/analgesics, an-
tiepileptic drugs (AED), blood pressure, glucose, fluids/elec-
trolytes, neuromuscular blockade, and ventilator settings
[6–17]. In this article, we discuss commonly measured param-
eters in neurocritical care, the innovations that allow AI to
analyze patient data and manage these parameters, and the
future potential of AI in the clinician’s armamentarium.

Bioinformatics, Algorithms, and AI
Decision-making in Neurocritical Care

Data analysis and decision-making are two features that are
absolutely essential for an AI with ambient intelligence to
function. In order to effectively assist the clinician in patient
management, the AI must be able to parse through the large
amounts of physiological data gathered by MMM, interpret
the information, and then make complex neurocritical care
decisions. The model-based methods and machine learning
(data driven) methods are the two overarching general ap-
proaches taken when analyzing critical care data. The first
model-based method utilizes a model constructed on our un-
derstanding of a system, and parameters are fed into that mod-
el to generate a predicted outcome. In clinical practice, this
approach attempts to create a patient model that integrates
various factors together and treatment then pushes the patient
towards a favorable physiologic state rather than correct a
specific physiological parameter [18, 19]. The other machine
learning method uses algorithms generated by prior data and
outcomes to predict future outcomes based on unseen data.
Both approaches use several methods to generate an outcome.

One such method is the dynamic systems model, which
attempts to describe the many interactions in a system using
classic physical mechanics. One example has been created by
Ursino et al., in which he modeled the relationship between

cerebral perfusion pressure, cerebral hemodynamics, cerebral
vascular reserve, and autoregulation [20]. However, one po-
tential problem with dynamic systems models is that they
generally assume each component contributes linearly to the
modeled biological system. However, real biological systems
are typically nonlinear, so small changes in variables can po-
tentially result in enormous downstream results [21].

Another method that can be used with model-based or ma-
chine learning systems is Bayesian inference, which uses
Bayes rules to estimate diagnostic states of patients. This tech-
nique generates different diagnostic states and then assigns a
probability of it being the patient’s true state based on empir-
ical data [22]. A best estimate of the patient’s diagnostic state
is made after each probability is weighed using Bayes rule.
Furthermore, a dynamic Bayesian network can predict the
transition from one diagnostic state to another [23]. The
Avert-IT project by BrainIT is a real world example of a
Bayesian network in neurocritical care [24]. It uses clinical,
physiologic, and demographic data from traumatic brain inju-
ry (TBI) patients to create a prediction index of the occurrence
of hypotension following TBI.

Machine learning systems use two types of learning algo-
rithms, supervised or unsupervised. These algorithms use pri-
or data and outcomes to predict future outcomes using unseen
data. In supervised learning, the model is loaded with labeled
data which is then used to predict an outcome. Outcomes are
produced either by regression (predicting trends using previ-
ously labeled data) or by classification (as in decision tree
analyses). In unsupervised learning, the system uses unlabeled
data to identify patterns within the data itself. Many physi-
cians are familiar with the decision tree analysis method as
they are exposed to it during their training when using flow-
charts to “work up” conditions. Complex multivariate data
begins at the highest point and is then grouped into descend-
ing trees based on different factors (i.e., disease type, sex, age)
[25]. These trees are then similarly subdivided using different
factors. Ultimately, an endpoint can be examined (i.e., per-
centage success of outcome from a certain procedure) and
then correlated with the parameters that were used to create
that tree. An example could be “a 25% success rate of fluid
resuscitation in hemorrhagic hypotensive men over 85” vs. “a
75% success rate of fluid resuscitation in hemorrhagic hypo-
tensive women under 35”.

Artificial neural networks are a particularly sophisticated
form of supervised learning. These complex AI systems apply
iterative learning to successfully accomplish multivariate non-
linear analysis and multifactorial classification. Theymay also
discover patterns and sophisticated data relationships. The
work of Vath et al. is one example of the clinical usage of
artificial neural networks, which used clinical and
neuromonitoring data to predict TBI outcomes [26]. Another
example is the neural network developed by Cohen et al. It
identifies clusters of physiological data in trauma patients in
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specific states by utilizing hierarchical clustering, a dimension
reduction technique originally used in genomics [27]. This
network is classified as unsupervised learning because it was
able to identify and correlate data where the outcome was not
known in a specific state and thereby discover new associa-
tions between different parameters. It correlated patient states
(such as risk of infection, multiorgan failure, and death) with
physiological data to identify prognostic patterns too complex
for traditional techniques. It generated a dendrogram and a
heat map to demonstrate “clusters” of physiologic data that
were correlated with specific states in a visually apparent
manner.

Integrating Artificial Intelligence
into Telehealth Platforms

Increasing critical care provider shortages combined with in-
homogeneities in provider distribution have resulted in in-
creasing use of telemedicine applications in critical care in-
cluding neurocritical care (telemedicine-supported ICU or
tele-ICU) [28]. In the process of using this technology to en-
hance patient care, we have learned that, if implemented cor-
rectly, it can reduce length of stay and improve mortality [29,
30]. The need for tele-ICUs to be fully integrated with the
bedside clinical care systems also provides the additional ad-
vantage of real-time interfacing and archiving of large clinical
datasets across different platforms and through an integrated
tele-ICU software system. The tele-ICU care delivery and
enhancement model operates through small groups of expert
telemedicine care providers who affect large numbers of pa-
tients. This enables tele-ICU-based clinical care standardiza-
tion initiatives across large numbers of patients. The tele-ICU
model has been shown to improve clinical outcomes through
the development, implementation, and continuous improve-
ment of AI-aided algorithmic clinical decision support sys-
tems [31].

As an example, tele-ICU services have been found to be
associated with increased adherence to best practice guide-
lines [32, 33]. A cornerstone of tele-ICU support is the early
recognition of clinical deterioration and crisis prevention.
Numerous algorithmic clinical decision support systems at
increasing stages on the AI spectrum have been created for
this purpose [34–36]. Taking this a step further, AI-supported
algorithms also have made their way into capacity manage-
ment, for example, by algorithmically providing real-time dis-
charge readiness assessments with high discrimination for
ICU mortality (AUROC 0.862) [37].

In the setting of increasing cost pressures and decreasing
financial margins, optimizing patient throughput (“right pa-
tient, right bed, right time”) has become more and more im-
portant. Integrating AI-supported surge predictive functions
and throughput management functions into a comprehensive

logistics center for hospitals and healthcare networks has been
shown to increase capacity, improve patient outcomes, and
increase financial contribution margins [37].

All AI approaches need large ideally multicenter or even
international high-quality and granular datasets to develop and
validate any AI application. Examples for such databases are
the MIMIC III database and the eICU Collaborative Research
Database [38]. Easy access to these datasets and collaborative
approaches between data scientists and clinicians have
spurned further research into AI support for critical care, as
evidenced by recent publications [38, 39].

As an example of the promise of this approach, a recent
study, targeting sepsis as a gigantic challenge on multiple
levels, developed and validated a reinforcement learning agent
(AI clinician) addressing fluid and vasoactive agent manage-
ment decisions as crucial elements of acute management re-
lated to patient outcomes. The AI clinician reliably
outperformed human clinicians in fluid and hemodynamic
management, illustrating the potential for AI clinical decision
support tools [40].

Future Directions

Intracranial Pressure

ICP is the most commonly monitored parameter in
neurocritical care because it is highly predictive of mortality
[41, 42]. Increased ICP can lead to impaired cerebral perfu-
sion, brain tissue hypoxia, and subsequent infarction, thereby
worsening secondary neurological injury and leading to even-
tual mortality. MMM can continuously record ICP, which al-
lows the physician to be more responsive to adverse changes.
AI can take advantage of the continuous monitoring to opti-
mize treatment regimens in real time.

Some applications of AI for monitoring ICP already exist,
albeit in experimental phases. One example is the forecast
algorithm developed by Zhang et al., which predicts future
mean ICP, enabling clinicians to identify dangerous trends in
ICP early and potentially modify treatments to offset antici-
pated harmful increases in ICP [43]. This kind of technology
would obviously be beneficial for patients within the ICU.

Other new approaches for analyzing ICP compares other
physiologic parameters with ICP in real time. One such pa-
rameter is the pressure reactivity index (PRI), which deter-
mines if the patient is adequately maintaining cerebral pres-
sure autoregulation by analyzing the trend between ICP and
mean arterial pressure. This parameter has successfully been
used in patients with TBI and in patients with intracerebral
hemorrhage [44, 45]. Another parameter is ICP variability.
ICU monitors typically display the latest ICP measurement,
but AI systems that can calculate the variability of ICP over a
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given time may be more useful clinically since reduced ICP
variability is associated with a poorer outcome [46, 47].

While AI has made advancements in data analysis in
predicting future ICP trends and variability, the next logical
step would be automating treatment in direct response to ele-
vated ICP. With the continuous monitoring of ICP offered by
MMM, an AI system could be programmed to automatically
administer mannitol once it detects persistent elevation of ICP
greater than 20 mmHg for a pre-specified period of time
assigned by the clinician. As the mannitol is being adminis-
tered, the AI can sync to the electronic medical records and
obtain data from the patient’s blood work so that the serum
osmolality does not rise about 320 mmol. If the ICP remains
elevated despite the diuretic effect of mannitol, the AI could
switch to treatment with hypertonic saline [48]. The urinary
losses within this treatment period could be recorded and re-
placed using an automated fluid management system. The
entirety of this process could be kept within a closed-loop
system with minimal input from the clinician. The manage-
ment of elevated ICP currently requires frequent checks on the
patient by the ICU team. While AI cannot replace the vigi-
lance of this team, the centralization of data and the automa-
tion of management would increase the probability that sud-
den elevations in ICP are addressed more promptly and
efficiently.

Seizures

Another potential application of AI in neurocritical care in-
cludes the detection of seizures and the management of AEDs.
Real-time computer-assisted analysis of EEGs has previously
been shown to be able to classify seizures by type. An EEG
classification system created by Cloostermaans et al. was able
to categorize EEG activity into one of eight types: isoelectric,
low voltage, burst suppression, generalized periodic dis-
charge, seizure activity, slowed activity, artifact, and normal
[49]. Artificial neural networks have also been used to detect
seizure activity [50, 51]. These computerized systems of de-
tecting seizure activity can assist those who do not specialize
in reading EEGs to manage patients with seizures, expediting
treatment. Furthermore, this extends the reach of neurocritical
care where epileptologists may not be available.

In addition to classifying EEG activity, AI can also auto-
mate the administration of AEDs. The current guidelines for
treating status epilepticus require continuous EEG monitoring
and titrating AEDs depending on the monitored epileptiform
activity. Similar to monitoring ICP, blood pressure, and respi-
ratory status, the role of AI in treating seizure activity would
be to reduce the amount of time between the adverse event and
administration of treatment. The AI system could function in a
closed-loop system, constantly analyzing the EEG and titrat-
ing the AED infusion to the cessation of epileptiform activity

as collected by EEG in amannermore precise than is currently
possible [52].

Blood Pressure

Blood pressure management in the ICU is especially impor-
tant as sudden changes can lead to permanent damage of sev-
eral organs [53]. Optimal blood pressuremanagement requires
careful monitoring. The time frame in which the hypertension
develops (urgency vs. emergency) and the degree of hyper-
tension (moderate vs. severe) are important considerations.
Since this data is already commonly collected in the ICU, an
AI system can generate an automated response to administer
an antihypertensive agent to achieve a blood pressure goal as
assigned by the clinician. Furthermore, depending on the na-
ture of a patient’s hypertensive event, the AI could make sug-
gestions as to which medication to administer. For example, if
a patient develops tachycardia and/or arrhythmias, the AI
might suggest beta-blockers because it algorithmically de-
duces an increased adrenergic tone in the patient. If the AI
detects a concurrence of elevated blood pressure and increased
ICP, it may once again suggest beta-blockers, but then warn
against using vasodilators for it would be programmed to cal-
culate cerebral perfusion pressure. It would advise against
lowering blood pressure at the expense of decreasing cerebral
perfusion. The physician is able to choose a treatment option
based on the system’s suggestions, and the AI is once again
able to function in a closed-loop manner by continuing to
monitor the blood pressure’s response to the treatment given.
For example, if the clinician wished that the blood pressure
should not drop more than 20% within the first hour, the AI
could continually adjust medication infusion rates to ensure
blood pressure does not fall below this threshold [54].

Ventilation

The monitoring of a patient’s respiratory status is important in
neurocritical care as many patients with neurologic injury
have an impaired respiratory drive [55]. Furthermore, induc-
ing hyperventilation with subsequent hypocarbia is one way
to manage elevated ICP in a patient [56]. These patients also
often require positive end-expiratory pressure (PEEP) to im-
prove their oxygenation status. However, while important for
maintaining oxygenation, PEEP may contribute to increased
ICP [57]. Therefore, the data from a patient’s respiratory status
must be analyzed with the patient’s ICP. In an acute episode of
intracranial hypertension, hyperventilation can be used to
cause a drop in PaCO2, resulting in cerebral vasoconstriction
and thereby reducing ICP. However, this is generally not rec-
ommended for prolonged management as the vasoconstriction
can contribute to decreased cerebral blood flow, hypoxia, and
even ischemia. Furthermore, the vasoconstrictive effect of hy-
perventilation has been shown to last less than 24 h, after
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which the cerebral vasculature equilibrates with the new
PaCO2, causing vessels to re-dilate with a subsequent rebound
elevation in ICP [58]. In the future, it is easy to fathom that
these interventions can be monitored and managed by AI sys-
tems since MMM already collects the necessary data includ-
ing oxygen saturation, PaCO2, PEEP, and ICP. The AI could
titrate the ventilator and respiratory settings in direct response
to the parameters gathered, acutely responding to elevations in
ICP. However, given the nuances and limitations in ventilator
management in the neurocritical care patient, this automated
system would require careful oversight by the intensive care
team.

As discussed, one drawback of utilizing hyperventilation
for ICP management is that it could induce cerebral ischemia
[56]. Therefore, an ideal AI system would also incorporate
data accumulated from continuous brain tissue oxygenation
monitoringwhenmanaging ventilator and respiratory settings.
The two main invasive methods to continuously monitor brain
tissue oxygenation are intraparenchymal oxygen monitoring
and jugular bulb oximetry [59, 60]. In states of cerebral ische-
mia, the brain increases oxygen extraction via a compensatory
mechanism, reducing the jugular bulb venous oxygen satura-
tion. Jugular bulb oximetry is useful because this increase in
cerebral oxygen extraction occurs more than 24 h before the
advancement to symptomatic cerebral vasospasm [61].
Similar to other parameters discussed, the physiologic data
collected by MMM allows the AI system to automatically
adjust ventilator settings in states of cerebral ischemia and
then monitor the effects of the intervention. Ventilatory con-
trol in neurocritical care patients requires a fine balance be-
tween maintaining ICP and oxygenation. An AI can manage
this balance in real time, reducing the time needed to make the
necessary adjustments for a patient.

Limitations

AI technologies have great potential for assisting future
neurocritical care physicians. However, significant hurdles re-
main before they can be used routinely in the ICU. One of the
most significant challenges is creating adequate regulatory
mechanisms to ensure the patients under the care of an AI
are safe and protected. When an AI independently decides to
intervene on a patient and causes an adverse event, who is then
held accountable? Furthermore, patient autonomy might be
challenged because the AI system can administer care in an
automated fashion without involving the patient in the
decision-making process. The patient-doctor relationship can
become more “distant” as these AI systems take over more of
the basic patient management. As this technology becomes
more widespread, these challenges need to be addressed be-
fore an AI can play any role in patient care.

Conclusion

As MMM progresses and patient data continues to become
increasingly automated and centralized, patient care will re-
quire ever more integration and analysis of multiple parame-
ters. AI systems currently are suited to analyze the vast
amounts of data, offering clinicians another tool in their arma-
mentarium tomanage these complex patients. The next goal in
advancing neurocritical care is to develop AI systems that can
function in closed loop systems, analyzing the data and titrat-
ing treatments in real time, reducing possible delays in patient
care and optimizing the clinician’s time. However, one must
be cognizant and remember that these systems are in place to
aid and not replace the clinician. The clinician is ultimately
responsible for the patient’s care.
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