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Abstract
Purpose of Review Congenital malformations of the central nervous system may be seen in isolation or in association with
syndromes that have multiorgan involvement. Among the potential health challenges these children may face, sleep concerns are
frequent and may include chronic insomnia, sleep-related breathing disorders, and circadian rhythm disorders.
Recent Findings In this review, we describe recent research into sleep disorders affecting children with congenital malformations
of the CNS including visual impairment, septo-optic dysplasia, agenesis of the corpus callosum, Aicardi syndrome, Chiari
malformation, spina bifida, achondroplasia, Joubert syndrome, fetal alcohol spectrum disorders, and congenital Zika syndrome.
In many cases, the sleep disturbance can be directly related to observed anatomical differences in the brain (such as in apnea due
to Chiari malformation), but in most syndromes, a complete understanding of the underlying pathophysiology connecting the
malformation with sleep problem is still being elucidated.
Summary Our review provides a synthesis of available evidence for clinicians who treat this patient population, in
whom appropriate diagnosis and management of sleep problems may improve the quality of life for both patient and
caregiver.
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Introduction

Attaining sufficient quantity and quality sleep is integral to
optimizing health and wellbeing. Sleep problems in children
are very common, with approximately 25% of all children
experiencing some type of sleep problem during childhood
[1]. These sleep problems not only are a substantial cause of
distress within families but can also contribute to a plethora of
neurocognitive and other health problems including mood
disturbances, deficits in learning, behavioral problems, and

obesity [1]. Among children with neurodevelopmental disor-
ders, sleep problems are even more frequent, occurring in the
majority of children [2]. Furthermore, their sleep disturbances
tend to bemore chronic, theymay havemultiple types of sleep
disorders simultaneously, and they are unlikely to resolve
without treatment [1].

Over the last two decades, there has been a much needed
increase in the study of sleep problems in children with
neurodevelopmental disorders. Most review articles focused
on children with autism spectrum disorders, Down syndrome,
and attention deficit disorder [3]. In this review, we synthesize
the evidence regarding sleep disorders in children who have
congenital malformations of the central nervous system, includ-
ing visual impairment, septo-optic dysplasia, agenesis of the
corpus callosum,Aicardi syndrome, Chiari malformation, spina
bifida, achondroplasia, Joubert syndrome, fetal alcohol spec-
trum disorders, and congenital Zika syndrome. A summary of
findings is presented in Table 1 for convenience. The wide
variety and severity of sleep disorders found in children with
congenital malformations of the CNS reflects the underlying
heterogeneity of disease processes and spectrum of severity.
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Disorders of the Visual System

The interaction of circadian rhythm and homeostatic sleep
drive determines the onset and duration of sleep throughout
the 24 h of the day. The homeostatic drive refers to the con-
stant accumulation of sleep debt during wakefulness, i.e., the
longer we gowithout sleep, the larger the sleep debt (and drive
to sleep). However, if this were the only force determining our

sleep-wake cycle, we would fall asleep intermittently through-
out the day in order to pay down or sleep off accumulating
sleep debt incrementally. This incremental sleep pattern is
seen in animal models in which the suprachiasmatic nucleus
has been obliterated [4]. Accordingly, a second force alerts
and opposes the increasing homeostatic sleep drive during
the day, and this alerting force is the circadian rhythm. The
clock-dependent alerting from the circadian rhythm explains

Table 1 Selected congenital malformations of the CNS and sleep-related features

Disorder Reported sleep disturbances (see main text for ref)

Disorders of the visual system

Blindness Free-running circadian rhythm
Greater variability in sleep efficiency and time of sleep onset
Abnormal timing of melatonin secretion

Anophthalmia/microphthalmia Free-running circadian rhythm
Extensive daytime sleeping
Prolonged early-morning awakenings

Leber congenital amaurosis Chronic insomnia

Midline disorders

Septo-optic dysplasia Arrhythmicity in sleep pattern
Sleep fragmentation and poor sleep efficiency
Abnormal 24-h melatonin profiles

Agenesis of the corpus callosum Sleep onset delay
Decreased sleep duration
Greater bedtime resistance
Sleep anxiety
Night wakings
Parasomnias
Sleep-disordered breathing
Daytime sleepiness
Increased slow-wave sleep and decreased REM sleep
More contentless dreams, shorter dreams, more distressful dreams
Narcolepsy

Aicardi syndrome Obstructive sleep apnea

Skull base and hindbrain

Chiari I malformation Obstructive sleep apnea
Central sleep apnea

Spina bifida Obstructive sleep apnea
Central sleep apnea
Sleep-related hypoventilation
Poor sleep quality
Chronic insomnia
Daytime sleepiness

Achondroplasia Obstructive sleep apnea
Sleep-related hypoventilation
Central sleep apnea

Joubert syndrome Central sleep apnea with severe tachypnea followed by apnea

In utero exposures causing multiple brain differences

Fetal alcohol spectrum disorder Chronic insomnia
Parasomnias
Sleep-disordered breathing
Sleep fragmentation
Abnormal melatonin profiles

Congenital Zika syndrome Decreased nocturnal sleep time
Subjectively poor sleepers
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the typical decrease in alertness after lunch (or trough in arous-
al due to decreasing firing of the ascending arousal system
made up of aminergic and cholinergic neurons in the
brainstem and deep gray matter) and “second wind” in the
later afternoon (due to increase in alerting factor). In the later
evening, clock-dependent alerting further decreases and the
accumulated sleep debt influences neurons in the ventrolateral
preoptic area to fire to initiate and maintain sleep through the
night. The transitions between wake and sleep are remarkably
rapid and require interactions between reciprocal neuronal cir-
cuits in a “flip-flop” switch fashion [5]. The circadian rhythm
tends to have a cycle slightly longer than 24 h and therefore
requires external cues (zeitgebers) in order to maintain en-
trainment [6]. While there are many potential signals that
can serve as zeitgebers, the most powerful is light. There is
growing evidence for possible overlap in the genetic pathways
governing circadian rhythms and neuropsychiatric illness [7].

Newborns do not have a clearly defined circadian rhythm
at birth [8]. Joseph and colleagues studied the development of
circadian rhythm in 35 healthy term infants from 6 to 18weeks
of age [9]. During that time, the investigators monitored tem-
perature, cortisol, and 6-sulfatoxymelatonin (a metabolite of
melatonin). Actigraphy was used to measure the infant’s sleep
activity, and the infants had their circadian gene analyzed by
investigating the rhythmic transcript of the gene Histone 3
family 3b. Infants showed maturation of cortisol rhythm at
8.2 weeks of age, melatonin rhythm at 9.1 weeks, consolidat-
ed nighttime sleep at 9.4 weeks, temperature rhythm (maxi-
mum fall in deep body temperature at nighttime) at
10.8 weeks, and a diurnal rhythm in circadian gene expression
at 10.9 weeks. The development of a diurnal sleep-wake cycle
in infants seems to follow a sequential pattern with cortisol,
melatonin, sleep efficiency, and temperature, followed by cir-
cadian genes which all cycle over approximately 24 h. The
development of this rhythm could be disrupted by structural
abnormalities noted in patients with neurodevelopmental is-
sues or even environmental stimuli.

Few studies have evaluated the effect of light on newborns.
Tsai and colleagues studied the effect of light on infant circa-
dian entrainment [10]. They evaluated 22 healthy term infants
for 7 days with actigraphy and sleep diaries and found that
duration of infant bright light exposure was generally low but
that more exposure to moderate levels of light and greater
circadian rhythm of light exposure were associated with stron-
ger patterns circadian activity. Overall, the results supported
the hypothesis that properly timed light exposure is beneficial
for infant circadian entrainment.While daytime light exposure
may help entrain circadian rhythm, it should be noted that
excessive light exposure at night may be associated with
circadian disruption and adverse health outcomes [11]. It
is also possible that there may be an imprinting effect of
nocturnal light exposure that contributes to cancer and
anxiety [12, 13].

It has long been recognized that maintaining retinal exposure
to light via retinal photoreceptors is essential for establishment
of newborn vision. Recognition of congenital cataracts or a
developing periorbital hemangioma and quick treatment allows
for proper development of vision. Recently, melanopsin and
neuropsin located in the intrinsic photosensitive ganglion cells
of the retina have been characterized. Circadian entrainment
and even pupillary light response require light exposure to oc-
cur via the melanopsin-containing cells. Light triggers signaling
from the melanopsin cells to the suprachiasmatic nucleus inde-
pendent of the functioning of the rods and cones to entrain the
circadian rhythm [14•]. Normally, the suprachiasmatic nucleus
regulates the release of melatonin from the pineal gland such
that melatonin is secreted at night during dark; however, light
exposure sensed by melanopsin-containing cells can suppress
this release of melatonin [15]. Neurodevelopmental abnormal-
ities of the eyes, midline structures such as the suprachiasmatic
nucleus or pineal gland, or the optic pathway (optic nerve and
radiations) may interfere with the timing and duration of sleep.

Blindness

Given the known importance of light in circadian entrainment,
individuals who lack light perception or have visual impair-
ment have an increased risk of sleep difficulties. Classically,
totally blind individuals may have free-running circadian
rhythm due to the absence of entrainment from light [16,
17]. More recently, Aubin and colleagues examined 30-day
actigraphy recordings in 11 blind individuals compared to
sighted individuals [18]. Although they did not find group
differences when the entire period was averaged, they did find
greater variability in sleep efficiency and time of sleep onset,
which correlated with severity of clinical sleep disturbances,
in blind individuals. Further analysis demonstrated abnormal
timing of melatonin consistent with abnormal circadian
rhythm, but preservation of cortisol secretion profile; this sug-
gests that melatonin secretion is linked to light exposure but
cortisol secretion is less related to light exposure [19]. Finally,
they evaluated the sleep structure (architecture) of these indi-
viduals via overnight polysomnography [20]. The investiga-
tors were able to evaluate sleep architecture differences in the
context of circadian phase by measuring melatonin onset, and
they found that half of the blind subjects had an abnormal
circadian phase while only 18% of the control group had an
abnormal circadian phase. Blind individuals that exhibited a
normal melatonin timing had the same sleep architecture as
the sighted individuals, and blind individuals who exhibited
abnormal circadian phase had increased REM sleep latency
and wake times. Individuals with blindness and sleep distur-
bance may benefit from measures that help to entrain the cir-
cadian pacemaker, including timed light therapy, melatonin,
or newer melatonin receptor agonists such as tasimelteon or
ramelteon [17].
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Anophthalmia/Microphthalmia

Davitt and colleagues evaluated sleep problems in 13 children
with congenital anophthalmia or microphthalmia [21].
Overall, 77% of the families reported that their child had sleep
disturbance. The families reported extensive daytime sleeping
and prolonged early-morning awakenings. They did find that
strict daily schedules were helpful in entraining sleep-wake
cycles in these children, which may reflect the effect of non-
visual stimuli such as social cues on entraining circadian
rhythm. Typically, 50% of blind individuals have non-24 h
free-running sleep-wake disorder [22].

Leber Congenital Amaurosis

Leber congenital amaurosis is an inherited abnormality of visu-
al function effecting the outer retina [23]. The outer retina con-
tains rods and cones that contain photopigment, capture light,
and transmit that signal. There is a third class of photoreceptive
cell called the melanopsin-containing retinal ganglion cell,
which are present in the inner retina. The photosensitive
melanopsin retinal ganglion cells, not the rods and cones, are
primarily responsible for melatonin secretion and entraining
circadian rhythm based on visual light input [24•]. When light
hits the inner retina, it suppresses melatonin and signals to the
brain that it is not yet time for sleep. This signaling process may
be impaired in individuals with complete blindness [25•].
Vervloed and colleagues reported a 4-year-old girl with Leber
congenital amaurosis who had difficulty with sleep initiation
and maintenance, which was successfully treated with a gradu-
ated extinction technique [26] suggesting not all sleep problems
in children with Leber congenital amaurosis have a physiologic
basis and a need for good sleep habits and behavioral interven-
tions exists in these children as well.

Midline Disorders

Septo-optic Dysplasia

Septo-optic dysplasia occurs in approximately 1 of every
10,000 live births [27]. Septo-optic dysplasia (SOD) involves
the triad of optic nerve hypoplasia, midline brain differences
(absence of the corpus callosum and/or septum pellucidum),
and hypopituitarism. Individuals with SOD tend to have poor
visual acuity ranging from 20/200 to no light perception, and
they may have a range of comorbidities including develop-
mental delay, hydrocephalus, seizures, and additional brain
malformations. Given the optic nerve differences and midline
brain anomalies, many children with SOD may have sleep
challenges. Rivkees reported a 3-year-old child with SOD
who exhibited arrhythmicity in sleep pattern with random
sleep distributed throughout the day and night. The child

responded well to a nighttime dose of melatonin 0.1 mg and
began having sleep consolidated at night and less napping
during the day [28]. Interestingly, the benefits continued with
6 months of treatment, and when trialed off melatonin, the
arrhythmic activity returned. Possible mechanisms for the ob-
served lack of circadian rhythm include midline brain anom-
alies contributing to abnormal melatonin secretion, inability to
correctly process and relay visual stimuli, and/or abnormal
function of the suprachiasmatic nucleus. Webb and colleagues
further characterized sleep-wake cycles in a cohort of six chil-
dren with SOD [29•]. All six children were found on actigraphy
to have sleep fragmentation with poor sleep efficiency due to
frequent and prolonged night awakenings. The investigators
also examined 24-h melatonin profiles in these children and
found substantial variation in the timing and amount of mela-
tonin produced with no consistent pattern among all children;
two children produced almost no melatonin, three children had
normal melatonin profiles, and one had increased daytime mel-
atonin secretion. There did not seem to be a correlation between
melatonin profiles and sleep-wake cycle as determined by
actigraphy. In addition, while one may have expected that the
visual impairments in SOD could result in a free-running
rhythm of non-24 h, none of the six children exhibited this
pattern. While the effects of SOD on the entire pathway from
visual perception to suprachiasmatic nucleus to pineal gland are
still being elucidated, clearly, clinicians should be vigilant for
sleep challenges in children with this disorder.

Agenesis of the Corpus Callosum

The corpus callosum is one of the largest structures in the
brain and serves to connect and transfer information between
the two cerebral hemispheres. Agenesis of the corpus
callosum (ACC) is one of the most frequent congenital brain
malformations and occurs in approximately one in 4000 live
births [30]. Individuals with ACC may have challenges in
general intellectual, academic, executive, social, and behav-
ioral domains [31], as well as altered ability to process socially
complex emotions [32]. Children with ACC have a wide spec-
trum of clinical associated clinical features and comorbidities,
likely reflecting the underlying heterogeneity of associated
brain malformations and genetic etiologies [33].

Previous research has found that individuals with ACC
have a high prevalence of sleep problems. Ingram and
Churchill performed a survey of 66 children with ACC and
found that overall 78% had clinically significant sleep prob-
lems [34•]. Furthermore, compared to typically developing
children, children with ACC had greater sleep onset delay,
less sleep duration, greater bedtime resistance, sleep anxiety,
night wakings, parasomnias, sleep-disordered breathing, and
daytime sleepiness. These sleep problems were significantly
correlated with overall quality of life regardless of age or
gender. Frequent clinically significant sleep problems in
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children with ACC were also noted by Badaruddin et al. [35]
and Doherty et al. [36]. Interestingly, polysomnographic stud-
ies of individuals with ACC have found increased slow-wave
sleep, decreased REM sleep, and decreased interhemispheric
coherence [37–39]. The corpus callosum may also be in-
volved in dreaming and dream recall, as individuals with
ACC tend to have more contentless dreams, shorter dreams,
and more distressful dreams [40]. Finally, an individual with
ACC was found to have narcolepsy with cataplexy, and the
investigators speculated that the lack of a corpus callosum
likely suppressed the excitatory function of hypothalamic
orexin neurons resulting in narcolepsy [41].

Aicardi Syndrome

Aicardi syndrome was originally described in 1965 and is
defined by the triad of agenesis of the corpus callosum,
chorioretinal lacunae and infantile spasms [42]. Most children
with Aicardi syndrome develop infantile spasms by 3–
4 months of age, but only a minority have associated
hypsarrhythmia. Many CNS malformations may be present,
including callosal agenesis, cortical dysplasia, periventricular
heterotopias, asymmetry of cerebral hemispheres, and cystic
formations (such as choroid plexus cysts) [42]. Children are
typically severely affected, with most having daily seizures
and achieving developmental milestones no higher than
12 months [43]. To the best of our knowledge, the only pub-
lished study of sleep disorders in children with Aicardi syn-
drome is a case report of a 5-year-old girl who was found to
have obstructive sleep apnea and treated with positive airway
pressure [44]. It is likely that sleep disorders are under-recog-
nized/studied in this patient population, but timely identifica-
tion and treatment of sleep-disordered breathing may help to
optimize outcomes.

Skull Base and Hindbrain

The foramen magnum is the largest opening at the base of the
skull. The medulla oblongata, which carries the tracts, fibers,
and pathways between the brain and spinal cord, leaves the
brain at the foramen magnum. The meninges, vertebral arter-
ies, meningeal branches of vertebral arteries, and spinal roots
of accessory nerves also leave the skull at the level of the
foramen magnum. An abnormality at the level of the foramen
magnummay affect sleep by disrupting the information trans-
fer out of the brain.

Chiari Malformation

Chiari malformations include malformations of the cerebel-
lum and brainstem. Chiari I malformation consists of abnor-
mal cerebellar tonsils that are displaced > 3–5 mm below the

foramen magnum [45], and Chiari II malformation (discussed
in the next section) consists of downward displacement of the
cerebellum along with spinal myelomeningocele. Chiari I
malformations occur in one per 1000–5000 births [46].
Losurdo and colleagues evaluated 53 consecutive children
and adolescents who had Chiari I malformation with over-
night polysomnography to determine the prevalence of
sleep-disordered breathing [47]. Overall, they found that
24% of the children had sleep-disordered breathing with
11% having obstructive sleep apnea, 9% having central sleep
apnea, and 3% having both obstructive and central sleep ap-
nea; the presence of sleep-disordered breathing was not asso-
ciated with degree of herniation. Likewise, Ferre et al. evalu-
ated 70 consecutive patients with Chiari I malformation and
found that 50% of patients had a sleep-related breathing dis-
order with the majority exhibiting a predominantly obstructive
component [48•]. As the above studies indicate, Chiari mal-
formation can be associated with either obstructive or central
sleep apnea. Compression of the brainstem and respiratory
centers is thought to be the mechanism involved in producing
central apneas, whereas compression to cranial nerves IX and
X may result in decreased upper airway patency and obstruc-
tion. In addition, brainstem compression could interfere with
the ascending reticular activating system, and episodic airway
obstruction may contribute to increased intracranial pressure
and the development of syringomyelia [49].

Spina Bifida

Spina bifida (myelomeningocele) is a developmental defect in
the spine where a part of the spinal cord and nerve roots
protrude in a sac through the spinal defect. Chiari II is the
herniation of the cerebellum and medulla into the spinal canal
in association with myelomeningocele. Some children with
Chiari II and myelomeningocele require decompression of
the foramen magnum if they develop symptoms due to
brainstem compression [50]. Even after surgical repair of
myelomeningocele and Chiari II malformations, over half of
children have sleep-disordered breathing [51•]. Furthermore,
sleep-disordered breathing is associated with sudden death in
young adult patients with myelomeningocele [52]. Shellhaas
et al. compared 19 newborns with a repaired myelomeningocele
versus 19 control infants with polysomnography and found that
infants with repaired myelomeningocele had substantially higher
AHIs compared to control patients (34/h vs 19/h), mainly due to
more frequent central apneas (10/h vs 4/h) and hypopneas (21/h
vs 12/h) rather than obstructive apneas (3/h vs 2.5/h) [53].
Interestingly, the authors found that at the sixth month follow-
up, there was no significant association between severity of
sleep-related breathing disorder and subsequent developmental
delay [53]. Murray et al. used sleep questionnaires, actigraphy,
and sleep diaries to assess the sleep of 37 adolescents with spina
bifida compared to 37 adolescents without spina bifida [54•].
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They found that adolescents with spina bifida experienced poorer
sleep quality, reduced sleep, increased insomnia, and increased
daytime fatigue compared to the typically developing adoles-
cents. Treatment options for sleep-related breathing disorders in
patients with myelomeningocele and Chiari II malformation
should be tailored to the individual patient and type of sleep-
disordered breathing and include interval follow-up with repeat
polysomnography [51•], non-invasive positive airway pressure
[55], supplemental oxygen [51•, 53, 55], otolaryngology evalu-
ation [51•], tracheostomy alone [55, 56], tracheostomy with pos-
itive airway pressure [55, 56], and neurosurgical evaluation [51•,
56]. Routine screening and evaluation of sleep problems should
be performed in individuals with spina bifida.

Achondroplasia

Achondroplasia occurs in approximately 1 in 20,000 new-
borns [57]. Individuals with achondroplasia have rhizomelic
short stature, frontal bossing, midface hypoplasia, narrow tho-
rax, and sometimes foramen magnum stenosis. Children with
achondroplasia are at increased risk for obstructive sleep ap-
nea due to craniofacial and airway differences, hypotonia,
hypoventilation due to restrictive lung disease, and central
sleep apnea due to foramen magnum stenosis [58]. Overall,
approximately 42–82% of children with achondroplasia have
some form of sleep-related breathing disorder [58].
Adenotonsillectomy has been shown to resolve or reduce the
severity of OSA in this population, although many children
may still require positive airway pressure for residual disease
[59•, 60–63]. Due to the concern for foramen magnum steno-
sis resulting in central sleep apnea, investigators have evalu-
ated if PSG findings predict cervicomedullary compression.
For instance, White and colleagues evaluated 17 individuals
with achondroplasia with PSG and MRI [64]. They found
evidence of sleep-disordered breathing in all patients with
AHIs ranging from 3.5/h to 104.7/h, but there was no corre-
lation between the amount of foramen magnum stenosis and
the severity of sleep-disordered breathing based on sleep
study. Although the prevalence of sleep-related breathing dis-
orders is high in this population, a recent working group could
not come to agreement as to the ideal time to perform a sur-
veillance sleep study in infants with achondroplasia other than
“as early as possible” [65]. Given the lack of correlation be-
tween PSG findings and foramen magnum stenosis noted
above, they did agree that sleep studies should not be used
as the sole diagnostic tool to evaluate for foramen magnum
stenosis.

Joubert Syndrome

Joubert syndrome is a disorder characterized by a molar tooth
sign on headMRI that represents cerebellar vermis hypoplasia
[66, 67]. There are several genetic mutations that can result in

Joubert, and the prevalence is 1/100,000 births [66, 67].
Infants with Joubert syndrome usually also have hypotonia
and developmental delays and may have eye, kidney, or other
system involvement. From a respiratory standpoint, these chil-
dren frequently have an irregular breathing pattern as new-
borns characterized by severe tachypnea followed by apnea,
likely due to effects on respiratory centers in the brainstem.
Caffeine or supplemental oxygen may be effective at stabiliz-
ing the respiratory pattern [67]. Joubert syndrome is associat-
ed with central sleep apnea with respiratory events being pe-
riodic in nature and worse during non-REM and has been
shown to respond to bilevel positive airway pressure with a
backup rate [68]. One self-report survey of patients with
Joubert syndrome found snoring in 50% and elevated scores
on the pediatric sleep questionnaire suggestive of sleep-related
breathing disorder in 43% [69]. Due to the high frequency of
sleep-related breathing disorders, the Joubert Syndrome and
Related Disorders Foundation recommends a polysomnogram
in all children under the age of 12 months, and again if symp-
toms are present after 12 months of age [70].

In Utero Exposures Causing Multiple Brain
Differences

Fetal Alcohol Spectrum Disorder

Fetal alcohol spectrum disorders (FASD) represent one of the
most common preventable causes of developmental disability,
with an estimated prevalence of 1–5% in the USA [71]. In
addition to characteristic facial features, neurocognitive se-
quelae, and growth problems, children with FASD may have
structural brain abnormalities including structural abnormali-
ties of the corpus callous, cerebellum, caudate, hippocampus,
and regional differences in cortical thickness and gray matter
volume [72].

For decades, the presence of common and persistent sleep
difficulties in children with FASD has been recognized [73].
Jan and colleagues provided several general and practical
sleep health recommendations for families, including advice
regarding sleep environment, preparation for sleep, sleep
scheduling, and sleep hygiene for caregivers [74]. Wengel
and colleagues found that sensory processing deficits were
associated with sleep problems in children with FASD and
speculated that children with FASD would benefit from occu-
pational therapy for sensory-based treatment [75]. Chen and
colleagues performed a more detailed evaluation of sleep in
children with FASD using the Children’s Sleep Habits
Questionnaire as well as polysomnography (in a subset), and
they found that clinically significant sleep problems were
present in 85% of children with FASD (primarily related to
insomnia) and sleep studies revealed sleep-disordered breath-
ing as well as fragmented sleep with frequent arousals [76•].
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Despite their commonality, studies have found health-care
professional deficits in the recognition of sleep problems
among children with FASD [77]. A larger study by Goril
and colleagues found parasomnias and insomnia were the
most common sleep disorders in this population,
polysomnography demonstrated low sleep efficiency and high
sleep fragmentation, and the majority of children had abnor-
mal melatonin profiles suggesting circadian dysregulation
[78]. Animal models of FASD have found smaller pontine
cholinergic neurons (known to be involved in REM sleep
and SWS) and larger hypothalamic orexinergic neurons
(which are involved in arousal) [79].

Congenital Zika Syndrome

Zika virus targets neural progenitor cells, and in utero infec-
tion is associated with potentially severe neurological sequel-
ae, with neuroimaging findings including intracranial calcifi-
cations, ventriculomegaly, decreased brain volume, simplified
gyral patterns, dysgenesis of the corpus callosum, hypoplasia
of the brainstem and cerebellum, enlarged cisternamagna, and
increased extra-axial fluid [80, 81]. Pinato and colleagues ex-
amined sleep characteristics of infants and toddlers with con-
genital Zika syndrome [82•]. They found that children with
congenital Zika syndrome had lower total and nocturnal sleep
time compared to typically developing children based on re-
sponses to the Brief Infant Sleep Questionnaire. In addition,
while the typically developing children had less nocturnal
wakefulness as they aged, this was not seen in children with
Zika. Overall, 34% of the children with congenital Zika syn-
drome were found to be poor sleepers. To be sure, given their
many congenital anomalies (including multiple brain regions,
hypotonia, epilepsy, pulmonary disease), these patients are
likely at risk for a wide spectrum of sleep disorders and would
benefit from careful sleep evaluation.

Conclusion

Neurodevelopmental disorders can cause alterations of sleep.
Disorders of the eye can cause changes in light circadian en-
trainment resulting in a circadian rhythm disorder. Disorders
within the brain can interfere with ascending arousal system
signaling of neurotransmitters that control our sleep-wake cy-
cle. Disorders of the brainstem can alter the respiratory pattern
of breathing during sleep. The study of sleep in individuals
with neurodevelopmental disorders and congenital
malformations of the CNSwill likely advance our understand-
ing of basic sleep physiology and pathophysiology. More im-
portantly, clinicians whomaintain a healthy vigilance for sleep
problems in this patient population will likely identify oppor-
tunities to improve the overall function and health of the pa-
tient as well as decrease stress for caregivers.
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