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Abstract
Purpose of Review The aims of the study were to review
recent advances in molecular imaging in the Lewy body de-
mentias (LBD) and determine if these may support the clinical
but contested temporal profile distinction between Parkinson
disease (PD) with dementia (PDD) versus dementia with
Lewy bodies (DLB).
Recent Findings There do not appear to be major regional
cerebral metabolic or neurotransmitter distinctions between
PDD and DLB. However, recent studies highlight the relative
discriminating roles of Alzheimer proteinopathies. PDD pa-
tients have lower cortical β-amyloid deposition than DLB.
Preliminary tau PET studies suggest a gradient of increasing
tau binding from cognitively normal PD (absent to lowest) to
cognitively impaired PD (low) to DLB (intermediate) to

Alzheimer disease (AD; highest). However, tau binding in
DLB, including the medial temporal lobe, is substantially low-
er than in AD.
Summary Alzheimer-type proteinopathies appear to be more
common in DLB compared to PDD with relative but no ab-
solute differences. Given the spectrum of overlapping pathol-
ogies, futureα-synuclein ligands are expected to have the best
potential to distinguish the LBD from pure AD.

Keywords Acetylcholine .β-Amyloid .DementiawithLewy
bodies . Diagnostic criteria . Dopamine . Parkinson disease
with dementia

Abbreviations
AD Alzheimer disease
DAT Dopamine transporter
DLB Dementia with Lewy bodies
FDG Fluorodeoxyglucose
MCI Mild cognitive impairment
MIBG Metaiodobenzylguanidine
MMSE Mini-mental state examination
PCA Posterior cortical atrophy
PD Parkinson disease
PDD Parkinson disease with dementia
RBD REM sleep behavior disorder

Introduction

Lewy Body Dementia Pathology

Parkinson disease with dementia (PDD) and dementia with
Lewy bodies (DLB) together comprise the Lewy body demen-
tias (LBD) and share a common pathological substrate of α-
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synucleinopathy, which is manifested by deposits in neuronal
somal Lewy bodies and nerve terminal neurites [1]. Lewy body
pathology has been found to be variably associated with
Alzheimer disease (AD)-characteristic β-amyloid and neurofi-
brillary tau pathology depositions in LBD [2–7]. Furthermore,
proteinopathy in subcortical projection systems may result in
neurotransmitter changes, including dopaminergic and cholin-
ergic systems, that may also contribute to cognitive impair-
ments in LBD [8–11].

Updated Clinical Diagnostic Criteria: PD Dementia
Versus DLB

Lewy body dementias have a spectrum of cognitive, motor,
and neurobehavioral symptoms in common. The clinical dis-
tinction of DLB and PDD is based on the temporal manifes-
tations of cognitive and motor symptoms. This temporal dif-
ference has been operationalized using the so-called 1-year
rule [12]. According to this rule, PDD is diagnosed if demen-
tia begins after 1 year of parkinsonism and DLB if dementia
begins within 1 year of the onset of parkinsonism. Recently
updated criteria for PD (including associated dementia) and
DLB disagree on the 1-year rule with the first one not includ-
ing it and the second upholding it [13, 14]. The new
Movement Disorder Society Clinical Diagnostic Criteria do
not consider dementia as an exclusion criterion for the diag-
nosis of PD, regardless of when it occurs in relation to parkin-
sonism onset. Patients with dementia who are already diag-
nosed with the DLB label can be classified as “PD dementia
with Lewy bodies subtype” in the new PD diagnostic criteria
[13]. In contrast, recently updated consensus diagnostic
criteria for DLB uphold the 1-year rule [14]. Major changes
in the updated DLB criteria include the inclusion of REM
sleep behavior disorder (RBD) as a core clinical feature.
Furthermore, molecular imaging biomarkers of striatal
[123I]ioflupane SPECT dopamine transporter (DAT) and car-
diac [123I]metaiodobenzylguanidine (MIBG) sympathetic
myocardial scintigraphy are now used as indicative bio-
markers. If one of these indicative biomarkers is present, only
one of the four core clinical features is needed to establish a
diagnosis of probable DLB [14].

It is apparent that the updated clinical diagnostic criteria for
PD (dementia) and DLB are insufficient to identify and dis-
tinguish pathological mechanisms underlying the dementia
syndrome. It is possible that the pathologic overlap of
DLB and PDD represents confluence of separate initial
pathological mechanisms at the time of emergence of de-
mentia. Alternatively, it is conceivable that DLB and PDD
represent phenotypic variations of the identical underlying
disease process [15]. Furthermore, the clinical heterogeneity
that can be observed among patients with either DLB or
PDD may reflect distinct pathological mechanisms that may
be present in some patients across both clinically defined

groups, i.e., the 1-year rule may be suboptimal or even
inappropriate for distinguishing subtypes of dementia pa-
thologies in α-synucleinopathies [15].

This review will provide an overview of recent advances in
molecular imaging in LBD and how these relate to the PDD
and DLB subtypes based on the clinically defined 1-year rule.
Although there do not appear major differences in neurotrans-
mitter (dopaminergic and cholinergic) systems between PDD
and DLB, there is emerging evidence for relative differences
in non-Lewy (β-amyloid and tau) proteinopathies between
these two clinical entities.

Metabolic Imaging Changes in the Lewy Body
Dementias

Prospective evaluation of [18F]fluorodeoxyglucose (FDG)
metabolic changes have shown that incident dementia in PD
initially may present as a predominant hypometabolic poste-
rior cortical pathology involving the visual cortex, the
precuneus, and the posterior cingulum [16]. Subsequent pro-
gression to PDD is associated with mixed subcortical, includ-
ing the caudate nuclei and the thalami, and progressive corti-
cal changes that also include the frontal lobes [16]. In both
PDD and DLB, topographic metabolic changes appear to be
similar [17], including marked deficits in occipital regions.
These findings emphasize the significant pathophysiological
overlap between these two conditions [18].

Clinically, AD and DLB may also be difficult to distin-
guish, especially if cognitive impairment manifests before par-
kinsonism in DLB. Several metabolic changes, however, ap-
pear to differentiate DLB from AD. For example, bilateral
medial occipital glucose hypometabolism has been associated
with severity of visual hallucinations in DLB [19] and is not a
characteristic of AD. Relative metabolic or perfusion preser-
vation of the mid- or posterior cingulate gyrus (so-called
cingulate island sign) distinguishes DLB from AD [20, 21].
Prominent manifestation of the cingulate island sign was as-
sociated with lower Braak neurofibrillary tangle stage in au-
topsy cases [22•], which typically would be higher in AD. The
presence of the cingulate island sign is also inversely associ-
ated with atrophy of the medial temporal lobe in DLB [23].

Occipital lobe hypometabolism and the cingulate sign are
not specific for DLB, however, as they can also be seen with
posterior cortical atrophy (PCA), a variant of AD [24•].
Clinically, DLB may share some visual and visuospatial im-
pairment with PCA. Rather than becoming more granular,
however, recent diagnostic consensus criteria for PCA now
allow for the diagnosis of the so-called PCA-plus syndrome
where patients meeting additional diagnostic criteria for either
DLB or corticobasal syndrome can be classified within the
PCA disease spectrum [25]. DLB and PCA showed overlap-
ping areas of glucose hypometabolism, including the lateral
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occipital lobe, lingual gyrus, precuneus, cuneus, posterior cin-
gulate, inferior parietal lobe, supramarginal gyrus, thalamus,
and basal ganglia [24•]. In contrast, DLB showed more severe
hypometabolism in the medial occipital, anterior temporal,
and orbitofrontal regions as well as the caudate nucleus than
PCA. Conversely, PCA demonstrated more asymmetric
hypometabolic patterns compared to DLB. The cingulate is-
land sign was present in both PCA and DLB, although it was
more asymmetric in PCA [24•]. A different FDG PET study
found more right-hemispheric (lateral temporo-occipital)
changes in PCA versus predominant left (medial) occipital
changes in DLB [26].

Neurotransmission Imaging in the Lewy Body
Dementias

Dopaminergic and Cholinergic System Imaging

The utility of striatal dopamine nerve terminal imaging in
distinguishing DLB from AD is well established [27–29].
Dual ligand dopaminergic nerve terminal and β-amyloid im-
aging provides better diagnostic post-mortem confirmed clas-
sification of LBD, AD, and fronto-temporal dementia com-
pared to consensus clinical assessment [30]. Normal striatal
DAT binding has been reported in autopsy-confirmed DLB
[31], however, and thus cannot be an absolute exclusion cri-
terion for this disorder.

Striatal and limbofrontal dopaminergic denervation affects
specific cognitive functions in PD [32], but nigrostriatal and
limbofrontal dopaminergic losses are insufficient to fully ex-
plain the presence of dementia in PD [33]. Severe cholinergic
losses are a consistent finding in PDD and DLB compared to
PD and could provide an explanation for more severe cogni-
tive impairment [33, 34]. The dual syndrome cognitive hy-
pothesis posits that the high frequency of fronto-striatal exec-
utive changes in PD relates to dopaminergic changes and that
the emergence of dementia is associatedwith posterior cortical
and more widespread changes secondary to additional

pathologies, such as cholinergic deficits [35, 36]. In agreement
with this hypothesis, we recently reported that cortical cholin-
ergic and caudate nucleus dopaminergic deficits may contribute
to cognitive decline in PD both additively and multiplicatively
[37]. An imbalance of synergistic function of the cholinergic
and dopaminergic transmitter systems in cognitive pathways
might lead to impaired cognitive processing [38]. For example,
cholinergic deficits may aggravate striatal-frontal dysfunction
due to loss of compensatory cortical attentional functions, and
thereby perhaps exacerbating dysfunctional cortico-striate sig-
naling [39]. Future studies using vesicular acetylcholine trans-
porter ligands, such as [18F]FEOBV (Fig. 1), may allow more
precise assessment of not only cortical but also subcortical cho-
linergic regions in Lewy body disorders.

Cardiac Sympathetic Nerve Terminal Imaging

The autonomic nervous system is susceptible to α-synuclein
pathology, which may be a mechanistic factor underlying au-
tonomic dysfunction [40]. Severe cardiac sympathetic degen-
eration occurs in PD, PDD, and DLB, but not in AD, making
it a suitable diagnostic biomarker. Indeed, recently updated
diagnostic criteria for DLB provide increased diagnostic
weighting to cardiac [123I]MIBG noradrenergic sympathetic
myocardial scintigraphy as an indicative biomarker. In these
new diagnostic criteria, the presence of this biomarker abnor-
mality in combination with only one of the clinical core fea-
tures justifies a probable DLB diagnosis [14]. MIBG myocar-
dial sympathetic imaging demonstrates good sensitivity
(68.9%) and specificity (89.1%) to differentiate probable
DLB from probably AD [41]. In a different study, com-
bined use of MIBG cardiac scintigraphy and DAT SPECT
imaging enabled more accurate differentiation between
DLB and AD (sensitivity and specificity of 96.1 and
90.7%, respectively) compared with either DAT SPECT
or MIBG myocardial scintigraphy alone [42]. As expected,
there was a significantly higher frequency of motor par-
kinsonism in the group with abnormal dopamine nerve
terminal imaging compared to those with a normal scan.

Fig. 1 [18F]FEOBV vesicular
acetylcholine transporter images
in patients with DLB (n = 4, upper
row) and healthy controls (n = 7,
lower role). Prominent reductions
in neocortical, archicortical
(hippocampus), and subcortical
structures (basal ganglia,
thalamus) are present in DLB
compared to normal control
subjects. Figure courtesy of
Robert Koeppe, PhD
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Conversely, RBD was more frequently present in patients
with abnormal MIBG binding compared to the normal
MIBG group. These findings emphasize the potential util-
ity of myocardial scintigraphy in the diagnosis of LBD,
especially when the differential diagnosis versus AD is
difficult to make or dopamine transporter imaging findings
are normal or equivocal.

Fibrillary β-Amyloid PET Imaging in Lewy Body
Dementias

The putative role of β-amyloid depositions in cognitive impair-
ment is well described in the AD literature. However, both the
prevalence and the functional significance of β-amyloid depo-
sitions are less well described in LBD. A recent literature re-
view on in vivo β-amyloid PET imaging findings in LBD
found suggestive evidence that PD patients both without and
with mild cognitive impairment (MCI) have a lower incidence
ofAD-rangeβ-amyloid deposition (average 6 and 11%, respec-
tively) compared to elderly normal subjects (average 15%), and
that PDD patients have a lower incidence of β-amyloid depo-
sition (average 27%, range 0 to 80%) than do patients with
DLB (average of 57%, range 33 to 100%) [15]. A recent
[18F]florbetapen β-amyloid PET study confirmed these obser-
vations of very low AD-range amyloidopathy in mild PD with-
out dementia (0/33) based on visual assessment [43]. As in AD,
the degree of amyloidopathy may be modified by ApoE ε4
allele genotype status [44].

With respect to clinical manifestations of amyloidopathy
in LBD, a recent review concluded inconsistent correlations
between β-amyloid deposition and cognitive function, at
least in cross-sectional analyses [44]. However, prospective
cohort analyses have shown that precuneus amyloidopathy
is associated with faster progression to cognitive impairment
and dementia in PD [45, 46]. Furthermore, most in vivo β-
amyloid PET imaging studies have focused on cortical de-
position only. Neuropathological studies, however, suggest a
significant role for amyloidopathy in the basal ganglia, as
striatal β-amyloid deposition is significantly greater in PDD
compared to PD without dementia [47–50]. We recently
investigated the relative correlates of striatal and cortical
β-amyloid deposition to cognitive impairment in PD sub-
jects with risk factors for PDD, such as older age, postural
imbalance, or cognitive changes [51]. Elevated striatal
amyloidopathy was present in about half of the patients with
concomitant increased cortical binding. We found signifi-
cantly lower cognitive performance in subjects with com-
bined cortical and striatal β-amyloid deposition compared
to those with abnormal cortical binding only. These findings
suggest that amyloidopathy, especially in the striatum, may
play a role in cognitive impairment in the LBD. Future

studies investigating the role of amyloidopathy in cognitive
impairment in LBD should include striatal regions.

Tau PET Imaging in Lewy Body Dementias

Tau proteinopathies are becoming an important imaging target
in LBD. A [18F]AV-1451 tau PET imaging study in a small
number of seven DLB patients found that AV-1451 uptake
was mildly increased in the inferolateral temporal and
parietal/precuneus regions compared to control subjects [52•].
Greater AV-1451 uptake in the inferior temporal gyrus and
precuneus in a combined group of DLB and cognitively im-
paired PD patients was associated with increased cognitive im-
pairment as measured with the mini-mental state examination
(MMSE) and the Clinical Dementia Rating scale [52•]. Shorter
duration of disease was associated with greater AV-1451 uptake
in the inferior temporal gyrus and precuneus in the DLB group.
A subsequent larger [18F]AV-1451 tau PET imaging study
found that AV-1451 uptake was substantially more severe and
extensive in AD compared to DLB patients [53••]. Medial tem-
poral uptake completely distinguished AD dementia (highest)
from probable DLB (lowest). Probable DLB patients had
higher inferior, middle, and superior occipital; lingual, angular,
fusiform, middle and inferior temporal gyri; and precuneus and
cuneus AV-1451 uptake compared to normal control subjects
[53••]. These investigators did not find, however, a significant
correlation between posterior temporo-parietal and occipital
AV-1451 uptake and clinical measures, including cognition,
visual hallucinations, motor parkinsonism, or presence of
RBD. Higher [11C]PIB β-amyloid binding was associated with
higher AV-1451 uptake in these regions suggesting an atypical
pattern of tau deposition in probable DLB patients [53••].
Overall, there appears to be a gradient of increasing tau binding
from cognitively normal PD (absent to lowest) to cognitively
impaired PD (low) to DLB (intermediate) to AD (highest)
(Table 1) [52•, 54].

Neuroinflammation Imaging in the Lewy Body
Dementias

Neuroinflammation may be a key factor in the pathogenesis of
dementing disorders, including LBD [55]. PET markers of mi-
tochondrial translocator protein (TSPO) expression, performed
initially with [11C]PK11195, can be used for the in vivo assess-
ment of microglial and astrocytic activation. Glial activation
was shown in the putamen and substantia nigra in both DLB
and PD patients using [11C]PK11195 PET [56]. In contrast,
DLB patients also showed increased uptake in the caudate
and an extended glial activation pattern in several cortical re-
gions and the cerebellum, suggesting possible evidence of a
disease propagation pattern [56]. In PDD, glial activation (using
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[11C]PK11195 PET) was observed in the anterior and posterior
cingulate, striatum and frontal, temporal, parietal, and occipital
cortical regions [57]. Increased tracer binding was more exten-
sive in PDD compared to PD. There was also a significant
correlation between cognitive scores (MMSE) and glial activa-
tion, suggesting that microglial or astrocytic activation may be
associated with neuronal damage in PDD [57]. Multi-modal
imaging studies have found inconsistent relationships between
the extent of glial activation and glucose metabolic or
amyloidopathy changes in LBD [56–59].

Significant glial activation may be a factor in driving the
disease process in LBD. It should be noted, however, that
neuroinflammatory mechanisms are complex and not well
understood, and inflammation could also be neuroprotective
under certain conditions and stages of the neurodegenerative
process [60]. Novel neuroinflammation imaging techniques,
based on next-generation radiotracer probes, may be better
able to disentangle the effects of inflammation in different
stages of the neurodegenerative processes as they relate to
clinical deterioration and may help in development of more
effective interventions [61].

Discussion

Proteinopathy andNeurotransmitter Changes in the Lewy
Body Dementias: Incremental and Threshold Effects?

Combined multi-ligand PETanalysis in PD patients who were
recruited based on risk factors for PDD (older age, imbalance,

cognitive changes) showed evidence of independent cognitive
contributions of not only individual neurotransmitter changes
(dopamine, acetylcholine) but also β-amyloidopathy [51].
Triple-ligand analysis showed that global composite cognitive
z-scores were best predicted by cortical cholinergic activity
and global (cortical and striatal) β-amyloid binding. Verbal
learning cognitive domain z-scores were predicted by cortical
β-amyloid and cortical cholinergic activity. Attention cogni-
tive domain z-scores were predicted by striatal β-amyloid up-
take and caudate nucleus dopaminergic activity. Executive
function cognitive domain scores were predicted by cortical
cholinergic activity [51]. These data provide supportive evi-
dence that neurotransmitter and proteinopathy changes have
independent and incremental contributions to cognitive im-
pairment in PD at risk of PDD. Likewise, variable presence
and combinations of proteinopathies and neurotransmitter
changes may define endophenotypes within the cognitive im-
pairment syndrome of the LBD [62].

We reported previously that even low levels of cortical β-
amyloidopathy associated with cognitive changes in PD pa-
tients at risk of dementia [63]. Interestingly, a number of cog-
nitively normal elderly subjects in our studymanifested higher
levels of amyloidopathy than observed in our PD population.
This suggests that, along with the observation that subjects
with AD have a much higher amyloidopathy threshold to
manifest cognitive changes, there may be a lower threshold
for manifestation of β-amyloid associated cognitive impair-
ment in PD [15]. In PD, however, β-amyloid deposition oc-
curs in the setting of Lewy proteinopathy and multiple neuro-
transmitter system changes. The presence of multiple

Table 1 In vivo tau PET imaging studies in PD (cognitive impairment), DLB, and AD. Findings suggest a gradient of increasing tau binding
from cognitively normal PD (absent to lowest) to cognitively impaired PD (low) to DLB (intermediate) to AD (highest)

Ligand Study population Major findings

[18F]AV-1451 tau PET
(Hansen et al. [54])

PD (n = 26) without or with mild cognitive
impairment; healthy controls (n = 23)

Tau pathology, as detected by AV-1451, is uncommon in PD with
mild cognitive impairment and shows no significant correlation
with cognitive dysfunction at this stage.

[18F]AV-1451 tau PET
(Gomperts et al. [52•])

DLB (n = 7) and PD cognitively impaired
(n = 8) or cognitively normal (n = 9)

AV-1451 uptake was mildly increased in the inferolateral temporal
and parietal/precuneus regions compared to control subjects.

Greater AV-1451 uptake in the inferior temporal gyrus and precuneus
in a combined group of DLB and cognitively impaired PD patients
was associated with increased cognitive impairment as measured
with the MMSE and the Clinical Dementia Rating scale.

Shorter duration of disease was associated with greater AV-1451 uptake
in the inferior temporal gyrus and precuneus in the DLB group.

[18F]AV-1451 tau PET
(Kantarci et al. [53••])

AD (n = 18); DLB (n = 15); controls
(n = 90)

AV-1451 uptake was more severe and extensive in AD compared to
DLB patients.

Medial temporal uptake completely distinguished AD dementia from
probable DLB.

Probable DLB patients had higher inferior, middle, and superior
occipital; lingual, angular, fusiform, middle and inferior temporal
gyri; and precuneus and cuneus AV-1451 uptake compared to
normal control subjects.

No significant cognitive or clinical correlations of AV-1451 binding.
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pathologies in PD likely reduces the cerebral capacity to adapt
to additional β-amyloid burden and thereby may lower its
symptomatic threshold for cognitive or clinical symptom
manifestation of this proteinopathy. This is in keeping with
accumulating post-mortem evidence, which indicates that the
presence of two proteinopathies (α-synucleinopathy and β-
amyloidopathy) in PDD may exert additive or even synergis-
tic detrimental interactions [64]. For example, comorbid cere-
bral β-amyloidopathy in PDD is associated with more severe
clinical outcome, faster conversion to dementia, and shorter
survival compared to PDD patients with more “pure” Lewy
body pathology [5, 65]. It is conceivable that the presence of
tau proteinopathy also may become symptomatic at low levels
in the setting of multiple pathologies in LBD, but further stud-
ies are needed to confirm this hypothesis.

Imaging of Brain Network Disruption in the Lewy Body
Dementias

Pathological and neurotransmitter system changes ultimately
affect brain networks in PD [66–68]. Spatial covariance map-
ping has shown a distinct PD cognition-related network pat-
tern (PDCP) characterized by FDG metabolic reductions in
the parietal association, medial prefrontal, and premotor re-
gions, with relative increases in the dentate nuclei and vermis
[69]. Interestingly, PDCP expression was correlated with
more severe losses of dopamine transporters in the caudate
nucleus [70] and greater executive function rather than mem-
ory deficits [71]. Furthermore, PDCP network is largely spa-
tially and functionally distinct frommetabolic network chang-
es seen in AD [71]. Spatial covariance mapping of regional
cerebral perfusion changes using [99mTc]HMPAO SPECT in
DLB found evidence of a cognitive-motor network pattern
characterized by bilateral relative increases in the striatum,
cerebellum, and supplementary motor areas and widespread
bilateral reductions in parietal areas [72]. Interestingly, this
perfusion pattern correlated with poorer cognitive perfor-
mance, including attention, and fluctuations in cognitions.

Apart from dopaminergic modulation of cerebral networks,
there is also evidence of cholinergic network modulation in
PDD. An M1/M4 subtype muscarinic receptor brain SPECT
study using the [123I]QNB ligand found evidence of decreas-
ing binding in basal forebrain, temporal cortex, striatum,
insula, and anterior cingulum in PDD, implicating decreased
signal detection capacity in limbic-paralimbic and salience
cholinergic networks [73]. Regional cerebral blood flow find-
ings using [99mTc]exametazime SPECT in these patients dem-
onstrated relative hypoperfusion in temporo-parietal and pre-
frontal cortical regions and nodes of the frontoparietal and
default mode networks. The muscarinic receptor pattern that
correlated with cognitive improvement after donepezil admin-
istration coincided with the default mode network and
frontoparietal networks [73]. These findings provide

supportive evidence for the presence of several dysfunctional
cholinergic networks in PDD. Collectively, these data show
the presence of functional cognitive brain networks that can be
altered in PDD or DLB and may be modulated by dopaminer-
gic or cholinergic neurotransmitter changes.

Differential Molecular Imaging Diagnostic Approaches
to Distinguish LBD from AD: Are We Ignoring
the Presence of Overlapping Pathologies?

Molecular imaging studies have shown the utility of
distinguishing LBD from AD based on dopaminergic nerve
terminal imaging with good diagnostic accuracy [30, 74].
However, a normal pattern of striatal dopamine nerve terminal
activity is insufficient to exclude LBD as a small number of
subjects may have normal uptake [31]. This may be of partic-
ular relevance in the absence of motor parkinsonism. Cardiac
sympathetic nerve terminal imaging is now defined as an in-
dicative biomarker to distinguish DLB fromAD [14] but stud-
ies also show the presence of subsets of patients with normal
cardiac sympathetic nerve terminals [42, 72]. Hence, a normal
cardiac sympathetic nerve terminal scan does not fully ex-
clude DLB.

Proteinopathy imaging studies confirm the spectrum na-
ture of overlapping pathologies in neurodegenerative dis-
orders [52•, 53••, 72]. Recent FDG PET imaging studies
also demonstrate overlapping metabolic changes between
DLB and the PCA variant of AD [24]. These observations
suggest that attempts to distinguish neurodegenerative dis-
orders based on their clinical phenotype may ignore shared
pathobiological mechanisms. Ultimately, it may be expect-
ed that with the introduction of novel molecular therapeu-
tics in the clinic, imaging biomarkers that have specific
binding to such therapeutic targets will be used for the
identification of a specific pathobiology (and subsequent
monitoring of treatment response) rather than establishing
a clinically defined diagnostic entity.

Conclusions

Although Lewy bodies or neurites are the primary pathology,
the etiology of cognitive decline in LBD is heterogeneous.
Molecular imaging studies in LBD have targeted neurotrans-
mitter systems, non-Lewy proteinopathies, and glucose meta-
bolic or perfusion changes. Metabolic changes appear to show
similar topographic changes in both DLB and PDD, including
marked deficits in occipital regions and relative sparing of the
medial temporal lobe compared to AD confirming the signif-
icant overlap between these two clinical conditions.
Nigrostriatal denervation is another shared pathophysiology
of LBD though normal striatal dopamine nerve terminal ac-
tivity can occasionally be seen in DLB.
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More recent studies highlight the role of Alzheimer
proteinopathies, including β-amyloid and tau, where there
is increasing evidence of relative differences between DLB
and PDD. PDD patients have a lower incidence of cortical
β-amyloid deposition (average 27%) than do patients with
DLB (average of 57%). Striatal amyloidopathy may be a
critical driver of cognitive impairment rather than isolated
cortical deposition, at least in PD at risk of dementia. Tau
PET studies demonstrate significantly lower uptake in
DLB compared to AD, but higher than in PD and PDD.
In particular, medial temporal uptake in DLB was below
the lower range of uptake seen in AD and could be used
as discriminatory marker.

Molecular imaging studies confirm the heterogeneous
etiology underlying the cognitive impairment syndrome in
LBD, where neurotransmitter and proteinopathy changes
may have incremental and possibly interactive effects.
Variable presence and combinations of proteinopathies and
neurotransmitter changes may define endophenotypes with-
in the cognitive impairment syndrome of LBD. Future mo-
lecular imaging studies targeting α-synuclein proteinaceous
deposits are expected to shed further insights in the patho-
genesis of LBD. As there is increasing recognition of a
spectrum of overlapping pathobiology, future molecular im-
aging studies may shift away from providing diagnostic
biomarkers for clinically defined entities. Rather, molecular
imaging may identify the presence of specific molecular
pathologies and may play an increasingly important role
in guiding treatment of neurodegenerative disorders rather
than establishing a clinical diagnosis.
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