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Abstract
Purpose of Review Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available.
Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent
studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults.
Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory
mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in
TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-
clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous
neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair.
Recent Findings Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by
stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential
strategy to repair and regenerate the injured brain.
Summary Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advance-
ment, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

Keywords Traumatic brain injury . Neural stem cells . Endogenous neurogenesis . Subventricular zone . Hippocampus . Cell
transplantation . Cognitive function

Introduction

Traumatic brain injury (TBI) is a global public health
concern, with limited treatment options available. In the
USA alone, between 3.2 and 5.3 million people suffer
long-term cognitive impairments as a result of TBI [1].
While there have been significant improvement in reduc-
ing TBI-related mortality in the past 10 years, approxi-
mately 80,000 individuals in the USA annually sustain
TBIs that result in significant long-term deficits involving

sensory motor and memory functions. TBI causes signif-
icant brain tissue damage of both neuronal and white mat-
ter with resultant of brain atrophy and neurological functional
impairment. Due to the complicity and heterogeneity of TBI,
despite intensive research, there is still no effective therapy for
TBI. Current strategies are mostly focused on reducing sec-
ondary injuries. Strategies targeting regeneration and repair
are limited. Recent identification of functional neural stem
cells in the mature mammalian brain and technique advance-
ment in generating neural stem cells in culture dish have raised
the possibility of developing stem cell-based therapy to repair
and regenerate the injured brain following TBI. Two ap-
proaches targeting stem cells for neural regeneration either
modulating endogenous neural stem cells or utilizing exoge-
nous stem cells are gaining increasing attention. This article
summarized studies targeting stem cells as therapy for TBI
with manipulation of endogenous or exogenous stem cells in
both pre-clinical and clinical settings.
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Targeting Endogenous Neural Stem Cells

Adult Neural Stem Cells, their Development Process,
and Functional Roles in the Normal Brain

Neural stem cells (NSCs) are pluripotent cells residing in the
CNS that have unlimited potential of self-renewal and can
generate both neurons and glia cell types. Within the adult
mammalian brain, NSCs and their fate committed progenitor
cells are primarily located in the subventricular zone (SVZ)
that surrounds the lateral ventricles and the subgranular zone
(SGZ) of the dentate gyrus (DG) in the hippocampus [2, 3].
NSCs in the SVZ generate new neurons migrating along ros-
tral migratory stream to olfactory bulb becoming olfactory
granule or periglomerular neurons while NSCs from the DG
migrate laterally from the birth place of SGZ to the granular
cell layer and differentiate into DG granule cells [4–7]. The
developmental stage of adult generated neurons is well char-
acterized in the DG. Briefly, after generation, while more than
half of newborn cells are subsequently undergoing apoptosis
within the 1st month due to limited trophic support, those
survived new neurons project their axons into the hilus and
dendrites into the molecular layer with dendritic protrusions
typically appearing during the third week [8]. The maturation
stage of these cells to begin displaying enhanced excitability
and plasticity is between 3 and 7 weeks aligning with the start
of dendritic protrusions development [9–13]. The survival and
integration during this time point act as rate-limiting steps for
the amount of new cells that will be involved in successful
maturation and contribution to the circuitry which would
make up 6% of the total granule cell population in the DG
[7, 8, 14, 15].

The integration of new neurons from the SVZ to the olfac-
tory bulb circuitry holds similarities to the DG neurogenic
niche in that less than half of new neurons from the SVZ
survive beyond week 4 of maturation [16]. A majority of cells
mature into olfactory granule cells, while the rest differentiate
into periglomular neurons (PGNs). Located in the deepest
layer, the granule cells are a population of inhibitory interneu-
rons that are very homogenous among one another and extend
their dendrites into the external plexiform layer of the olfac-
tory bulb typicallymaturing at an earlier time point of 2 weeks.
Alternatively, those that turn into the PGNs are more differen-
tiated from each other and are located at a superficial location
with the olfactory bulb receiving more direct sensory informa-
tion. [17–19]. The PGNs typically take about 4 weeks to de-
velop their dendritic and axonal structures.

A key difference between the two neurogenic regions is
that the olfactory bulb replaces existing neurons with these
new neurons, while the dentate gyrus has continuous addition
and integration of new neurons [4, 18, 20–22]. The sequential
steps of functional maturation directly involve the formation
of synapses and fine tuning for these new cells to be

dynamically incorporated into the circuit. New neurons form
synaptic connections with both afferent and efferent pathways
of existing neural circuit and continuously introduce structural
plasticity throughout the adulthood. The integration of these
new neurons requires a level of plasticity to functionally con-
tribute to the circuit, especially since this ongoing endogenous
neurogenesis has functional implications for these regions
[23]. Specifically, adult NSC-derived new neurons in the
DG play important roles in hippocampal dependent learning
and memory functions, particularly in pattern separation and
new memory formation [24–27], whereas new olfactory inter-
neurons generated from the SVZNSCs are necessary in main-
taining normal structure and function of the the olfactory bulb
as well as several selected olfactory behaviors, such as olfac-
tory discrimination, new order acquisition, and short-term ol-
factory memory functions [28–30].

Generation of new neurons involves different stages: pro-
liferation or generation of new cells, migration to the appro-
priate targeted areas, and differentiation into proper neuronal
cell types and integration into preexisting neural circuitry.
These stages are influenced by many factors including envi-
ronmental factors such as stress, physical exercise, or enrich-
ment; biochemical factors such as growth factors, steroids,
and neurotransmitters; and disruption of normal brain function
from disease or injury such as TBI [5, 31–34].

Adult Neural Stem Cell Response Following TBI

NSCs in the SVZ and hippocampus are versatile responding to
many types of stimulants. Enhanced activation of NSCs has
been observed in multiple types of experimental TBI models
including fluid percussive injury (FPI) [35, 36], controlled
cortical impact injury (CCI) [37, 38], closed head weight drop
injury [39], and acceleration-impact injury [40]. In all reported
studies, the most common and prominent endogenous cell
response following TBI is an increase in cell proliferation in
both neurogenic regions of the DG and SVZ. Increased gen-
eration of new neurons resulted from the TBI-enhanced NSC
proliferation was also observed particularly in the hippocam-
pus in these models in the more severely injured animals [39,
41]. Further studies have found that injury-induced new gran-
ule neurons sending out axonal projections into the targeted
CA3 region suggesting their integration into the existing hip-
pocampal circuitry [41, 42], and this injury-enhanced endog-
enous NSC response is directly related to the innate cognitive
functional recovery following TBI in rodents [43, 44•].

In the human brain, the degree and function of adult
neurogenesis are less clear. From autopsy human brain sam-
ples, NSCs with proliferative capacity have been found in the
SVZ and the hippocampus [45, 46]. However, it is reported
that the extent of neurogenesis in the SVZ and migration of
new neurons from SVZ to olfactory bulbs and neocortex are
rather limited and are only observed in the early childhood
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[47–49]. However, a recent study has reported a substantial
degree of hippocampal neurogenesis in human brains and that
the rate of neurogenesis is comparable between middle-aged
humans and mice [50]. Thus far, convincing evidence of TBI-
induced neurogenesis in human brain is lacking due to diffi-
culties of obtaining human brain samples as well as technical
challenges to birth-dating NSCs. Nevertheless, neurons ex-
pressing immature neuronal markers were reported in human
brains in regions around lesions of focal infarction [51], TBI
[52], and subarachnoid hemorrhage [53].

From rodent to human, these above mentioned studies in-
dicated a potential that NSCs from the SVZ and DG may be
utilized to develop therapies targeting these cell population to
aid in the functional recovery of the injured brain.

Targeting Neural Stem Cell Population
for Endogenous Neural Repair Following TBI

Although TBI enhances endogenous NSCs response, the ca-
pacity of this self-repair is limited, with the low survival rate
of these newly generated cells and particularly when the hos-
tile environment produced by mass cell death and inflamma-
tion is still present following TBI. To utilize this endogenous
repair mechanism for the injured brain, varying strategies that
can promote proliferation, neuronal differentiation, survival,
and migration of NSCs have been explored in recent experi-
mental studies and have shown varying degrees of beneficial
effects in improving sensory-motor and cognitive functional
recovery of the injured animals.

Biochemical Approach

During developmental stage, neurotrophic and growth factors
are essential for cell proliferation, differentiation, and survival.
In the injured brain, supplementing these factors such as basic
fibroblast growth factor, epidermal growth factor, vascular
endothelial growth factor, brain-derived neurotrophic factor
etc. have shown functions recapitulating the developmental
stage with enhancement of proliferation, survival of NSCs in
the hippocampus and the SVZ, and ultimately improve recov-
ery of cognitive functions of the injured animals [54–57].

Unlike pre-clinical studies, utility of direct application of
growth factors for clinic use is limited due to the invasive
delivery method. Small molecules which act as agonist mim-
icking growth factor functions could be more applicable to
clinic with better penetration through blood brain barrier and
longer half life. Several small moleculars such as a synthetic
neurotrophin TrkB receptor agonist, 7,8-dihydroxyflavone; a
small-molecule p75NTR signaling modulator, LM11A-31;
cerebrolysin, a small neuropeptide derived from purified por-
cine brain proteins which has similar properties as the endog-
enous neurotrophic factors; and a small molecule peptide 6,
which corresponds to an active region of human ciliary

neurotrophic factor (CNTF), have shown different degrees
of enhancing NSC proliferation, new neuron survival, and
improving functional recovery of the injured animals in dif-
ferent TBI pre-clinical models [58–62]. Cerebrolysin has
shown enhancing cognitive improvements in mild TBI pa-
tients in a clinical trial [63].

Apart from growth factors and their mimics, several phar-
macology agents and FDA-approved drugs have been identi-
fied with functions stimulating endogenousNSC response and
improving cognitive recovery of injured animals following
TBI. These include erythropoietin (EPO), a hormone-
stimulating production of erythrocytes [64, 65]; thymosin
β4, a small peptide G-actin sequestering molecule [66];
P7C3 class of aminopropyl carbazole agents [67]; statins, a
class of hydroxymethylglutaryl-coenzyme A reductase inhib-
itors for treating hyperlipidemia; tissue plasminogen activator
(tPA), the drug for early stroke treatment; selective serotonin
reuptake inhibitor imipramine and fluoxetine; NeuroAid
(MLC901), a traditional Chinese medicine used for stroke
and angiotensin II receptor type 2 (AT2) agonists [68–74].

Physical or Other Radical Approaches

NSCs in the hippocampus respond to physiological stimuli
such as physical exercise and environmental enrichment with
increased proliferation rate in normal situation [34, 75]. When
applied these stimuli to the injured animals at appropriate time
following TBI, they show beneficial effect by further increas-
ing generation of new neurons in the hippocampus and im-
proving cognitive recovery [76–78]. Similar positive results
were also observed following a transcranial low light laser
therapy [76].

In summary, strategies that can significantly influence NSC
functions including proliferation, neuronal differentiation, and
survival of newly generated neurons have shown beneficial
effect in improving the functional recovery of the injured
brain. These suggest that targeting endogenous repair mecha-
nisms via neural stem cells has potential for treating the in-
jured brain following TBI.

Exogenous Stem Cells Via Neural
Transplantation for Post-TBI Brain Repair
and Regeneration

Following TBI, injury-induced neural tissue loss is perma-
nent. Given the limited population of the endogenous NSCs,
neural transplantation supplementing exogenous stem cells to
the injured brain is a potential therapy for post-TBI brain
repair. Specifically, the introduced cells will not only be able
to replace the lost neural population, but also provide neuro-
trophic support in hopes of reestablishing and stabilizing the
injured brain. Thus far, several categories of cells have been
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tested for post-TBI stem cell therapy including embryonic
stem cells, adult-derived NSCs, induced pluripotent stem
cells, and mesenchymal stromal cells.

Embryonic Stem Cells

Embryonic stem (ES) cells derived from fetal or embryonic
brains are strongly considered for neural transplantation due to
their high degree of plasticity and having the ability to unlim-
ited self-renew and differentiation into all three germinal
layers. These cells can differentiate, migrate, and make inner-
vations when implanted into a recipient brain [79]. In pre-
clinical TBI studies, NSCs isolated from human fetal brain
were capable of survival for an extended period, migrating
to the contralateral cortex and differentiating into neurons
and astrocytes after transplantation into the injured brain fol-
lowing a focal brain injury [80]. Transplanted NSCs from
human ES cells can differentiate into mature neurons and re-
lease growth factors improving cognitive functional recovery
of the injured host [81]. Long-term survival of grafted NSCs
derived from mice fetal brains is reported up to 1 year with
extensive migration in the injured brain and maturation into
neurons or glial cells accompanied by improved motor and
spatial learning functions of the host [82–84]. Furthermore,
ES cells over-expressing growth factors or pre-differentiated
into neurotransmitter expressing mature neurons following
in vitro manipulation have shown better graft survival and
neuronal differentiation after transplanted into the injured
brain, and the recipients have enhanced recovery in motor
and cognitive functions [85–88].

Although ES cells have high survival and plasticity in neu-
ral transplantation, the ethical controversies, risk of transplant
rejection, and the possibility of teratoma development limit
their clinical application for TBI.

Adult Neural Stem Cells

As mentioned above, mature mammalian CNS harbors NSCs.
Apart from participating endogenous repair, these adult-
derived NSCs are capable of becoming region-specific cells
when transplanted into the normal adult rodent brains [89–91].
We have found that after transplantation into the injured brain
following TBI, these cells can survive for a long period and
become region-specific functional cells [92]. Transplantation
of the adult-generated NSCs in mouse TBI models has shown
improvements of learning deficits [93, 94].

Neural stem/progenitor like cells have been isolated
from adult human brain from various regions from neuro-
surgical resection tissues, and they can become mature
neurons and glia in culture dishes [95–102]. As their adult
origin, these cells may be possibly used as autologous cell
sources for neural transplantation therapies to regenerate
the injured CNS as demonstrated in a study after grafting

adult human-derived NSCs into the demyelinated rat spi-
nal cord [103]. However, due to their adult origin, these
cells show less plasticity when compared to the ES cells.
It was reported that only a small portion (4 ± 1%) of cul-
tured adult human NSCs from surgically removed tissue
can survive up to 16 weeks following transplantation into
the posterior periventricular region in naïve rat brain or in
the hippocampal CA1 region following ischemic injury in
rat [104]. With such limitation, the application of adult
NSCs for TBI in clinic is unrealistic.

Induced Pluripotent Stem Cells

Most recently and more ethically appealing, induced plu-
ripotent stem cells (iPSCs) have allowed scientists to ex-
plore manipulating this highly plastic population. These
somatic cell-derived iPSCs can provide large quantities
of pluripotent cells that have high plasticity generating
cells for all three germ layers including neurons and glia
(Takahashi and Yamanaka, 2006). More importantly,
iPSCs can be derived from patients themselves and have
potential for autologous transplantation, avoiding ethical
and graft rejection concerns. These unique properties of
iPSCs have raised hope that many neurological diseases
including TBI might be cured or treated. Thus far, the
prospective of iPSCs for treating TBI has just begun to
be explored. In TBI experimental studies, only two pub-
lications were found in PubMed reporting the use of
iPSCs for post-TBI transplantation, these studies mainly
reported the feasibility of using iPSCs providing very lim-
ited information about the fate of transplanted iPSCs in
the injured brain [105, 106].

Mesenchymal Derived Stem Cells

Stem cell therapy using mesenchymal stem cells (MSCs)
has been extensively tested in many neurological disor-
ders including TBI in pre-clinical models and clinical tri-
als in recent years. Cells tested in TBI studies include
bone marrow stromal cells (BMSCs), human amnion-
derived multipotent progenitor cells, human adipose-
derived stem cells, human umbilical cord blood, and pe-
ripheral blood-derived MSCs [107–109, 110•, 111–113].
These mesenchymal derived cells are undifferentiated
cells with mixed cell population including stem and pro-
genitor cells. In culture condition, they can be induced to
differentiate into neuronal phenotype. These cells produce
high level of growth factors, cytokines, and extracellular
matrix molecules with potential neurotrophic or neuropro-
tective effects in the injured brain [114, 115]. Among the
MSCs, the potential of BMSCs for TBI has been exten-
sively tested. Studies have reported that cells being deliv-
ered directly into the injured brain, or via intravenous or
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intra-arterial injections during the acute, sub-acute, or
chronic phase after TBI, significant decrease of neurolog-
ical deficits in motor and cognitive functions was ob-
served [111–113, 116]. The beneficial effort of MSCs is
due primarily to the bioactive factors they produced to
facilitate the endogenous plasticity and remodeling of
the host brain rather than direct neural replacement as
direct neuronal differentiation and long-term survival
were rarely observed [114]. This is further approved by
a recent study showing that administration of cell-free
exosomes derived from human BMSCs can improve func-
tional recovery of injured animals following TBI [117].

Combinational of Stem Cells with Biomaterials

Albeit the multiple cell sources for cell replacement thera-
peutics, structural damage at the site of injury following
TBI often creates a hostile environment preventing long-
term survival and integration of the transplanted cells. A
large component necessary for cell survival, appropriate
incorporation, and maintaining healthy is the conducive
extracellular environment. For the injured brain,
supplementing appropriate extracellular matrix could aid
in recovery of the injured microenvironment and promot-
ing survival, differentiate, and integration of the
transplanted cells. There has been a great extent of work
done in the field of bioengineering deploying collagen, a
major component of the extracellular matrix, for tissue re-
generation due to its abundance and accessibility to create
a suitable matrix [118]. In TBI models, studies have found
that animals that received transplantation of ES-derived
NSCs with fibronectin can increase survival and migration
of NSCs in the injured brain [119], whereas co-trans
plantation of BMSCs with collagen scaffold in the cortex
showed increased axonal sprouting in the cortical spinal
tract and better improvement of motor and cognitive func-
tional recovery compared to animals with BMSCs only
[120, 121]. For effective bioengineer/stem cell transplan-
tation therapy, the ideal substrate should be derived from or
most similar to the brain extracellular matrix, and be in-
jectable specifically with the fluidity of the matrix and
appreciatively fitting more irregular grooves and folds that
are expected in the injured brain [122]. These brain-
derived extracellular matrices that are being developed
are classified as hydrogels [123]. In our own hands, we
found that transplantation of ES cell-derived NSCs with
injectable hydrogels into the injured cavity in cerebral cor-
tex can significantly reduce the injury cavity size and en-
courage extensive formation of vasculatures and survival
of transplanted cells at the site of injury in rats following a
cortical impact injury (unpublished data). These studies
emphasized the importance of stabilizing extracellular en-
vironment for successful stem cell transplantation therapy.

Other Stem Cell Strategies for TBI

In Situ Conversion of Glial Cells into Functional
Neurons.

Today, significant progress has been made in the field of so-
matic cell reprogramming. Apart from generating iPSCs in
culture dish, current reprogramming techniques enable direct
in situ conversion of glial cells into functional neurons, thus
creating true autologous cell replacement therapy bypassing
neural transplantation procedure. Following brain injury, the
glial scar at the site of injury forms a physical and chemical
barrier preventing neural regeneration. Direct conversion of
glial cells at the scar site into functional neurons can not only
solve the inhibitory issue of the scaring tissue but also provide
localized functional neurons. Recent studies have successfully
provided insight of in situ conversion of glial cells via delivery
of neurogenic transcription factors [124, 125]. Reprog
ramming of astrocytes into neuroblasts and mature neurons
has been achieved by SOX2 overexpression [126, 127•], or
by inhibiting Notch1 signaling in astrocytes [128]. Moreover,
reactive astrocytes in the cortex of injured or diseased mice
brain can be converted into functional neurons by overexpres-
sion of transcription factor NeuroD1 [129••]. Following TBI,
viral transduction of reprogramming transcription factors
Oct4, Sox2, Klf4, and c-Myc can convert reactive astrocytes
at the injury site into iPSCs which can further differentiate into
both functional neurons and glia in situ filling up the injury
cavity [130••] . These studies suggest that direct
reprogramming of reactive glial cells to functional neurons
at the site of brain injury could be a more attractive strategy
for post-TBI brain repair.

Conclusion and Perspectives

Significant progress has been made in stem cell-based therapy
targeting neural regeneration in stroke and neurodegenerative
diseases in both preclinical and clinical studies. Extensive
studies have shown the prospective of stem cell therapy for
treating the injured brain. However, due to the complicity and
heterogeneity of brain trauma, post-TBI neural repair and re-
generation are still a far reaching goal. There are many unmet
challenges for successful stem cell therapy. For endogenous
repair through adult neurogenesis, strategies guiding migra-
tion of new neurons to the site of injury and promoting long-
term survival are necessary. For stem cell transplantation, as
the intrinsic properties of grafted cells and the local host en-
vironment determine the fate of transplanted cells, an optimal
cell source and a controlled host environment are necessary
for successfully neural transplantation. These challenges must
be addressed in preclinical TBI studies before stem cell-based
therapies can be applied to clinic.
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