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Abstract
Purpose of Review Ablations and particularly deep brain stimulation (DBS) of a variety of CNS targets are established thera-
peutic tools for movement disorders. Accurate targeting of the intended structure is crucial for optimal clinical outcomes.
However, most targets used in functional neurosurgery are sub-optimally visualized on routine MRI. This article reviews recent
neuroimaging advancements for targeting in movement disorders.
Recent Findings Dedicated MRI sequences can often visualize to some degree anatomical structures commonly targeted during
DBS surgery, including at 1.5-T field strengths. Due to recent technological advancements, MR images using ultra-highmagnetic
field strengths and new acquisition parameters allow for markedly improved visualization of common movement disorder
targets. In addition, novel neuroimaging techniques have enabled group-level analysis of DBS patients and delineation of areas
associated with clinical benefits. These areas might diverge from the conventionally targeted nuclei and may instead correspond
to white matter tracts or hubs of functional networks.
Summary Neuroimaging advancements have enabled improved direct visualization-based targeting as well as optimization and
adjustment of conventionally targeted structures.

Keywords Deep brain stimulation . Functional neurosurgery .MRI . Neuroimaging

Introduction

A wide range of brain disorders are thought to arise from
abnormal neural activity in brain circuits. Deep brain stimula-
tion (DBS) is a surgical treatment directed toward modulating
dysfunctional circuits [1]. During DBS surgery, electrodes are
inserted into precise brain structures, usually part of the

underlying aberrant circuit. For example, in Parkinson’s dis-
ease (PD), the most commonly targeted brain structure is the
subthalamic nucleus (STN), an essential hub in the brain’s
motor circuitry [2]. The globus pallidus interna (GPi) is also
a target in PD, however less often used [3]. The thalamic
ventral intermediate (VIM) nucleus and GPi are commonly
used for essential tremor and dystonia, respectively [4]. The
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same brain areas are targets for ablative treatments with radio-
frequency, radiation (i.e., gamma knife radiosurgery) and ul-
trasound (i.e., MRI-guided focused ultrasound).

Although clinical benefits produced via DBS are best
known in movement disorders such as PD, dystonia, and
tremor, there is mounting evidence that DBS neuromodulation
has its place in treating psychiatric and cognitive disorders [1,
4]. The therapeutic effects achieved with DBS hinge upon
selective stimulation of the intended structure through accu-
rate and precise placement of the electrodes—maximizing
therapeutic benefits while minimizing spillover onto neigh-
boring structures that may produce adverse effects [5, 6].
Despite significant advances in neuroimaging technology
over the past decades, routinely acquired preoperative brain
magnetic resonance imaging (MRI) sequences remain defi-
cient at directly visualizing DBS targets for stereotactic plan-
ning purposes [7, 8]. Some groups have developed dedicated
MRI sequences that visualize some of the anatomical struc-
tures commonly targeted during DBS surgery onMRI at 1.5-T
field strengths such as the STN [9–12] and the posteroventral
GPi [13, 14]. Nevertheless, some commonly used targets,
such as the VIM, cannot be visualized on 1.5-T structural
MRI, and many groups have continued to use indirect
targeting methods when performing DBS—relying on identi-
fiable surrogate anatomical landmarks and coupled with other
techniques such as intraoperative microelectrode recordings
(MER) and/or clinical evaluation in awake patients [15].

While neuroimaging plays a central role in today’s DBS sur-
gery, it was not until the 1940s that it was used to guide stereo-
taxic surgeries targeting a precise brain structure via a coordinate
system. Spiegel et al. (1947) [16] and Tasker (1965) [17]
pioneered stereoencephalography to triangulate brain structures
through radiographic skull landmarks. As computerized tomog-
raphy (CT) and MRI became widely available, their ability to
non-invasively discern internal brain structures made them gold
standards for DBS preoperative planning. Drawing from atlases
with a defined coordinate system, relationships between targets
and anatomical landmarks such as the anterior and posterior
commissures are still used to plan DBS surgeries [15]. The
known inter-surgeon variability when identifying these land-
marks is problematic, however [18]. Current neurosurgical tech-
nique entails combining indirect, coordinate-based targeting and
MRI-guided direct target visualization. In many cases, this stan-
dard planning is further supplemented with intraoperative tech-
niques such as MERs and clinical stimulation to produce motor,
sensory, physiologic, or cognitive phenomena [15, 19, 20].

In this review, we will summarize the recent neuroimaging
technological advancements and their utility as new methods
for optimizing targeting in functional neurosurgery. First,
technological developments including ultra-high-field (UHF)
MRI and novel MRI pulse sequences and image processing
methods allowing improved target visualization will be
discussed. Then, refinement of current DBS targets for

movement disorders based on structural and functional
connectomes will be reviewed.

Direct Target Visualization with Ultra-high-field MR
Imaging

While acquisition of 3 Tesla (3 T) MRI for clinical neuroim-
aging has become routine in most neurological and neurosur-
gical centers, thanks to technological advances, UHF (i.e.,
7 T) MRI are becoming increasingly available [21, 22].
Compared to the widely used 1.5 T MRI in the 1990s, when
planning DBS surgery for movement disorders, 3-T MRI of-
fers superior visualization of the targets [23–25]. Lower field
strength MRI may be used for intra-operative validation of
targeting accuracy [10•, 26, 27]. The net benefit of using
UHF MRI in comparison to 3 T is still being investigated.

From a physics standpoint, a higher magnetic field
strength offers clear advantages while also introducing dis-
advantages that must be acknowledged (Table 1). The main
benefit of using UHF is the desirable increase in signal-to-
noise ratio (SNR) [22, 28–30], which theoretically grows
linearly in relation to magnetic field strength [23, 24].
Higher SNR in turn allows increased spatial resolution, per-
mitting the visualization and delineation of smaller neuroan-
atomical structures (Table 1). Such precision is warranted as
structures of interest targeted with DBS in movement disor-
ders are generally sub-centimeter in scale [31]. Naturally, as
the spatial resolution inherent to lower magnetic field
strength approaches or is inferior to the dimensions of the
desired structure, MRI volume averaging leads to blurring of
the anatomy. Also, optimal SNR is particularly relevant in
DBS planning since it scales inversely with distance from the
cortex [29, 32]. Moreover, due to the non-uniform distribu-
tion of SNR throughout the head at UHF MRI, SNR of deep
structures has been shown to particularly improve with in-
creasing magnetic field strengths [33]. Importantly, there is
little trade-off in terms of acquisition times at UHF MRI;
incorporating similar protocols to those used in current clin-
ical imaging, UHF MRI can acquire smoother, less grainy
images than those obtained at lower field strengths in a com-
parable timeframe [8, 21, 23]. For example, diagnostic qual-
ity T1-weigthed (T1W) and T2-weighted (T2W) 7-T images
can both be obtained within 10 min [8]. In addition to im-
proved SNR, UHF MRI is reported to confer a better
contrast-to-noise ratio (CNR), improving the ability to dif-
ferentiate two small abutting structures [22, 29]. Given that
the STN is bordered by several small structures such as the
ansa lenticularis, zona incerta, and substantia nigra, this ca-
pacity becomes crucial [34]. Additionally, while increased
susceptibility artifacts may be a problem with UHF MRI
(as discussed in the next paragraphs), it may also be an ad-
vantage to better visualize iron-rich structures such as the
STN [8, 35•, 36]. By reducing the gap between MRI and
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histology, this increased spatial resolution opens the door to
highly accurate and detailed MRI atlases [31, 37, 38], thus
further refining the surgeon’s ability to target a specific ter-
ritory within a given circuit (e.g., the dorso-lateral STN in-
volved in motor functions).

Recent studies have investigated the validity of UHF MRI
in the context of DBS surgery for movement disorders. UHF
allows visualization of otherwise obscure (or indiscernible)
brain structures on clinical 1.5-T or 3-T MRI [22, 28, 34, 39,
40, 41•, 42•, 43]. At these commonly used field strengths, 3 T
has been reported to provide STN visualization (to some de-
gree) for PD DBS [24], which has been shown to correlate
well with MER recordings [25••]. With its far superior SNR
and spatial resolution, UHF-imaging permits accurate delin-
eation of STN borders. Indeed, UHF-demarcated STN borders
have already been shown to correlate well with MER record-
ings [28], although a slight discrepancy between the two
sources of information was described in another study [43],
highlighting the possible image distortions at UHF MRI.
However, these small discrepancies could also be explained
by distortion of brain tissue by the advancing surgical probes.
On the other hand, the fact that clinical outcomes have been
shown to correlate with the proportion of stimulation overlap-
ping the STN at 7 T partly validates the accurate anatomical

representation of UHF MRI [28]. At higher magnetic field
strengths, STN can also be segmented and parcellated based
upon white matter projections, raising the prospect of precise,
substructure level targeting of previously indiscernible areas
(i.e., the motor division of STN) [41•]. This direct visualiza-
tion of DBS targets may improve surgical techniques and
clinical outcome given inter-individual variability in STN lo-
cation has been reported [28].

UHF MRI may also hold promise for essential tremor DBS,
which most commonly targets the motor thalamus [1]. Indeed,
the potential benefits here may even be more pronounced than
those for PD; while the STN may be adequately visualized on
routinely acquired MRI [7], the thalamic intranuclei, including
the VIM, are not appreciated at all on current MRI protocols.
These nuclei can be visualized with appropriateMRI sequences
at 7-T MRI [40, 42•], however, which is a notable advantage
when planning DBS surgery for tremor.

Although UHF MRI can theoretically provide substantial
advantages, there are only about 60 centers worldwide at pres-
ent; as such, the poor availability of this technology remains a
barrier to mainstream clinical practice (Table 1) [22].
Additionally, higher magnetic field strengths are more prone
to susceptibility artifacts and image distortions [23, 39], leading
in theory to a greater risk of mistargeting. While this limitation

Table 1 Advantages, disadvantages, and future developments of the reviewed neuroimaging advancements

Advantages Disadvantages Future developments

UHF MRI 1. Higher SNR 1. Lack of availability 1. Higher magnetic field strengths
(e.g., 9 T)

2. Higher spatial resolution 2. Image distortion 2. Correction of image distortion

3. Increased susceptibility artifacts
(e.g., better for iron-rich structures)

3. Increased susceptibility artifacts
(e.g., distortions)

3. Development of coils and equipment that
allow acquisition of stereotactic images

4. Requirement for image co-registration with
another stereotactic imaging modality

5. Safety concerns with metallic implants

6. Specialized knowledgebase and clinical
expertise

New MRI pulse
sequences
(e.g., QSM)

1. Better contrast between small
structures

1. Imaging preprocessing 1. Integration into commercial software

2. No need for purchase of expensive
new equipment

2. Specialized knowledgebase and clinical
expertise

2. Development of coils and equipment that
allow acquisition of stereotactic images

3. More easily incorporated into
existing surgical workflows

3. Not always possible to perform with
commercially available stereotactic frames

Targeting
connectomes

1. Refine current targets 1. Functional neuroimaging acquisition 1. Prospective validation

2. Direct visualization of target
(e.g., tracts)

2. Specialized knowledgebase and clinical
expertise

2. Improved MRI pulse sequences

3. Requirement for image co-registration with
another stereotactic imaging modality

Probabilistic
maps for
targeting

1. Refined current targets 1. Large patient cohorts required 1. Prospective validation

2. Data-driven approach 2. Specialized knowledgebase and clinical
expertise

2. Refined VTA modeling

3. Direct visualization of target
(e.g., maps)

3. Requirement for image co-registration with
another stereotactic imaging modality

UHF MRI, ultra-high-field MRI; MRI, magnetic resonance imaging; SNR, signal-to-noise ratio; QSM, quantitative susceptibility imaging
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would be particularly problematic for DBS surgery given the
small scale of structures involved, most of the subcortical struc-
tures targeted in movement disorders are located deep in the
brain and have been shown to have little distortion when com-
pared to the routine 1.5-T MRI [44•]. Due to their proximity to
the paranasal sinuses, areas such as the inferior frontal and
temporal lobes are most at risk of distortion; given these are
not targets for movement disorder DBS at present, the problem
of UHF MRI-related distortion is of less concern here than it
might be for psychiatric indications. Moreover, UHF MRI has
not been reported in conjunction with a commercially available
stereotactic frame; UHF MR images must therefore be co-
registered with stereotactic images using another modality, a
step that can introduce registration errors [45]. Lastly, from a
practical standpoint, the risk of metallic implants in UHF MRI
has not been thoroughly evaluated and may thus limit the clin-
ical generalizability of this technology [30, 46, 47]. Patients
with metallic implants such as aneurysm clips and cardiac me-
tallic devices are increasingly prevalent, and safety studies, such
as those recently performed with 3-T MRI and DBS [48, 49],
will be needed before they can safely undergo UHF MRI.

In conclusion, UHF MRI still remains an experimental
technique requiring a more specialized knowledge base and
clinical expertise than is typical in the field of clinical radiol-
ogy. As even higher field strengths [34] and image distortion
correction methods are being developed [50–52], continued
testing is required to bring the potential benefits, obstacles,
and trade-offs presented by UHF MRI relative to lower field
strength MRI more clearly into focus.

Direct Target Visualization with New MRI Pulse
Sequences

In addition to increasing the magnetic field strength, changing
MRI acquisition parameters is also a promising technique. MRI
pulse sequences are designed to provide varying kinds of con-
trasts through their sensitivity to different tissue properties. For
example, routinely acquired structural MRI pulse sequences
such as T1W and T2W sequences are mostly sensitive to the
time taken for the water molecules (i.e., protons) to realign with
the MRI magnetic field and the time for the excited water mol-
ecules (i.e., protons) to go out of phase with each other, respec-
tively. These sequences can usually differentiate between gray
matter, white matter, and other basic components such as fat
and cerebrospinal fluid. However, at lower field strengths (1.5 T
or 3 T), they generally fail to delineate smaller nuclei and sub-
nuclei. On routinely used T2W sequence, for instance, the STN
appears hypointense and may be difficult to differentiate from
surrounding structures [7], necessitating the use of adjunct in-
direct targeting methods.

In recent years, developments in MRI pulse sequences and
advances in imaging processing have led to the development of
sequences sensitive to other aspects of tissue composition. The

STN is an iron-rich structure, which is likely responsible for its
relative hypointensity on T2W imaging [36, 53]. SWI, a type of
gradient echo (GRE) sequences, is highly sensitive to iron con-
tent by taking advantage of the T2* artifact associated with its
paramagnetic properties [54]. These sequences can be acquired
on most MRI scanners and may be incorporated into existing
surgical workflows (Table 1). Not surprisingly, the STN ex-
hibits striking hypointensity when imaged with SWI pulse se-
quences [25••, 36, 53]. However, the iron present in nearby
structures also influences the signal in the STN, degrading the
contrast and limiting the ability to differentiate the STN from its
surroundings [54]. Fortunately, a novel image processing tech-
nique that can be applied to multi-echo GRE acquisitions—
quantitative susceptibility mapping (QSM)—quantifies the sus-
ceptibility in each structure and represents them on a scale that
enhances the contrast between neighboring structures (Table 1)
[36, 53, 54]. The STN [35•, 36, 53], and (to a lesser degree) the
GPi [55], have been shown to be better appreciated with QSM.
With this marked increase in contrast between structures, delin-
eation of subcortical structures such as the thalamus, GPi, and
STN can be performed using an automated computer algorithm
[56, 57]. Furthermore, by providing a quantifiable tissue com-
position signal that mainly reflects iron quantity, QSM can pro-
vide data on the expected age-related changes in small subcor-
tical nuclei such as STN [58, 59]. Of note, QSM reconstruction
requires niche expertise for the necessary image preprocessing
(Table 1) [60]. Also, not all commercially available stereotactic
frames may allow acquisition of GRE sequences. This pulse
sequence-dependent enhancement of target area visualization
may help improve current targeting approaches and decrease
the number of surgical passes, enhancing practice and improv-
ing outcomes. As such, it is extremely promising and may be
particularly powerful when combined with UHF MRI.

Finally, proton density–weighted MR images reflect the
actual density of protons in tissues and is another sequence
of interest since it provides excellent contrast between white
and gray matter structures, making it useful in defining the
GPi within the components of the lentiform nucleus [13] as
well as the pedunculopontine nucleus [61].

Targeting Circuits of Interest

Recent research suggests that optimal structures to be targeted
may not be apparent with routine structural imaging. For ex-
ample, it has been suggested that the clinical benefits of DBS
may be better understood as emerging fromwhite matter path-
ways [62–67] or focal hubs of functional networks [68••] rath-
er than from discrete structures such as deep gray matter nu-
clei. Interestingly, when these functional and structural net-
works are targeted more directly, the resultant target may spa-
tially diverge from conventional coordinates, possibly
reflecting various underlying neural substrates responsible
for clinical benefits.
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Conventionally, DBS for movement disorders has targeted
discrete gray matter nuclei. Although these targets are known
to be associated with clinical benefits, recent evidence suggest
that entities such as white matter tracts [63, 69, 70] or func-
tional networks [68••] may also be responsible for the thera-
peutic effects of DBS (Table 1). White matter tracts and func-
tional networks cannot be visualized on routinely acquired
structural MRI and require different MRI acquisition parame-
ters to be appreciated: diffusion-weighted imaging (DWI) for
tractography and resting-state functional magnetic resonance
imaging (rsfMRI) for functional networks (Table 1). In some
cases, newly visualized white matter pathways may be
employed as independent targets for neurosurgical interven-
tion. One example of this approach pertains to the dentato-
rubro-thalamic tract, part of the cerebello-thalamo-cortical
tremor network, which is being investigated as a direct DBS
target for tremor using tractography methods [63, 69, 70]. A
similar tactic has been adopted in the realm of neuropsychiat-
ric DBS, with tractography-dependent targeting of the medial
forebrain bundle pathway for treatment of depression [71].
Another variation is the use of white matter tracts to refine
and delineate a more conventional target. This includes trian-
gulating VIM based on the relative positions of pyramidal and
medial lemniscus tracts for tremor surgery [72], and also the
tract-based parcellation of the STN and thalamic nuclei into
sub-regions with preferential motor connections [41•, 73].
Thus far, few DBS studies for movement disorders [63, 70]
have explored the prospective application of these new tech-
niques, although prospective targeting of white matter tracts is
increasingly described in the context of other neurosurgical
techniques for movement disorders [74] as well as DBS for
psychiatric disorders [75, 76]. Given the substantial inter-
patient variability in white matter pathways, this type of
targeting is likely to be more sensitive to individual neuroan-
atomical differences, leading to more personalized DBS de-
livery [77]. However, it will be critical for investigators to
remain cognizant of the bewildering variety of tractography
methods, the need for rigorous methods, and the importance
of visual inspection in order to stave off spurious results [78].
Also, these white matter tracts must be co-registered with
stereotactic images, a step that can introduce registration er-
rors (Table 1). Constantly evolving MRI hardware and pulse
sequence designs should limit spurious results and allow vi-
sualization of structures, as of now, only seen on histology.

Data-Driven Connectome Targeting

The conventional DBS targets for movement disorders have
beenmost commonly empirically derived from lesioning stud-
ies [79]. Although these targets provide clinical benefits in
movement disorders, it is plausible that they may not be opti-
mal. Indeed, pinpointing the effective component across the
volume of lesions may have been difficult partly due to the

lack of group-level analysis methods. Recent neuroimaging
advances allowing (1) precise transformation of patients’
brain into an average brain (i.e., non-linear normalization to
Montreal Neurological Institute—MNI—brain template) [80],
(2) DBS electrode localization [81••], and (3) estimation of the
volume of tissue activated (VTA) [81••, 82, 83] have enabled
this group-level analyses to be conducted for DBS (Fig. 1).
This approach, in which probabilistic maps based on clinical
outcomes are computed from regions of interest have also
been performed with ablative therapies [84, 85]. Easy-to-use
analysis pipelines performing electrode localization and VTA
estimation are now available in commercially available (e.g.,
Medtronic SureTune, Medtronic Inc.; Elements, Brainlab
Inc.) and research software (e.g., Lead-DBS). Once normal-
ized in an average brain, electrode locations and VTAs from
patients can be weighted with clinical outcomes to derive a
cohort probabilistic maps of efficacy [86–91]. This agnostic
approach is driven by clinical data provided by DBS program-
ming, an empirical clinical process that is usually blinded to
precise electrode location (Table 1). Challenging the routinely
targeted structures, less conventional targets such as the pos-
terior subthalamic areas in DBS for tremormight be suggested
with such methods [87••]. Moreover, areas associated with
specific clinical benefits such as tremor, rigidity, or bradyki-
nesia in PD may now be defined, opening the door to individ-
ualized DBS targeting based on dominant disease phenotypes
[86, 89]. A similar approach has also been used to delineate
areas responsible for DBS adverse effects such as paresthesia
and diplopia [86–88].

Computation of these maps of clinical benefits and adverse
effects become highly important with the increasing use of
directional leads, introducing more programming possibilities
and complexity [92]. Directional lead stimulation can be pref-
erentially directed toward the optimal target, minimizing stim-
ulation of unwanted areas. Neuroimaging techniques using
CT scan or x-rays have been developed to determine the lead
orientation [93–96] and the most recent VTA modeling soft-
ware can compute this steered stimulation [81••, 97] (Fig. 2).
Following electrode localization and VTA modeling, clini-
cians can then use these tools to inform programming.
Given time constraints and patient fatigue, it is impracticable
to thoroughly assess a large number of stimulation parameters
via clinical means; this restriction could be mitigated by using
probabilistic maps of clinical outcomes and integrating them
with individual patient anatomy, providing patient-specific
targeting and guiding subsequent programming.

Limits of the current methods include (1) suboptimal pa-
tients’ brain normalization—and thus electrode localization—
of abnormal (e.g., markedly atrophic) brains; (2) limited VTA
modeling, which does not take stimulation frequency or pulse
width into account and typically makes assumptions about
electrode-tissue impedance; and (3) the large number of pa-
tients required for robust results (Table 1).
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In addition to defining probabilistic areas of clinical bene-
fits and adverse effects, probabilistic group-level approaches
can also leverage normative connectomes to explore the net-
work connectivity associated with desired and undesired out-
comes. Since the vast majority of DBS patients do not under-
go DWI and rsfMRI imaging, probabilistic areas of clinical
benefits could—until recently—only be described and com-
puted using routinely acquired structural scans. Now,

however, neuroimaging techniques have permitted the aggre-
gation of large DWI and rsfMRI datasets derived from healthy
subjects into publicly available, standard space such as the
MNI brain template. While native patient imaging may better
reflect the underlying patient-specific connectivity, state-of-
the-art normative data gathered through initiatives such as
the Human Connectome Project and Brain Genomics
Superstruct Project offer unparalleled spatial resolution and

Fig. 1 Neuroimaging pipeline methods for single (a) and group (b) level
analysis in DBS patients. aUsing preoperative and postoperativeMRI (or
postoperative CT) native brain scans, DBS electrodes are localized and
transformed into an average brain (e.g., MNI brain). Using the computed
VTA, the stimulated structures in a single patient can then be investigated.
b Following normalization and electrode localization of a cohort of DBS
patients, each patient VTA can be weighted by clinical scores and a
probabilistic map of clinical benefits can be computed on a structural

MRI (1: axial T1W MNI brain MRI). Using the weighted VTA,
publicly available normative dataset of white matter tracts (2) and
functional networks (3) can be used to investigate connections
associated with clinical benefits (or adverse effects) (4, 5). MRI,
magnetic resonance imaging; CT, computerized tomography; MNI,
Montreal Neurological Institute; STN, subthalamic nucleus; VTA,
volume of tissue activated; T1W, T1-weighted
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signal-to-noise ratio [68••, 98, 99]. Once electrode localiza-
tions and VTA modeling have been performed and the
resulting constructs have been normalized to an average brain
(e.g., MNI brain), each VTA can be employed as a seed in the
normative templates to investigate associated white matter
pathways and functional networks (Fig. 1). In other words,
by tapping into high-quality, publicly available, normative
datasets, it is now possible to explore white matter pathways
and functional networks associated with best clinical out-
comes using only routinely acquired neuroimaging data. It is
not yet clear whether native patient DWI and rsfMRI se-
quences will reveal individual variability that leads to mean-
ingful clinical benefit. Nevertheless, although the normative
dataset approach is only a recent development, it is already
providing encouraging results and as recently been described

by A. Horn [100]. Normative connectomic mapping has been
shown to predict clinical outcomes in both PD DBS patients
with STN electrodes [68••] and in psychiatric DBS patients
[101], for instance. Ultimately, the probabilistic zones and
networks identified by these analyses in an average brain
could then be transformed to the native patients’ brain in order
to guide preoperative planning in a manner that is both per-
sonalized and driven by large retrospective clinical outcome
datasets.

Conclusions

Although neuroimaging techniques used for preoperative DBS
planning have evolved—from stereoencephalogram to MRI—
over the years, indirect anatomical landmarks remain indispens-
able to some conventional targeting paradigms. Historical and
empirical DBS targets have yet to be refined. The expansive
and growing cohort of movement disorder patients treated with
DBS coupled with newly available neuroimaging techniques
offer the opportunity to perform group analyses and better re-
solve which structures impart the greatest clinical benefits (or
adverse effects) to patients. While traditionally targeted gray
matter nuclei might play a role in the therapeutic effects of
DBS, there is mounting evidence that white matter pathways
and functional networks, entities typically occult on routinely
acquired structural imaging, are notably involved in disease
pathophysiology, and thus must be more earnestly considered
in targeting. Using this new data, it is possible to consider
personalized medicine in the context of DBS surgery for move-
ment disorders. Given the newly available neuroimaging tech-
nologies, individualized targeting methods should be used.
Furthermore, depending on the disease phenotype, it is also
sensible that slight variations of the same target may confer
more optimal benefits. These new technologies should allow
progress toward patient individualized targeting, better defini-
tion of established surgical targets, and, possibly, discovery of
new ones.
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Fig. 2 Directional lead localization and VTA computation. a General
orientation of the directional lead is estimated with the radiopaque
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computed with the CT artifact (dotted red lines). c Computation of
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orientation of the directional lead (STIMVIEW, Boston Scientific). The
orange line shows the orientation of the radiopaque marker. VTA, volume
of tissue activated mA, milliampere
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