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Abstract
Purpose of Review Measurements obtained during real-world activity by wearable motion sensors may contribute more natu-
ralistic accounts of clinically meaningful changes in impairment, activity, and participation during neurologic rehabilitation, but
obstacles persist. Here we review the basics of wearable sensors, the use of existing systems for neurological and rehabilitation
applications and their limitations, and strategies for future use.
Recent Findings Commercial activity-recognition software and wearable motion sensors for community monitoring primarily
calculate steps and sedentary time. Accuracy declines as walking speed slows below 0.8 m/s, less so if worn on the foot or ankle.
Upper-extremity sensing is mostly limited to simple inertial activity counts. Research software and activity-recognition algo-
rithms are beginning to provide ground truth about gait cycle variables and reveal purposeful arm actions. Increasingly, clinicians
can incorporate inertial and other motion signals to monitor exercise, activities of daily living, and the practice of specific skills,
as well as provide tailored feedback to encourage self-management of rehabilitation.
Summary Efforts are growing to create a compatible collection of clinically relevant sensor applications that capture the type,
quantity, and quality of everyday activity and practice in known contexts. Such data would offer more ecologically sound
measurement tools, while enabling clinicians to monitor and support remote physical therapies and behavioral modification
when combined with telemedicine outreach.
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Introduction

For all neurological diseases, wearable sensors are twenty-first
century tools that are increasingly used to try to improve di-
agnosis, treatment, compliance, personalized clinical manage-
ment and feedback, and patient education [1•]. For daily care
and research trials, sensors can enable continuous monitoring
and clinically meaningful outcome measurements about phys-
ical activities such as strengthening and conditioning exercise,
practice of degraded skills, and activities of daily living, so
they are highly relevant to rehabilitation efforts [2, 3]. A vari-
ety of commercial and research sensor systems can be clipped

to the chest, arm, waist, and leg, worn in a pocket or shoe or
adhered to the skin. The combination of an accelerometer plus
other motion sensors is called an inertial measurement unit or
an IMU.Wearable IMUs have become ubiquitous monitors of
step counts, exercise, and sleep in healthy persons. Big data
analytic methods have enabled the accelerometer in
smartphones to detect and classify differences in activity
among large populations in relation to age, gender, weight,
and disease states [4].

The most frequent application of wearable inertial sensing
in neurology thus far is to measure and give general feedback
to increase walking. More is on the near horizon. For neuro-
logical rehabilitation, mobile health (mHealth) applications of
wearable IMUs outside of the clinic or laboratory offer the
possibility of remote transmission of intermittent or continu-
ous, high-fidelity, objective, patient-centered data during daily
activities and practice. Upper- and lower-extremity acceler-
ometer, gyroscope, and derived kinematic signals could be
analyzed to provide sensitive measurements of the type,
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quantity, and quality of clinically important movements, po-
tentially serving as a biomarker of gains and declines in func-
tion over time and after interventions. This real-world audit of
activity and compliance may also offer clinically meaningful
outcome measures in naturalistic settings, instead of only hav-
ing self-reports about the type and amount of activity.

Ground truth about activity also provides a firm basis for
feedback about exercise, skilled movements, and gait,
allowing sensors to serve as part of a behavioral intervention
technology [5••, 6••]. Wearables may be used in concert with
telemedicine video interactions between users and therapists,
which could lower the cost of rehabilitation care, as well as
enable outreach to patients who have no access to rehabilita-
tion expertise [7•]. Clinical trials of pharmacologic and neural
repair interventions to date usually do not include a rehabili-
tation practice component. Sensors enable an inexpensive,
standardized, remote rehabilitation effort to optimize the
activity-dependent and task-related benefits of the experimen-
tal intervention [8]. In addition, remote testing becomes feasi-
ble, which may reduce the burdens on participants and give
investigators serial data about important outcomes. For exam-
ple, remote intermittent tests of functional capacity could take
place in the home using a standard 15-mwalking test or 6-min
walk for endurance while wearing sensors.

This is the exciting promise. The reality must catch up. We
review some of the basics about activity sensing that explain
present limitations, the pros and cons about existing systems
for neurological and rehabilitation applications, recent clinical
trial results with sensing, and strategies for their near-term
deployment.

Types of Wearable Wireless Sensors

Over 20 companies offer wearable sensors for clinical re-
search; commercial fitness companies offer many models.
Some of the key requirements of systems that might find their
way into rehabilitation research include battery life, type of
wireless transmission, capacity to form a network of
sensors, ability to log data, availability of raw data sig-
nals to the investigator, standard activity-recognition algo-
rithms, and support by software libraries such as MATLAB
and Python [9, 10].

The most frequently deployed commercial sensors are
wrist-worn triaxial accelerometers that measure accelerations
from which velocity and displacement of a body segment in x,
y, and z axes can be estimated. These commercial systems use
proprietary algorithms that often depend on an inertial or ro-
tational signal greater than a set threshold, which is then de-
fined as an activity count, for example, for a step. Peak vertical
center of mass displacements can also be recorded when the
inertial sensor is worn at the low back or waist. However,
analytic methods for step counts derived from wrist- and
trunk-worn sensors become inaccurate when walking is slow

and accelerations during leg swing are low and irregular, as in
persons with hemiparetic gait [11••]. In practical terms, the
peak acceleration and angular velocity of the leg occurs during
the swing phase between toe-off and heel-strike in the gait
cycle, which is most readily measured by a leg-worn device.
When the sensor is placed on the top of the foot, an algorithm
will be able to include a definite signal of no movement in
mid-stance and will detect turns. A magnetometer may be
added to assess directional vectors of spatial orientation. A
barometric pressure sensor will recognize a change in altitude,
even rising from sit to stand. The combination of an acceler-
ometer with gyroscope and magnetometer is the most often
deployed IMU. Thus, from any known body location, an in-
vestigator can obtain linear accelerations, angular velocities,
and a heading angle with respect to magnetic north.

A global positioning satellite (GPS) signal is most accurate
outdoors to provide location (context about activity) and cal-
culate speed and distance of continuous walking with a wrist
band and smartphone application. The subject must start and
stop the app, however, to capture a continuous walk or the
device may average standing with walking time. A heart rate
monitor signal, usually from wrist plethysmography, is often
fused with the inertial signal in commercial wrist sensors to
give context about effort and metabolic information (aerobic
effect, calories). For special requirements, wireless sensing
can incorporate electrocardiogram, electroencephalogram, or
electromyogram signals; a goniometer or other flexible mate-
rial for joint movement angles; piezo-electrodes to measure,
for example, foot pressure; biosensors such as continuous glu-
cose monitors; and contextual information from light or am-
bient sound sensors. Sensor information can be supplemented
and given context by smartphone-based, in-the-moment self-
reports about mood, pain, social interaction, type of activity, or
other personal events.

Unfortunately, no off-the-shelf system is available for re-
habilitation studies in the community to collect, synchronize,
and analyze upper-extremity actions or leg movements other
than walking. Published studies often introduce home-grown
algorithms to classify and measure movements in the labora-
tory. Most commercially available systems use proprietary
analytic algorithms and the raw data often is not accessible,
so an investigator cannot pursue either validation of the algo-
rithm, debugging, or additional analyses [9, 12•], but this con-
founder is changing [13]. Given the growing interest in remote
monitoring of activity in patients who participate in
pharmacological trials for neurologic diseases, the next
five years should bring more accurate, flexible, and rel-
evant research systems within reach of clinical investi-
gators. Table 1 shows some of the companies whose
sensor systems allow access to raw accelerometer and
other IMU data in relation to whether the data can be
accessed remotely, which is necessary for feedback, and
has been validated in patient populations.
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Common Measures Captured by Wearable Devices

The signals from well-placed wearable inertial sensors with
reliable activity-recognition algorithms have quantified sitting
down and standing up; walking; spatial-temporal gait varia-
tions; running; stair climbing; movement during sleep or a
seizure, tremor, and truncal or limb ataxia; episodic movement
disorders such as torticollis; wheelchair propelling; and upper-
extremity activity counts. Identification of each activity, how-
ever, requires fusion of the signals from each body sensor. The
choice of sensors, number, and placement depends on the
activity and movement variables to be ascertained. Practical
sensor systems must meet many complex design require-
ments, including cosmetic, privacy, and technology accept-
ability by users, as well as signal processing, data transmis-
sion, annotation, and scalability for easy use [9]. To date, no
singular strategy has been adopted for sensor placement, data
pre-processing, extraction of features from the inertial signal,
and activity classification across key functional movements
[14]. This poses the greatest limitation at present for routine
use of sensing in clinical research and care.

Step Counting

Step counting is themost common function of commercial wear-
able activity trackers offered by Fitbit, Garmin, Jawbone, Apple,
and others. Leonardo da Vinci would have found them to be
more advanced than his invention of the first mechanical step
counter, whichwasworn at the waist with gears rotated by a long
lever arm tied to the thigh. Increasingly, companies such as FitBit
(www.fitabase.com) provide some research support to remotely
access and monitor the activity data from individual users. This
service makes consumer-grade sensors a possible option for re-
searchers looking for ready-to-use wearables to estimate seden-
tary time or to identify periods of continual walking activity at
speeds > 0.8 m/s in persons without irregular gait pattern devia-
tions [15]. Wrist-worn accelerometers, however, do not consis-
tently count steps when the wrist is stationary, such as pushing a
stroller or walker or using treadmill hand rails. They may record
invalid steps when folding laundry, whisking or gesturing.

The accuracy of research-grade devices varies widely for
impaired persons. For example, Treacy et al. examined pa-
tients who walked < 1.2 m/s but could walk at least 10 m
during inpatient rehabilitation [11••]. The Fitbit One was worn
on the ankle and wrist, the ActivPAL on the thigh, the G-
Sensor on the hip, the Garmin Vivofit on the wrist, the
Actigraph on the hip, and the StepWatch just above the ankle.
Results for hemiparetic persons were best when the device
was worn on the least affected leg. These systems do not allow
investigators to simultaneously capture and merge signals
from the hemiparetic and less-affected leg to assess bilateral
movement deviations. Compared to automated GAITRite
walking measurements, the ankle and thigh sensors were

much more accurate as walking speed fell below 0.8 m/s. At
< 0.4 m/s, the Fitbit One on the ankle began to drop from 90%
down to 40% accuracy in counting steps, and the ActivPAL
dropped from 70% to 43%. Only the StepWatch, for reasons
noted later, maintained an accuracy of 90–100%. Thus, as the
acceleration of leg swing decreases, devices became less ac-
curate, but not as inaccurate as when worn on the wrist or hip.
A sensor system, then, ought to be validated prior to a trial for
its accuracy in detecting activity counts for the range of com-
munity walking speeds and levels of disability of the specific
population.

The Food and Drug Administration cleared the StepWatch
(Modus, Inc.) as a class 2 medical device for use in research.
Its adaptable filtering and patient-specific calibration, based
on several signature movements during stepping at one of
the three levels of cadence, enable a more flexible algorithm
that accounts for its better appreciation of a stride at slow
walking velocity. Remarkably, its inertial IMU is a single-
axis analog accelerometer (most other IMUs include a
micro-electrical mechanical triaxial sensor). The company
has released a platform that allows researchers to remotely
access step count summary data, making it a viable option
for more accurate, longitudinal tracking of patients with neu-
rological conditions. Remote daily access to data is an impor-
tant direction for companies. An example of this requirement
for clinical trials occurred in the Locomotor Experience
Applied Post-Stroke (LEAPS) trial [16]. For 400 participants
who were asked to wear the ankle sensors for 5 days at base-
line and at the end of the trial, adherence rates for the
StepWatch 3 monitor for at least two days of wear were only
68% for the first day, 61% for the second, and 53% for both
days. Of note, non-compliance was significantly associated
with lower Fugl-Meyer score, slower walking speed, and
poorer endurance. Adherence might have been better if daily
activity counts had been uploaded and made available to the
researchers, who would then have contacted non-compliers to
find out whether the sensor was working properly or to resolve
barriers to use.

Characteristics of Gait

Step counts in real-world settings in real time have been use-
ful, but for persons with neurological impairments or under-
going rehabilitation, clinicians would especially value remote
measures during community activities that include task-
related variations in walking speed, stride length, gait cycle
time, cadence, percent time in stance/swing and double/
single-limb support, and kinematics. The Ambulatory
Parkinson’s Disease Monitoring (APDM) system is highly
accurate over defined distances in a clinic. The system can
report postural sway area, trunk range of motion, lower-limb
gait cadence, stride length, velocity, gait cycle time, and pos-
tural transitions, as well as hip, knee, and ankle kinematics
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when using additional sensors. But the sensors must be in
radio contact with a nearby computer. APDM is currently
testing its system outside the lab setting in patients with a
variety of neurological impairments. Other investigators re-
port additional analytic strategies to capture walking speed
and gait features [17–19•].

In addition, the standard machine learning pipeline for
sensor-based movement assessment consisting of inertial sig-
nal pre-processing, feature extraction, and classifier training is
increasingly being compared to deep learning frameworks for
movement classification accuracy [20]. For example, disease
or disability phenotypes were discerned by using sensor-
derived gait parameters to distinguish among non-frail, pre-
frail, and frail persons [21]. The key parameters obtained with
shank sensors and derived by an artificial neural network anal-
ysis were propulsion duration and acceleration, heel-off and
toe-off speed, mid-stance and mid-swing speed, and speed
norms. Remote monitoring of the upper extremity (UE) may
also need to incorporate more sophisticated analytic methods.

Heart Rate

During mobility activities and exercise, knowledge of an in-
dividual’s heart rate (HR) enables an investigator to monitor
exercise safety and provide feedback to gradually increase the
intensity of exertion for a variety of health benefits in seden-
tary, disabled persons. Many commercial wrist monitors pro-
vide estimates of HR and energy expenditure, but HR data is
usually not synchronized to gait data within research sensor
systems. Indeed, HR accuracy from wrist sensors is less than
expected, declines at higher heart rates, and leads to energy
expenditure estimates that can exceed 25% median error rates
[22•, 23]. In addition, no clinically meaningful important dif-
ference has been established for HR increases during
overground walking during exercise in older disabled persons,
so HR goals for hemi- and paraparetic persons are uncertain.

Applications Relevant to Neurorehabilitation

Risk Factor and Behavioral Management

Sensors can be deployed as a behavioral intervention technology,
in which ground truth about activity and exercise enable goal-
setting, instruction, or coaching on ways to meet goals, adher-
ence to convenient practice schedules, barrier identification, and
self-monitoring [9]. Tailored counseling plus remote supervision
have been found to be critical components to increase practice
and exercise. Heterogeneous motion-sensing trials that mostly
deployed a smartphone, combined with behavioral interventions
to reduce risk factors for stroke and cardiovascular disease (e.g.,
blood pressure, waist size, exercise level), have shown onlymod-
est evidence of efficacy [24••, 25•, 26]. The type and frequency

of feedback, however, has not yet reached the levels supported
by theories for self-efficacy [5••, 27].

Upper extremity

The 9 degrees of freedom of motion of the UE and the range of
UE neurological impairments have been a challenge when
aiming to discern purposeful movements outside of a lab or
clinic. Even more difficult is to determine whether the hand
successfully reached and grasped an object during free-ranging
activities. The relative amount of use of a paretic limb compared
to the non-paretic arm has been quantified along several motion-
related variables [28•, 29]. Of note, self-reports about actual use
of the UE during a clinical trial differed from the ground truth,
with high variability in half of the 64 subjects; underreporting
wasmost common [30•, 31]. Thus, self-reports about perception
of use and actual use may differ and affect trial results. An
interesting strategy was tested to recognize the arm movements
used to perform the task of pouring a cup of tea. Investigators
used a simple technique to recognize the occurrences of six pre-
defined orientations of a triaxial wrist sensor. A similar tech-
nique might reveal measurements of basic movements to be
practiced remotely when logged by the user and transmitted to
a therapist [32]. A kinematic analysis of UE movements, en-
abled by multiple IMUs on the chest, scapula, and arm, could
also help define purposeful, self-care actions. Recognition algo-
rithms could be developed from movement templates obtained
by studying perhaps six to eight key UE movements in
hemiparetic persons with varying degrees of motor impairment,
including forward reach to grasp and lifting the hand to the
mouth or face within peri-personal space bounded by the width
of the torso at levels from the waist to the top of the head.
Additional sensors, however, would be necessary to detect a
successful grasp or pinch of the hand. Deep learning strategies
built upon data obtained from many hemiparetic persons might
enable detection with high accuracy in the future.

The frequency, intensity, and laterality of activities per-
formed by the upper extremities during wheelchair propulsion
has been demonstrated in those with spinal cord injury using
IMUs positioned on both wrists, on the chest, and on one
wheel of the wheelchair [33]. Individualized calibration of
moderate-vigorous physical activity was found to improve
accuracy [34], as it has in other studies [7•].

Sensing Across Diseases

Stroke

A review of trials that deployed lower-extremity wearable sen-
sors for persons with stroke found some evidence for improve-
ment in activity and participation, but the designs and aims of
the 11 studies with 550 participants had highly varied methods
and outcome measures [35•]. During inpatient rehabilitation,
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lower-extremity sensors have been used to successfully moni-
tor the intensity of walking therapy and provide feedback to try
to increase the amount and velocity of walking practice. Results
mostly revealed no added gains, perhaps due to time limitations
for each therapy during inpatient rehabilitation [36–38].

Parkinson’s Disease

A variety of studies reveal good clinimetric properties for
assessing gait in persons with PD, including the detection of
short stride and shuffling, but perhaps less so for freezing
[39–41]. A phase 2 randomized clinical trial in 40 participants
used two ankle or foot accelerometers and a smartphone to mea-
sure home and community gait speed, cadence, stride length, and
leg symmetry in real time, along with auditory feedback and
cueing to limit freezing of gait. Feasibility of feedback was dem-
onstrated and balance improved in the feedback group [42].

Balance

Ameta-analysis of seven small RCTs of IMU-based interven-
tions for static or dynamic balance with feedback in adults
with Parkinson’s, stroke, and peripheral neuropathy and frail
older adults found significant overall effects of training, espe-
cially for up to 36 sessions, on static steady-state balance and
possibly several gait outcomes [43]. The APDM balance sys-
tem has also shown promise in persons with a mild traumatic
brain injury in detecting excessive sway [44].

Sleep Disorders

Sleep disorders are common in those with neurological disor-
ders and may affect rehabilitation efforts. The most popular
method of sleep quality assessment is based onmeasuring body
acceleration patterns from wrist sensors. A chest sensor may
improve appreciation of body positional changes and accelera-
tions to estimate sleep parameters during polysomnography at
home [45].

Telerehabilitation

Remote monitoring of outpatients over the Internet with per-
sonalized instruction about skills practice and exercise for
strengthening and conditioning is made especially feasible
by wearable sensing. The therapist can measure how well a
patient actually performs specified practice tasks and routine
activities. For clinical trials and care, this strategy expands the
possibility of receiving more therapy at low cost [7•]. Several
home-based compared to clinic-based interventions with in-
teractive devices after stroke have been equivalent in enhanc-
ing gains after mild to moderate stroke, so sensors and
telerehabilitation may also be able to deliver care in select
patients that is at least as good as clinic visits.

Conclusions

For routine use in the rehabilitation of neurological diseases, a
variety of IMU systems are available to monitor step counts
and cadence outside the laboratory, but user-friendly solutions
to gather data remotely about the type and quantity and quality
of practice and of spontaneous gait or functional use of the
upper extremity are just becoming available. Themost flexible
system for ease of use in research would include recommen-
dations about the locations for sensors to be worn in relation to
the tasks to be monitored; precise synchronization of data
across all wireless sensors; continuous data collection capacity
for > 8 h without a computer having to be within sensor trans-
mission range; > 8 h of data storage on the IMUs or on a
smartphone when real-time feedback is planned; open access
to raw signals and to activity-recognition algorithms; analytic
methods for upper- and lower-extremity activities that were
proven accurate in disabled persons; automated standard out-
come measurements along with methods to go deeper into
assessments; flexible behavioral modification paradigms built
into a system’s software; and a common platform so that in-
vestigators can store sensor and metadata for others to use
with privacy and permission protocols. As these tools become
more robust, rehabilitation researchers will be able to broaden
their strategies to enhance outcomes.
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