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Abstract
Purpose of Review Personalized medicine is a challenge to improve survival and quality of life of patients suffering from primary
malignant brain tumor. Molecular biology is integrated in initial diagnosis and relapse, and, in the nearest future, over treatment
schedule and monitoring. Liquid biopsy is a minimally invasive way to obtain tumor material.
Recent Findings Over the past years, three fluids have been explored to provide tumor information in primary malignant brain
tumor: blood, cerebrospinal fluid, and vitreous liquid. Different tumor components were identified: (1) circulating tumor cells, (2)
circulating tumor DNA, (3) RNA and non-coding miRNA, and (4) extracellular vesicles. The performance of the liquid biopsy
depends on the tumor type and on the method of detection.
Summary Liquid biopsy could be a valuable tool to improve patient care in primary malignant brain tumor. Improvement of its
sensitivity is the major challenge to generalize its use in daily practice.
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Introduction

The worldwide prevalence of primary malignant brain tumors
(PMBTs) is around 11 persons per 100,000 per year [1]. In
2016, the World Health Organization (WHO) classification has
integrated molecular biology for diagnosis purposes for several
PMBTsubtypes [2]. Threemajor genetic somatic alterationswith
clinical relevance have been implemented in clinical routine:
IDH1/IDH2mutations, 1p/19q codeletion, andH3.1/H3.3muta-
tion. Additional alterations will undoubtedly be integrated soon,
expanding the number of molecular biomarkers to be tested in
the management of PMBT patients. Innovative drugs, including

molecular targeted therapies, need specific corresponding alter-
ations in tumor to be effective and safe. As an example, temozo-
lomide and radiotherapy change the tumor cells’mutational load
and induce DNA mutations in the mismatch repair (MMR) sys-
tem in 3.5% of glioblastomas (GBM) [3]. Alterations in the
MMR system induce a highly mutational burden in tumor, con-
ferring sensitivity to immune checkpoints inhibitors (anti-PD-1/
PDL-1) [4, 5]. Epidermal growth factor receptor (EGFR) ampli-
fication is present in around 40% of GBM. An antibody–drug
conjugate is currently evaluated in clinical trials dedicated to
GBM patients [6, 7]. Amplification of EGFR is required for
the drug to be fully effective. Indeed, EGFR antibody acts as a
Trojan horse. Other gene point mutations are theranostic bio-
markers for drugs under development. Ibrutinib, a tyrosine kinase
inhibitor targeting B-cell receptor, seems to be more efficient in
MYD88 orCD79Bmutated primary central nervous system lym-
phoma (PCNSL) [8, 9]. In gliomas, IDH1 inhibitor is a promis-
ing drug in IDH-mutated tumors. Mohammad et al. have sug-
gested that EZH2 inhibitor might be of interest in histone-mutant
glioma [10]. In this context, molecular analysis of tumor DNA
will constitute a routine test for treatment decision-making and
for treatment monitoring in PMBT patients. Indeed, tumor DNA
is currently obtained from surgical resection or biopsies, mostly
at initial diagnosis or at lesser extent at relapse. Postoperative
complications (e.g., hemorrhages, infection, and/or neurological
deficits) may occur. A minimally invasive tool that may help
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with molecular diagnosis and with identification of druggable
alterations is of major interest in neuro-oncology. This review
will present and discuss recent advances in the field of liquid
biopsy in PMBT.

Blood

In the field of liquid biopsy in oncology, peripheral blood
obtained with blood puncture represents advantages: (1) quick
availability, (2) minimally invasive procedure, and (3) wealth
of information. Blood-based biomarkers have been widely
described in extra-cerebral cancers such as non-small cell lung
cancer (NSCLC) [11], breast cancer [12], or colorectal cancer
[13]. Three components of blood-based biomarkers have been
described in PMBT patients: circulating tumor cells, nucleic
acids, and exosomes (Fig. 1).

Circulating Tumor Cells

Circulating tumor cells (CTCs) are cells released by tumor
bulk into body fluids, including blood. CTCs reflect the ability
of epithelial cancer cells to metastasize. The phenotype of
CTCs changes after epithelial-to-mesenchymal transition, to
stem cell or mesenchymal phenotypes. Identification of CTCs
is based on detection of cell-surface epithelial markers.
Immunocytology is the most common detection method
[14]. Antibodies targeting epithelial cell adhesion molecule
(EpCAM) and cytokines are used in the Cellsearch System
(Veridex, Warren, NJ, USA) [15]. Glioma cells do not express
epithelial biomarkers and therefore are not detectable using
these conventional methods. Sullivan et al. performed a

custom immunocytology method to detect circulating brain
tumor cells (CBTCs) in blood from GBM patients. Five spe-
cific GBM markers were identified. The authors developed a
detection assay using antibodies targeting these specific GBM
markers including anti-CD14, CD16, and CD45 antibodies.
Thirteen out of 33 patients with GBM (39%) had CBTCs in
blood at different times in treatment schedule. Detection of
CBCTs was not correlated with tumor location, extent of ini-
tial resection, or tumor genotype. The number of CBTCs was
higher in the blood of patients with progressive disease com-
pared to patients with stable disease (respectively median
11.8 cells/mL vs. 2.1 cells/mL). Interestingly, CBTCs express
mesenchymal phenotype while tumor cells express neural
phenotype within the tumor bulk [16•] (Table 1). The evidence
of CBTCs in GBM patients was confirmed by two other stud-
ies. Mac Arthur et al. developed a CBTC detection method
using telomerase activity. CBTCs were detectable in 8/11 pa-
tients (72%) before the radiotherapy and in 1/8 patient post-
radiotherapy. In pre-radiotherapy period, three patients had a
CBTC concentration lower than the threshold identified in
healthy subjects. Interestingly, the number of CBTCs was cor-
related with clinical outcome. Indeed, in one patient, the
CBTC number increased before ulterior progressive disease
(5 CBTC/mL pre-radiotherapy vs. 15 CBTC/mL after radio-
therapy) [17•]. Muller et al. used an anti-glial fibrillary acidic
protein (GFAP) antibody to detect CBTC in GBM patients.
Overall, 30 patients out of 147 (20.4%) had detectable GFAP-
positive circulating cells in peripheral blood. In two patients,
both genome-wide chromosomal and array CGH were per-
formed in PMBT and GFAP-positive cells. Similar chromo-
somal aberrations were found in both samples, but

Fig. 1 Representation of sources
and components of the liquid
biopsy concept in primary
malignant brain tumor (PMBT).
The components of the figure are
from Servier Medical Art by
Servier®. The license is available
at https://creativecommons.org/
licenses/by/3.0/legalcode. Some
components have been modified
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heterogeneities were observed in the same patient between
several circulating cells and initial tumor sample, especially
regarding EGFR and chromosome 3 amplifications [27].

Nucleic Acids

Cell-Free Circulating Tumor DNA Cell-free DNA (cfDNA) are
DNA fragments circulating in body fluids. In non-cancer pa-
tients, blood cfDNA comes mainly from genomic DNA re-
leased during cell apoptosis or inflammation process [28].
Genomic cfDNA are long DNA fragments (> 500 bp). In
physiological conditions, blood cfDNA concentration is low
due to its clearance by phagocytes. DNA fragments released
by tumor, called circulating tumor DNA (ctDNA), are also a
part of cancer patients’ cfDNA. ctDNA are released by necrot-
ic and apoptotic cells [29]. In contrast to genomic cfDNA,
ctDNA are small fragments (< 100 bp) and exhibit somatic
genetic alterations [30]. Indeed, single nucleotide variants,
chromosomal rearrangements, or gene copy number varia-
tions could be detected in ctDNA. ctDNA is extracted from
peripheral blood sample (5 to 10 mL of whole blood). As the
mean half-life duration of ctDNA is short (~ 1.5–2 h) [31],
plasma must be quickly separated and frozen within 3 h after
collection. Recently, specific DNA tube collectors have been
developed to guarantee DNA stability for 24 h [32, 33]. Once
extracted, detection of somatic alterations on ctDNA depends
on the quantity of ctDNA and the sensitivity of the sequencing
method. The ctDNA proportion among whole cfDNA is cor-
related with tumor burden in advanced solid tumors. The over-
all cfDNA concentration and the variant allele frequency
(VAF) are two quantitative biomarkers. At diagnosis, the
cfDNA level is inversely correlated to overall survival in lung,
colorectal, ovarian, and breast cancer patients [34–37]. The
VAF represents the proportion of one specific somatic alter-
ation among wild-type allele and varies from 0.01% to > 80%
in cfDNA. The clinical significance of a VAF lower than 5%
remains questioned as prognostic and/or theranostic marker.
Two methods are currently used to detect somatic alteration in
ctDNA: next-generation sequencing (NGS) and digital PCR
(dPCR). NGS has the advantage of massive parallel sequenc-
ing, such as whole-exome sequencing in one-time experiment.
Required DNA amount is proportional to the size and the
number of sequenced areas. Targeted panels are usually used
to increase the coverage depth. Schwaederle et al. have ex-
plored the usefulness of a custom targeted panel to detect
actionable mutations in several cancers. One hundred fifty-
two patients suffering from PMBT were included.
Interestingly, 31.5% (49/152) had at least one detectable so-
matic alteration in blood ctDNA: 4% associated to FDA ap-
proved drugs, 11% to experimental drugs, and 16.5% had
non-actionable alterations [18•] (Table 1). De Mattos-Arruda
et al. also explored targeted panel on plasma ctDNA, CSF
ctDNA, and matched tumor DNA in a cohort of 12 patients

(7 patients with CNS restricted tumors and 5 patients with
both brain metastases and extra-neuronal tumors). In the
CNS-restricted tumor cohort (four GBM, two patients with
breast cancer brain metastasis, and one patient with lung can-
cer brain metastasis), no alterations were found in plasma
ctDNA. The coverage depth of plasma cfDNA was mostly
lower than 1000 reads [38•]. Rothe et al. have highlighted
the need of a coverage depth higher than 25,000 reads for
plasma cfDNA [39]. Fontanilles et al. performed a two-time
approach in a cohort of PCNSL: somatic mutations were first-
ly identified in tumor using a targeted panel and secondly a
restricted patient-specific panel was performed on matched
plasma cfDNA. A total of 32% patients (8/25) had detectable
somatic mutations in cfDNAwith a mean sequencing depth of
12,550 reads versus 185 reads in tumor [19]. Hattori et al.
have recently investigated the sensitivity of two methods,
droplet dPCR (ddPCR) or targeted NGS, for detection of
MYD88 c.T778C (p.L265P) in plasmatic ctDNA of PCNSL
patients. At initial diagnosis, ddPCR detected MYD88
c.T778C in 93% (13/14) of patients whereas targeted NGS
did not (0/14) [20]. The superiority of PCR to detect so-
matic alteration in plasma has already been shown in
glioma patients for IDH1 mutation [40] and MGMT
promoter methylation [41, 42].

miRNA MicroRNA (miRNA) are small nucleotide fragments
(< 25 bp). miRNA act as translational regulators by binding
RNA and a silencer of gene expression. miRNA play an im-
portant role in cancer cell by modulating growth, apoptosis,
and differentiation processes [43], especially in GBM [21, 44]
(Table 1). miRNA are stable in body fluids and could be de-
tected by PCR. Recently, several studies have explored serum
miRNA signature in human glioma as diagnostic or prognos-
tic markers. As an example, a low serum miRNA-125b level
seems to be associated with glioma diagnosis in several stud-
ies [45, 46]. Wang et al. have also shown that low serum level
of miR-485-3p seemed to be an independent poor prognostic
factor in GBM patients [47].

Extracellular Vesicles (EVs)

EVs are a group of membrane-limited vesicles released by
cells. EVs play an important role in intercellular communica-
tion by carrying cell components such as nucleic acids (DNA,
coding and non-coding RNA, miRNA), lipids, and proteins.
EVs are isolated from serum by centrifugation and purifica-
tion or precipitation. Exosomes and microvesicles are two
different types of EVs issued from endosomal and plasma
membrane, respectively [48]. Exosomes are 40- to 150-nm-
diameter EVs of endocytic origin and can be released by tu-
mor cells. Cancer exosomes are a key component of tumor
progression through interactions with the microenvironment
(i.e., immune cells, vascular cells, tissue specific cells, and
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extracellular matrix) [49]. Kucharzewska et al. have highlight-
ed that GBM exosomes are enriched in hypoxic components
that promote tumor growth and stimulate neoangiogenesis
[50]. Cancer exosomes circulate in blood, thus their compo-
nent could be detected as circulating biomarkers. EGFRvIII
was detected from serum exosome in 96 high-grade glioma
patients with a sensitivity of 81.6% and a specificity of 79.3%
using reverse transcription PCR (RT-PCR) [22•] (Table 1).
The expression of one non-coding RNA (RNU6-1) and two
miRNAs (miR-320 and miR-574-3p) in serum exosomes was
significantly associated with diagnosis in 25 GBM patients
compared to healthy controls [51].

Cerebrospinal Fluid

Cerebrospinal fluid (CSF) is an important source of molecular
biomarkers in the setting of PMBT. CSF is collected during
lumbar puncture or surgical operation. CSF contains ctDNA,
miRNA, exosomes, and protein derivative from the brain tu-
mor. IDH1 mRNA expression was found significantly higher
in CSF compared to serum of 24 glioma patients. IDH1
c.G395A mutation, which encodes IDH1 R132H, was identi-
fied in CSF by ddPCR in half of the IDH-mutant glioma pa-
tients (n = 4/8) [52]. Pan et al. have performed a two-step
approach on CSF ctDNA. First, an exome sequencing was
made on tumor DNA to identify somatic mutations. Then,
two sequencing runs were performed: one using ddPCR and
one using targeted NGS. In a cohort of seven patients suffering
from PMBT (one vestibular schwannoma and one atypical
meningioma) or brain metastasis (two lung carcinoma cancers,
two melanomas, and two colorectal cancers), CSF contains
gene mutational hotspots in six patients (86%). The mutation
allele frequency (MAF) seemed to be lower in ctDNA CSF
compared to tumor bulk: AKT1mutation p.E71KMAF was at
45.2% in tumor, 4% in CSF, and 0% in plasma in the menin-
gioma samples [53]. ctDNAdetection in CSF ismore sensitive
than plasma as highlighted by De Mattos-Arruda et al. CSF
provides more qualitative and quantitative information than
plasma in a cohort of 12 patients with PMBT (4 GBM) or
metastasis restricted to the brain (6 breast cancers and 2 lung
cancers): no alteration was identified in plasma while all CSF
samples harbored at least one somatic alteration. In GBM pa-
tients, mutational profiles detected in CSF differed from the
ones obtained in primary tumors: less alteration was identified
in CSF [38•]. Recently, in a cohort of 71 GBM, RNA EGFR
expression was significantly higher in CSF of patients with
EGFRvIII-positive tumor. EGFRvIII was identified by PCR
in CSF of 61% of EGFRvIII-positive GBM (n = 14/23) [23•]
(Table 1). Histone H3 mutations were identified in ctDNA
CSF in a cohort of children with diffuse midline glioma.
Eleven patients were analyzed with agreement between tumor
tissue and CSF for H3.3K27M in seven patients [24•].

miRNA detection and quantification in CSF could also
serve as diagnostic tool in PMBT. Baraniskin et al. proposed
a diagnostic tree of PCNSL based on relative expression of
three miRNAs (miR-21, miR-19b, and miR-92a) in the CSF,
compared to control subjects [54, 55]. Overall, their algorithm
permitted to distinguish 22 PCNSL from 30 controls. Drusco
et al. also highlighted that candidate miRNA expression var-
ied depending on brain subtype in a cohort of 34 patients with
CNS benign or malignant tumor and 14 healthy subjects. For
example, expression of mirR-125b was higher in CSF of all
malignant tumors, especially medulloblastoma, GBM, and
metastasis [56]. Akers et al. identified a nine-miRNA signa-
ture in CSF to diagnose GBM. In a validation set, their signa-
ture correctly distinguishes GBM from non-malignant lesions
in 13/28 patients and 27/32 subjects, respectively [25].

Others

Intraocular Liquid Biopsy

Vitreous biopsy is a reservoir of biomarkers in vitreoretinal B-
cell lymphoma (VRL), a subgroup of CNS lymphoma. It has
been widely described that vitreous liquid contains tumor
cells, monoclonal rearrangement of immunoglobulin heavy
chains, and IL10/IL6 ratio higher than 1 [57]. Presence of
ctDNA in vitrectomy material has been explored. Bonzheim
et al. identified MYD88 mutations in 20/29 patients (69%)
suffering from VRL [58]. Recently, Cani et al. performed
targeted NGS including 16 genes in vitreous aspirate from
four VRL patients. All cases harbored at least one point mu-
tation affecting MYD88 and copy number losses of PTEN or
CDKN2A [26] (Table 1).

Urine and Saliva ctDNA

Urinary ctDNA was initially described in patients suffering
from urothelial tract cancers. TP53 and FGFR3 mutations
were identified in urine of patients with bladder cancer [59].
TERT promoter mutations were also identified in a prelimi-
nary study in various urothelial cancers [60]. ctDNA in urine
are directly released by apoptotic or necrotic tumor cells.
Urinary ctDNA is also issued from the bloodstream after fil-
tration through glomerular system [61].EGFRmutations were
described in urine from patients with NSCLC [62, 63]. The
acquired p.T790M resistance mutation to EGFR tyrosine ki-
nase inhibitor was found in urine for 53% patients during
follow-up in a cohort of 150 NSCLC.

Saliva cfDNA has been described to contain genomic
DNA. As urine, saliva may also contain ctDNA from the
bloodstream. Pu et al. explored an original approach based
on electric field (EFIRM). Exon 19 deletion and p.L858R
mutations of EGFR gene were detected with good agreement
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between saliva, plasma, and tumor tissue (n = 6/17 patients
with NSCLC) [64].

To date, and despite easy availability of urine and saliva in
patients with PMBT, no studywas published in this specific topic.

Challenges and Perspectives

What Is Influencing the ctDNA Release from the PMBT?

ctDNA is detected in blood and CSF of patients suffering from
glioma, medulloblastoma, PCNSL, and brain metastasis. The
detection rate is low in blood. The mechanisms of ctDNA
release from the PMBT are not fully understood. The first
explanation could be the low tumor burden, which has been
described to influence the sensitivity of plasma ctDNA detec-
tion in NSCLC [65]. Boisselier et al. have highlighted that
cfDNA concentration was correlated with contrast-
enhancement tumor volume in glioma [40]. Conversely to
those results, tumor volume was not correlated to plasmatic
cfDNA concentration in PCNSL [19, 20]. The release of
ctDNA through the blood–brain barrier and its elimination
from the bloodstream is not fully understood. To identify the
parameters potentially impacting ctDNA release into CSF and
blood is of major interest. Necrosis and macrophage activity
are correlated with ctDNA release in Hodgkin lymphoma
[66]. Once released, ctDNA distribution and elimination from
body fluids should also be studied during the nycthemeron to
explore influence of corticosteroid therapy, chemotherapy,
and/or radiotherapy.

How to Improve the Sensitivity of ctDNA Detection?

One major limitation of liquid biopsy in daily practice for
PMBT is its low sensitivity. The fragment length of ctDNA
seems to be shorter in rat models bearing GBM xenograft
(134–144 bp) [67•]. Consequently, detection of ctDNA can
fail because of non-amplification of small DNA fragments,
especially for NGS. cfDNA integrity is estimated by the ratio
of short (< 200 bp) versus long DNA fragments (> 500 bp). A
high ratio means the presence of ctDNA over genomic cfDNA
and correlates with cancer diagnosis in NSCLC and breast
cancer [68, 69]. To date, no study investigated this specific
topic in glioma patients. The sensitivity should also be im-
proved by using tumor-educated platelets (TEPs). TEPs con-
tain RNA and allow early lung cancer diagnosis by identifying
a specific RNA signature [70]. Recently, the combination of
RNA from exosome and plasmatic ctDNA increases EGFR
mutation detection in NSCLC patients [71]. Beyond detection
of somatic alterations, epigenetic modification in cancer is a
promising tool for liquid biopsy. The cfDNA methylation sta-
tus in plasma is a valuable biomarker in cancer diagnosis.
Uehiro et al. have performed a genome-wide methylation
analysis on plasmatic cfDNA. Twelve methylated regions

have been identified to correlate with breast cancer diagnosis
compared to healthy subjects [72]. Moreover, temozolomide
induces DNA methylation. It could be interesting to evaluate
the methylation profile over treatment course and to correlate
it to treatment response and toxicity.

Conclusion

Liquid biopsy in PMBT covers three types of body fluids
(blood, CSF, and vitreous liquid) and multiple biomarkers.
Despite recent improvement in detection methods, the low
sensitivity in glioma or PCNSL does not allow its use in daily
practice. Further studies are warranted to better understand the
release of molecular biomarkers in blood or CSF to identify
patients for whom liquid biopsy could improve their cancer
management. To find biomarkers that could be easily and
minimally invasively collected at initial diagnosis and during
treatment course remains a challenging question in PMBT.
Epigenetic, transcriptomic, and deep-sequencing methods
are the keys of this challenge in the future.
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