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Abstract
Purpose of Review Pituitary tumors are undergoing a transformation in histopathologic and molecular classification, coincident
with the continued refinement of increasingly powerful methods of genomic annotation and discovery. We highlight novel
genomic alterations identified in pituitary adenomas and craniopharyngiomas and discuss their clinical implications.
Recent Findings Sporadic pituitary adenomas are associated with relatively few recurrent somatic mutations. Recurrent muta-
tions occur largely in subsets of hormone-producing tumors, including GNAS and GPR101 in somatotroph adenomas and USP8
in corticotroph adenomas. Additionally, they manifest with a dichotomous signature of copy number alterations, ranging from
almost none to widespread genome instability, while microduplication of chromosome Xq26.3, containing the GNAS gene,
defines X-linked acrogigantism. Papillary craniopharyngiomas are defined by BRAFV600E mutations while β-catenin alterations
characterize adamantinomatous craniopharyngiomas.
Summary Genomic annotation of pituitary tumors is defining increasing subsets of neuroendocrine adenohypophyseal tumors
and craniopharyngiomas, offering rationale-based pharmacologic targets and potential biomarkers for clinical outcome.
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Introduction

Tumors of the pituitary region are among the most common of
the primary brain tumors. Adenomas of the pituitary, while
generally non-cancerous, may still cause significant morbidi-
ty, through either elaboration of supraphysiologic levels of
hormones, compression and subsequent hypofunction of the
pituitary gland, or growth and compression of sensitive adja-
cent neurologic and vascular anatomy. As common as they
are—and for as long as they have been described, which dates
to nearly the dawn of modern neurological surgery—the sen-
tinel genetic events which drive their origin have been poorly
characterized. In an era where genomic annotation of human
tumors is revolutionizing our understanding of biological
mechanisms and uncloaking new therapeutic approaches, pi-
tuitary tumors are just now becoming defined by their

molecular features. This is especially timely as pituitary ade-
nomas are undergoing a reappraisal of their pathologic classi-
fication, and additional classifiers and predictors of aggressive
behavior are being sought.

We herein review the contemporary understanding of
the genomic architecture of pituitary adenomas and
craniopharyngiomas, highlighting important clinically rel-
evant alterations where possible.

Pituitary Gland

The pituitary gland serves as a nexus of embryologic tis-
sues and cell types, leading to a variety of tumor lineages.
The anterior pituitary gland, or adenohypophysis, derives
from Rathke’s pouch, which is formed from an upward
invagination of oral ectoderm, while the posterior pituitary
gland, or neurohypophysis, derives from neuroectodermal
floor of the diencephalon. The anterior pituitary contains
five primary hormone-secreting cellular lineages that are
distinct in structure and function. These corticotroph,
lactotroph, somatotroph, thyrotroph, and gonadotroph cells
are topologically arranged and secrete adrenocorticotropic
hormone (ACTH), prolactin (PRL), growth hormone (GH),
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thyroid-stimulating hormone (TSH) and gonadotropins
(follicle-stimulating hormone [FSH], and luteinizing hor-
mone [LH]), respectively. Additional populations of ade-
nohypophyseal cells secrete no hormones or more than one
hormone from the same cell. The posterior pituitary stores
and secretes two hormones, vasopressin and oxytocin, that
are produced by the supraoptic and paraventricular nuclei
of the hypothalamus.

Tumors of the Anterior Pituitary

Classification

Tumors of the pituitary gland are undergoing a transformation
in classification, as codified by updates in the 2017 World
Health Organization (WHO) scheme [1•, 2, 3]. Tumors of
the adenohypophysis, which account for the majority of pitu-
itary neoplasms, have been traditionally classified by their
immunohistochemical hormone profile, histopathologic fea-
tures, and ultrastructural features. Additionally, renewed focus
on the role of transcription factors (TF) in defining adenohy-
pophyseal cell lineage has been incorporated into the formal
classification criteria (Fig. 1).

Specifically, the adenohypophyseal progenitor cell differ-
entiates into three lineages: acidophilic, corticotroph, and
gonadotroph. The acidophilic lineage further differentiates in-
to somatotroph, lactotroph, and thyrotroph cells, marked by
expression of additional TFs and hormones. The diagnosis of
cell lineage-associated adenoma subtypes requires a combina-
tion of hormone and transcription factor expression, while a
null cell adenoma is defined by absence of adenohypophyseal
hormones and transcription factors (Fig. 1).

Within the codified neuroendocrine adenomas, the WHO
highlighted five subtypes that have demonstrated increased
propensity for clinical aggressiveness in terms of rapid
growth, early recurrence, resistance to treatment, and in-
creased proliferative index. These are the sparsely granulated
somatotroph adenoma, silent corticotroph adenoma,
lactotroph adenoma in men, plurihormonal PIT-1 positive ad-
enoma, and Crooke’s cell adenoma (Table 1).

Sparsely granulated somatotroph adenomas express GH
and pituitary-specific POU-class homeodomain transcription
factor (PIT-1). The tumors are reactive to cytokeratin staining,
which distinguishes them from other somatotroph morpholog-
ical variants, although consistent interpretation of staining pat-
terns can be challenging in practice at times. Both silent
corticotroph and Crooke’s cell adenoma express ACTH and
the T-box family member TBX19 transcription factor (T-PIT).

Fig. 1 Significant transcription
factor expression and hormone
staining in adenoma classes and
subclasses. ACTH
adrenocorticotropic hormone,
ERα estrogen receptor α, GH
growth hormone, β-LH
luteinizing hormone, PIT-1
pituitary-specific POU-class
homeodomain transcription
factor, PRL prolactin, SF-1
steroidogenic factor 1, TF
transcription factor, T-PIT T-box
family member TBX19, β-TSH
thyroid-stimulating hormone
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Silent corticotrophs are considered non-functional, with ab-
sence of clinically apparent sequelae from hormone overpro-
duction, and have variable immunohistochemical expression
of ACTH. Crooke’s cell adenomas contain a preponderance of
cells with Crooke’s hyaline change, which demonstrates
perinuclear reactivity to cytokeratin in a ring-like shape.
Plurihormonal PIT-1 positive adenomas express GH, PRL,
β-TSH, and PIT-1. These tumors were formally known as
silent subtype 3 adenomas but were reclassified because of
varying hormone secretion and clinical functional status ob-
served in patients with this tumor.

Additionally, appreciation for variability in the clinical be-
havior of pituitary tumors has led to a proposal to shift the
terminology from adenoma, which implies a benign nature of
the lesion, to tumor, and cessation of the “atypical” designa-
tion, given its inability to accurately and consistently predict
aggressive clinical behavior [1•, 2, 3]. Assessment of tumor
proliferation and tumor invasiveness remains recommended
for individual cases of clinically aggressiveness tumors.
However, more objective markers for tumor behavior and
clinical outcome remain to be defined for pituitary adenomas.

Mutations

Given the inconsistent correlation of traditional histopatholog-
ic classifications with the natural history of pituitary tumors,
increased efforts have centered upon understanding the genet-
ic and cellular origins of pituitary tumors. Hereditary syn-
dromes, including multiple endocrine neoplasia type I
(MEN1), MEN4, familial isolated pituitary adenomas
(FIPA), McCune-Albright syndrome, and Carney complex,
have long suggested a link between discrete genetic causes
and pituitary tumors. In addition to germline mutations in
AIP [4, 5], MEN1 [6, 7], CDKN1B [8, 9], and PRKAR1A,
which have been associated with these familial syndromes,
next-generation sequencing of pituitary adenomas has

identified several somatic genomic alterations associated with
specific tumor subtypes [10, 11•, 12•, 13•].

Observation of recurrent mutations in the catalytic subunit
of protein kinase A in cortisol-producing adenomas of the
adrenal cortex prompted application of a similar whole-
exome sequencing strategy for Cushing’s disease, with iden-
tification of mutations in the deubiquitinaseUSP8 in a third to
two-thirds of pituitary corticotroph adenomas [11•, 12•].
USP8 contributes to lysosomal trafficking of ligand-
activated epidermal growth factor receptor (EGFR). Gain-of-
function mutations in USP8 inhibit EGFR endocytosis, lead-
ing to increased EGFR stimulation of Pomc gene transcription
and increased ACTH secretion [12•, 14]. Interestingly, while
USP8 is exclusively localized to the nucleus in mutant adeno-
mas, non-mutant tumors can manifest with either cytoplasmic
or nuclear expression, suggestive of alternative mechanisms
other than mutation leading to subcellular compartmentaliza-
tion and activation of USP8 [12•]. Furthermore, USP8 muta-
tions have been associated with increased expression of so-
matostatin reception 5 (SSTR5) and O6-methylguanine DNA
methyl-transferase (MGMT) [14]. Collectively, these data
support a therapeutic role for EGFR inhibition and somato-
statin analogues in USP8-mutated corticotroph adenomas.

In somatotroph adenomas, recurrent somatic mutations in
the gene encoding the stimulatory G-protein α subunit,
GNAS, are identified in a third of tumors [15–18]. This is
concordant with the causative role of GNAS mutations in
McCune-Albright syndrome, which is associated with acro-
megaly, and leads to constitutive activation of the cyclic AMP
(cAMP) mitogenic pathway. Other mutations in scattered
genes involved in cAMP signaling have also been reported,
although not at a significantly recurrent incidence [18].

Additionally, a recurrent somatic mutation in the G-protein
coupled receptor, GPR101E308D, has been reported in approxi-
mately 4.4% of acromegaly patients [13•]. Introduction of this
mutation into a rat GH-secreting cell line produced increased
proliferation and GH secretion in vitro. GPR101 resides on

Table 1 Pituitary neuroendocrine tumors with increased risk of clinically aggressive behavior

TF expression Hormone expression Other histopathological features

Sparsely granulated somatotroph PIT-1 GH ± PRL CK positive. Other somatotroph subtypes do not express CK

Silent corticotroph T-PIT ± ACTH Clinically non-functional. Expression of ACTH can vary.
T-PIT is expressed uniformly

Lactotroph in men PIT-1, ERα PRL

Plurihormonal Pit-1 positive PIT-1 ± GH, ± PRL,
± β-TSH, ± α subunit

Varying hormone secretion and functional status

Crooke cell adenoma T-PIT ACTH > 60% of cells have Crooke’s hyaline change (cytokeratin
deposited in ring-like shape)

ACTH adrenocorticotropic hormone,CK cytokeratin,ERα estrogen receptorα,GH growth hormone, β-LH luteinizing hormone, PIT-1 pituitary-specific
POU-class homeodomain transcription factor, PRL prolactin, SF-1 steroidogenic factor 1, TF transcription factor, T-PIT T-box family member TBX19,
β-TSH thyroid-stimulating hormone
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chromosome Xq26.3, and microduplication of this locus is im-
plicated as the cause of X-linked acrogigantism in children [13•].

On the whole, recurrent mutations are sparse across the
majority of sporadic pituitary adenomas, including the most
common subtype, null cell adenomas [10]. This suggests al-
ternative biological mechanisms that contribute to pituitary
tumorigenesis, including copy number alterations, rearrange-
ments, and epigenetic changes [10, 19•, 20].

Chromosomal Alterations

Beyond somatic and germline mutations associated with pitu-
itary adenomas, genomic profiling points to two distinct clas-
ses of pituitary adenomas based on their level of copy number
alterations [19•]. One class harbors almost no chromosomal
alterations, while the other is marked by widespread genomic
disruption (Fig. 2). Compared to most other tumor types, focal
gains and losses are rare relative to broad arm-level chromo-
somal alterations in pituitary adenomas, the significance of
which remains to be elucidated [19•].

While the genomically quiet cohort is enriched for null cell
adenomas and the genomically disrupted cohort has a relative-
ly higher fraction of hormone-expressing adenomas, this as-
sociation is not consistent [21]. Silent corticotroph adenoma
and prolactinoma express a particularly high frequency of
genome disruption in small series [21]. However, the thresh-
old for and incidence of genome disruption in adenomas
merit closer inspection in larger cohorts to better define

possible associations with high-risk adenoma subtypes
and clinical outcome [10, 19•, 21].

Mutation Signatures of Craniopharyngioma

The molecular landscape of the craniopharyngioma, like pitu-
itary adenoma, has also been subjected to genomic profiling—
with some of the findings bearing immediate therapeutic rel-
evance. Craniopharyngiomas, arising from the pituitary stalk,
are among the most challenging of intracranial tumors to man-
age because of their pattern of growth, associated morbidities,
and high recurrence rate. Radiotherapy and chemotherapy pro-
vide adjuvant treatment options, but many cases remain refrac-
tory despite aggressive treatment and re-treatment. Of the two
histological subtypes, adamantinomatous craniopharyngiomas
are the most common overall, with almost exclusive representa-
tion among pediatric cases, while papillary craniopharyngiomas
are predominantly observed in adults.

Strikingly, the BRAFV600Emutations were identified in 81–
95% of papillary craniopharyngiomas, illuminating a power-
ful target for pharmacotherapy [22•, 23]. BRAFV600Emutation
leads to overactivity of B-Raf signaling and subsequent mito-
genic sequelae, an oncogenic strategy usurped by multiple
tumors, including melanoma, where BRAF inhibition has
led to promising extension of survival [24–26]. This has trans-
lated to successful administration of combined BRAF and
MEK inhibitors in two patients with multiple recurrent papil-
lary craniopharyngioma [27, 28].

Fig. 2 Schematic of two genomic categories of pituitary adenomas,
stratified by the copy number alteration burden. a One class harbors
almost no chromosomal alterations, while b the other is marked by
widespread copy number gains and losses in recurrently observed

chromosomes. Red indicates amplification, navy blue indicates high
frequency of loss, pale blue indicates lower frequency of loss, and gray
indicates neutral copy number status
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In comparison, the adamantinomatous subtype is charac-
terized by near ubiquitous mutations in the β-catenin gene,
CTNNB1, and also demonstrates disruptions in multiple
growth factor signaling axes, extracellular matrix regulation,
and its immune microenvironment [22•, 23]. Interestingly, co-
occurrence of the BRAFV600Emutation andCTNNB1mutation
in two cases of adamantinomatous craniopharyngioma has
been reported, suggestive of a potential shared phylogeny in
the pathogenesis of select craniopharyngiomas [23].

Conclusions and Future Directions

Genomic characterization of tumor of the pituitary region—
pituitary adenomas and craniopharyngiomas in particular—
has shed new insights into pharmacologic mutational targets
as well as unique copy number alterations. As molecular pro-
filing becomes incorporated into routine clinical practice, elu-
cidation of the epidemiologic associations and prognostic con-
sequences of genomic and epigenomic signatures may yield
new insights into the ontology of tumors in this area, the
relationship of specific genomic profiles to growth and recur-
rence, and the prospect of tailored management strategies for
patients as the scope of therapeutic targets broadens.
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