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Abstract
Purpose of Review The sensory neuronopathies are sensory-
predominant polyneuropathies that result from damage to the
dorsal root and trigeminal sensory ganglia. This review ex-
plores the various causes of acquired sensory neuronopathies,
the approach to diagnosis, and treatment.
Recent Findings Diagnostic criteria have recently been pub-
lished and validated to allow differentiation of sensory
neuronopathies from other polyneuropathies. On the basis of
serial electrodiagnostic studies, the treatment window for the
acquired sensory neuronopathies has been identified as ap-
proximately 8months. If treatment is initiatedwithin 2months
of symptom onset, there is a better opportunity for improve-
ment of the patient's condition.
Summary Even though sensory neuronopathies are rare, sig-
nificant progress has been made regarding characterization of
their clinical, electrophysiologic, and imaging features. This
does not hold true, however, for treatment. There have been no
randomized controlled clinical trials to guide management of
these diseases, and a standard treatment approach remains
undetermined.
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Introduction

Sensory neuronopathies (SN) are a subset of peripheral neu-
ropathies that result from destruction of the dorsal root gan-
glion (DRG) and trigeminal ganglion sensory neurons. They
go by many names in the literature, including dorsal root
ganglionopathies and even ataxic neuropathies. These disor-
ders can be broadly classified into acquired, or inherited and
degenerative SN. An in-depth discussion of the inherited and
degenerative disorders, which include Friedreich ataxia,
POLGmutations, cerebellar ataxia, neuropathy, and vestibular
areflexia syndrome (CANVAS), hereditary sensory and auto-
nomic neuropathy type 1 (due to SPTLC1 mutations), and
facial-onset sensory motor neuronopathy, is beyond the scope
of this review [1–5]. The clinical presentation of these herita-
ble and degenerative SN is distinct from that of acquired SN
given their additional neurologic features. Regardless of the
cause—acquired, inherited or degenerative—as a result of the
rarity of these diseases, there is relatively little published in-
formation. There have been no blinded, placebo-controlled,
clinical trials investigating the treatment of these conditions.
Most publications are isolated case reports, retrospective case
series, or reviews. We will expand on the various causes of
acquired SN and their treatment strategies, with an emphasis
on recent developments, followed by a recommended ap-
proach to diagnosis.

Anatomy

The DRG houses the cel l bodies of the sensory
pseudounipolar neurons. There are two subsets of neurons that
make up the substance of the DRG. The larger cells give rise
to Aβ and Aδ fibers. These carry proprioceptive and tactile
sensation through the dorsal columns of the spinal cord. The
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smaller, unmyelinated C fibers carry thermal and nociceptive
sensation through the spinothalamic tracts. The neurons of the
DRG are susceptible to antibodies and toxins as a result of the
loose blood–nerve barrier caused by fenestrated capillaries.
The histopathologic findings in the DRG of inflammatory
SN include reduced neuron density, satellite cell proliferation
forming Nageotte nodules, which develop following degener-
ation of the ganglion cell bodies, and inflammatory infiltration
(Fig. 1) [6].

Causes

Paraneoplastic Sensory Neuronopathies

Paraneoplastic syndromes associated with anti-Hu antibodies,
and less often anti-collapsin-response mediator protein 5 (anti-
CRMP-5)/CV2 antibodies, are one of the commonest causes
of SN [7, 8]. The typical presentation is subacute sensory
ataxia; however, patients can also present with concomitant
motor neuropathy, limbic encephalitis, Lambert–Eaton myas-
thenia gravis, and cerebellar or brainstem involvement [7, 9,
10]. Autonomic features, including bilateral tonic pupils from
effects on the ciliary ganglion, gastroparesis, and pseudo-ob-
struction, have also been reported [11–14]. In one case series,
pain was a predominant feature in 80% of the patients in
whom SN had been diagnosed [15]. Anti-Yo antibodies have
been reported in a monomelic SN in a patient with invasive
ductal carcinoma of the breast [16]. Amphiphysin antibodies
have also been described associated with SN [17]. The asso-
ciation between anti-Hu paraneoplastic syndromes and small-
cell lung cancer is widely known [18]. There are, however, a
host of other malignancies with which anti-Hu antibodies
have been linked, including uterine and other gynecologic

tumors, testicular tumors, bladder tumors, prostate cancer,
and even a rare case of hepatocellular carcinoma [19–24].

Pathologically, anti-Hu antibodies are generated by the im-
mune system against Hu-expressing tumor cells but also de-
stroy Hu-expressing neurons. They can penetrate at the level
of the DRG, where the blood–nerve barrier is fenestrated and
permeable. However, the role of anti-Hu antibodies in direct
neuronal damage has yet to be elucidated. They are not
thought to be directly responsible for the immune attack; rath-
er it appears that this is primarily a CD8 cytotoxic T cell
response [25, 26]. Anti-Hu antibodies react with HuD
(ELAV-like neuron-specific RNA-binding protein 4) as well
as HuC and HuB, which are neuron-specific proteins that bind
messenger RNA. HuD is expressed by small-cell lung cancer
cells, and likely initiates the autoimmune response in these
patients [27, 28]. Tumors with anti-Hu antibody production
express MHC type 1 molecules, further supporting the hy-
pothesis that the anti-Hu response is T cell mediated [29, 30].

Treatment of paraneoplastic SN is challenging. The treat-
ment strategy is based predominantly on expert opinion as
there have been no randomized controlled clinical trials given
the exceptionally rare nature of the disease. The mainstay of
therapy lies in identifying and treating the underlying malig-
nancy. In a retrospective study, tumor treatment was the only
intervention that resulted in stabilization of the paraneoplastic
syndrome in patients with anti-Hu antibodies [18]. The second
principle of management is immunomodulatory treatment.We
often initiate corticosteroid therapy (intravenously adminis-
tered methylprednisolone) or intravenous immune globulin
(IVIG) therapy while the malignancy is being evaluated. A
limited window of opportunity for disease stabilization exists,
and following the inflammatory reaction, there is irreversible
neuronal damage, at which point therapeutic intervention is
likely futile [31••, 32]. A number of immunosuppressant and

Fig. 1 Microphotography of the
dorsal root ganglia. a Normal
neurons. Hematoxylin and eosin
(HE), ×200 magnification. b With
evidence of neuronal loss and
Nageotte nodules (arrows). HE,
×200 magnification. c Nageotte
nodule detail (arrows). HE, ×600
magnification. d Mononuclear
inflammatory infiltrate (arrows).
HE, ×400 magnification.
(Reprinted with permission from
Colli et al. [6])
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immunomodulatory therapies have been used in uncontrolled
trials, including corticosteroid therapy, IVIG therapy, plasma
exchange, and rituximab therapy [33–37]. Cyclophosphamide
may be beneficial in refractory disease when a tumor is not
identified [32]. Most recently, de Jongste et al. [38] published
a prospective, open-label study using sirolimus to treat anti-
Hu paraneoplastic syndromes. Sirolimus is an immunosup-
pressive drug that inhibits activated T cells (cytokine-mediat-
ed T-cell proliferation). In this study of 17 patients with pro-
gressive anti-Hu antibody mediated paraneoplastic neurologic
syndromes, nine had SN. Of the 17, ten had stabilization of
their disease, six had progression of their disease, and one
patient had improvement in function, as measured by the mod-
ified Rankin scale. Efficacy was not compared among the
various neurologic syndromes [38]. These results support the
use of immunomodulating therapies, but further study is need-
ed to determine the use of one therapy versus another. The
third principle of management is that of symptomatic treat-
ment. Gabapentin, pregabalin, duloxetine, venlafaxine, and
amitriptyline are all effective in treating neuropathic pain.

Autoimmune Causes

In addition to the paraneoplastic SN, the other large category
of acquired SN is that of systemic autoimmune disease. The
most commonly reported is Sjögren’s syndrome, and its asso-
ciation with SN has been identified since the 1980s [39].
Although less common than other neurologic complications
of Sjögren’s syndrome, SN is more specific to Sjögren’s syn-
drome, and tends to be more disabling [40–44]. Patients usu-
ally have a sensory ataxia, areflexia, and autonomic dysfunc-
tion [45, 46]. Brainstem involvement, likely with disease af-
fecting the ciliary ganglion, has also been reported [47]. Not
much is known about the pathologic basis of SN in Sjögren’s
syndrome, although there is loss of neuronal cell bodies, and
T-cell-mediated infiltration in the DRG has been demonstrated
[48]. In one autopsy of an 88-year-old woman with Sjögren’s
syndrome associated SN, there were diminished numbers of
DRG neurons in the cervical, thoracic, and lumbar segments,
and diminished numbers of sympathetic ganglion cells across
all segments [46]. CD8 T cell infiltrates were visualized.

Treatment strategies for Sjögren’s syndrome associated SN
are based on case series and case reports, as there have been no
randomized clinical trials. Successful response has been re-
ported with the use of corticosteroids in association with my-
cophenolate mofetil [41•]. Other treatment strategies include
plasma exchange, rituximab therapy, cyclophosphamide ther-
apy, and azathioprine therapy [49–52]. IVIG therapy has had
variable reports of success, with some studies suggesting that
SN is less responsive to IVIG than are small-fiber sensory or
sensorimotor neuropathies [53]. Others found that the long-
term use of IVIG in ataxic SN with Sjögren’s syndrome led to
abatement of neurologic symptoms [54]. One case report by

Caroyer et al. [55] demonstrated clinical and electrophysio-
logic improvement in the condition of a patient with SN due to
Sjögren’s syndrome after 12weeks of therapy with infliximab,
and the improvements remained after 48 months. A recent
study by Goodman [56] suggests that autonomic symptoms
related to Sjögren’s syndrome may respond to repeated, on-
going, or adjunctive immunomodulation.

SN have also been identified in celiac disease, with or even
without enteropathy, although this is somewhat controversial
[57]. In celiac disease, the autoimmune response to gliadin
results in small bowel inflammation, which resolves with re-
moval of gluten from the diet [58]. Autopsy and biopsy data in
these patients have demonstrated humoral immune activation
in the peripheral nerves and DRG as well as other portions of
the nervous system [57]. The commonest neurologic compli-
cation of gluten sensitivity is cerebellar ataxia, termed gluten
ataxia, but various forms of peripheral neuropathy, including
cases of SN, have also been reported [57, 59, 60]. In the
hallmark article from 2010 by Hadjivassiliou et al. [57], 53
of 409 patients (13%) with chronic neuropathies were found
to have SN [57]. SN was defined as patchy sensory loss with
or without sensory ataxia, which was supported by
electrodiagnostic evidence of a patchy, non-length-
dependent sensory fiber involvement. Seventeen percent of
the SN patients had serologic evidence of gluten sensitivity
as determined by antigliadin antibodies. Of the 17 patients
with SN and gluten sensitivity, only seven had enteropathy
on biopsy ,and the rate of false positive results for antibodies
was high. In all patients, cerebellar ataxia (gluten ataxia) had
been excluded. Four patients demonstrated length-dependent
sensory fiber involvement without motor involvement. Many
would classify this as a length-dependent sensory axonopathy
as opposed to SN. It has also been reported that celiac patients
have a small-fiber neuronopathy [61]. In 2014, McKeon et al.
[62] investigated the association of gliadin antibody positivity
(without celiac disease) and neurologic dysfunction (including
cerebellar ataxia, neuropathy, and other presentations). They
determined that in most gliadin antibody positive patients
without celiac disease, alternative causes of neurologic dys-
function, including nutritional deficiency and coexisting auto-
immunity, could result in the neurologic manifestations.
Reports of treatment response differ, with some neurologic
symptoms stabilizing [57] or abating with initiation of a
gluten-free diet [57, 61]. However, there is some suggestion
that initiation of a gluten-free diet long after onset of neuro-
logic symptoms does not produce significant abatement of
symptoms [63].

Many other autoimmune diseases have been linked to SN.
There are several case reports of SN in patients with autoim-
mune hepatitis [64–66]. Unfortunately, the patients’ neurolog-
i c symp toms d id no t s i gn i f i c an t l y r e spond to
immunomodulating therapies. Unlike in Sjögren’s syndrome,
the association between SN and systemic lupus erythematosus
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is quite rare, with only a few case reports [67, 68]. A newly
described association is that of livedoid vasculopathy and SN
[69]. Livedoid vasculopathy is a cutaneous skin disorder that
results in purpuric lesions that progress to ulcerations of the
limbs. Healing of the ulcerations results in atrophie blanche
(white atrophied scars). There is a report of a 32-year-old
patient with livedoid vasculopathy who developed SN, initial-
ly presenting with gait ataxia and dysesthesia [69]. Alternative
causes were excluded, and she was treated with mycopheno-
late mofetil and prednisolone. When the SN progressed, treat-
ment with rituximab was added, which resulted in clinical and
electrodiagnostic stabilization.

Anti-fibroblast growth factor receptor 3 (anti-FGFR3) anti-
bodies have recently been associated with SN [70••]. In 2015,
Antoine et al. [70••] studied 106 patients with pure sensory
neuropathy, 72 of whom fulfilled the diagnostic criteria for
SN. Anti-FGFR3 antibodies were identified in 17 patients (16
with a sensory neuropathy and 1 with systemic lupus erythe-
matosus and no reported neuropathy). Antoine et al. proposed
that the target of the antibodies is likely the DRG given that
87% of the antibody-positive patients had a non-length-
dependent pattern of sensory disturbance and 82% fulfilled
the diagnostic criteria for probable SN. The characteristic fea-
tures include severe pain and trigeminal nerve involvement.
One patient had severe dysautonomia. Nerve biopsy demon-
strated fiber loss without regenerating clusters, supporting an
SN over an axonopathy. Further, electromyography results
were similar to those in SN. Antoine et al. reported that anti-
FGFR3 antibodies were present in 19% of patients with idio-
pathic SN or SN associated with another autoimmune disorder
in their series. These results suggest that identification of anti-
FGFR3 antibodies may aid in diagnosis of SN.

Toxic Causes

Pyridoxine (vitamin B6)-induced SN was first described in the
1980s, and many cases have been reported since then [71, 72].
Pyridoxine exerts a dose-dependent effect on the DRG, with
irreversible damage at higher doses despite cessation of intake
of the vitamin [73]. In humans, SN has been reported with
dosages anywhere from 200 to 6000 mg per day [72, 74].
Patients typically experience a severe sensory ataxia due to
necrosis of the DRG and degeneration of their central and
peripheral projections [75]. The exact mechanism of this ne-
crosis has yet to be determined.

Another well-described toxic cause of SN is the platinum-
based chemotherapeutic agents, including cisplatin,
carboplatin, and oxaliplatin [76]. Cisplatin and oxaliplatin
are considered more neurotoxic than carboplatin, with neuro-
toxicity reported in up to 90% of patients treated with
oxaliplatin [77]. The effect is dose dependent, and with cis-
platin, a cumulative dose higher than 300 mg/m2 has been
demonstrated to result in electrophysiologic evidence of

damage to large-fiber neurons, leading to SN-related symp-
toms [78, 79]. Platinum-containing drugs are known to result
in peripheral nervous system toxicity through nuclear and mi-
tochondrial DNA damage, inducing oxidative stress, and
disturbing ion channels [80]. Cisplatin, in particular, is known
to induce apoptosis in the DRG by binding to nuclear DNA
and mitochondrial DNA, resulting in DNA damage and acti-
vation of p53 and Bax-mediated apoptosis [81]. Recent work
by Maj et al. [82] suggests that prevention of the p53 accu-
mulation with small-molecule pifithrin-μmay be neuroprotec-
tive. The “coasting effect” refers to the emergence of a symp-
tomatic neuropathy up to 2 months after cessation of the che-
motherapy and clearance of the drug [76]. For this reason, it is
important to stop use of the offending agent at the first sign of
neuronal dysfunction.

Another potential toxic cause has recently been described
in the literature. Novak et al. [83] reported on the association
between a non-length-dependent, subclinical, small-fiber neu-
ropathy and statin use. In this study, the skin and sweat gland
biopsy specimens of 80 statin users were compared with those
of age-matched controls. Novak et al. found that compared
with the biopsy specimens of non-statin users, the biopsy
specimens of statin users had significantly reduced epidermal
and sweat gland nerve fiber densities at the thigh but not at the
calf. Of importance, there were no significant differences be-
tween the two groups with regard to autonomic testing scores,
or subjective pain or numbness scale scores. They concluded
that this non-length-dependent process represents a new asso-
ciation between sensory and autonomic ganglionopathy and
statin use.

Infectious Causes

Several infectious causes have been implicated in the devel-
opment of SN. The commonest is HIV/AIDS, but others in-
clude Epstein–Barr virus, varicella–zoster virus, and human T-
lymphotropic virus [84–89]. Other infectious associations in-
clude leprosy, particularly in countries such as India, where
the disease is commoner [90]. Recently, Chiu et al. [91] re-
ported on a case of a 3-year-old girl in whom enterovirus
infection had been diagnosed [91]. Nine days later she devel-
oped dorsal column dysfunction and absent sensory nerve
action potentials (SNAP) on nerve conduction studies. This
is the youngest reported case of SN, and the only case associ-
ated with enterovirus to date.

Idiopathic Causes

Despite extensive workup, about half of all SN are deemed to
be idiopathic [86, 92]. This is obviously a diagnosis of exclu-
sion, although it is thought that these presentations are likely
of autoimmune or possibly toxic cause [93]. Unlike most other
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subacute presentations described thus far, idiopathic SN are
typically indolent and slowly progressive [92].

Diagnostic Evaluation

In 2009, Camdessanché et al. [94] proposed a set of diagnostic
criteria for SN on the basis of a retrospective of a study pop-
ulation so as to help distinguish SN from other sensory neu-
ropathies [94]. These criteria were later validated in a study of
210 patients at 15 referral centers [95•]. In this validation
study, the SN criteria were 90.3% sensitive and 85.2% specif-
ic, and had a positive predictive value of 91.9% and a negative
predictive value of 82.5%. The criteria were validated against
expert diagnosis as opposed to biopsy of DRG. See Table 1 for
the score form for the SN diagnostic criteria.

When workup is being performed on a patient with suspected
SN, electrophysiologic testing can be the most helpful study to
further support the diagnosis, and is strongly recommended.
Non-length-dependent sensory abnormalities are the hallmark,
and often the upper extremities are affected disproportionately
[86]. These abnormalities are typically widespread and asymmet-
ric [96]. Although classically motor nerve conduction study find-
ings are normal, motor nerve conduction study abnormalities
have been reported for most causes [45, 64, 87, 92, 97, 98].
Needle electromyography is remarkable for incomplete activa-
tion of muscles due to loss of sensory input and the resultant
incomplete interference pattern [99]. Recently, serial nerve con-
duction study findings were studied in 86 inflammatory SN

patients [31••]. There was a monthly reduction of SNAP ampli-
tudes that worsened in the first 2 months, then slowed down after
7 months, and finally stabilized after 10 months. The decline in
SNAP amplitudes correlatedwith disability progression and lym-
phocytic reaction in the cerebrospinal fluid (CSF). On the basis
of this observation, the study authors proposed that treatment
should be initiated within the first 8 months if possible. The
authors recommend treatmentwithin 2months of symptomonset
during which the inflammatory reaction and decline in sensory
response amplitude are at their greatest. The radial and ulnar
nerves seemed to be the most sensitive to change.

Depending on the specific clinical picture and history of
exposures, serum and CSF analysis can aid in the diagnosis
of the specific autoimmune or toxic causes. In general, we
recommend the study of the following for initial diagnostic
evaluation: anti-Hu and anti-CRMP-5/CV2 antibodies, antinu-
clear antibodies, anti-SSA and anti-SSB antibodies, vitamin B6

level (if there is a history of supplementation), and HIV. Should
the study findings be unremarkable, then a more extensive
workup is warranted, including additional laboratory and im-
aging studies as outlined in Fig. 2. In the case of a
paraneoplastic syndrome, the sensitivity and specificity of se-
rum anti-Hu antibodies are 82% and 99% respectively [100].
Some patients with anti-Hu antibodies also have anti-CRMP-5/
CV2 antibodies, and they may have a mix of SN and
superimposed demyelinating sensorimotor neuropathy. Anti-
CRMP-5/CV2 antibodies in isolation are associated with a
mixed axonal and demyelinating polyneuropathy [8].
Notably, nearly 20% of paraneoplastic sensory neuropathies

Table 1 Causes of acquired sensory neuronopathies and recommended evaluation

Onset Cause Evaluation

Paraneoplastic Subacute–chronic Small-cell lung cancer, bronchial carcinoma, ovarian
cancer, breast cancer, prostate cancer, transitional cell
bladder cancer, malignant mixed müllerian tumor,
neuroendocrine tumor, sarcoma, hepatocellular
carcinoma

Antibody testing: anti-Hu antibodies;
anti-CRMP-5/CV2 antibodies

Imaging: CTof chest; mammogram; CTof abdomen and
pelvis if preceding imaging findings are negative;
consider PET scan if preceding imaging findings are
negative

Supportive studies: MRI of spinal cord; CSF analysis

Autoimmune Subacute–chronic Sjögren’s syndrome, systemic lupus erythematosus,
celiac disease, autoimmune hepatitis, sensory
neuronopathy associated with anti-FGFR3 antibodies

Laboratory studies: ANA, anti-SSA and anti-SSB
antibodies; anti-dsDNA, anti-TTG, and anti-gliadin
antibodies; anti-FGFR3 antibodies

Supportive testing for Sjögren’s syndrome: rose Bengal
testing; Schirmer testing; lip or salivary gland biopsy

Infectious Subacute HIV, EBV, VZV, HTLV-1, leprosy, enterovirus Laboratory studies: HIV, CD4 cell count, HTLV-1, EBV,
VZV, serum antibodies to phenolic glycolipid I, skin
or nerve biopsy for acid-fast bacilli, enterovirus
antibodies

Toxic Subacute–chronic Pyridoxine, platinum drugs Laboratory studies: vitamin B6

History of platinum drug exposure

Idiopathic Chronic Unknown, presumed autoimmune Diagnosis of exclusion

ANA antinuclear antibody, CRMP-5 collapsin-response mediator protein 5, CSF cerebrospinal fluid, CT computed tomography, dsDNA double-stranded
DNA, EBV Epstein–Barr virus, FGFR3 fibroblast growth factor receptor 3,HIV human immunodeficiency virus, HTLV-1 human T-lymphotropic virus
1, MRI magnetic resonance imaging, PET positron emission tomography, TTG tissue transglutaminase, VZV varicella–zoster virus
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are seronegative [100]. In this case, characteristic CSF sam-
pling may be useful, and demonstrates pleocytosis, elevated
protein levels, and oligoclonal bands [18, 94, 101].
Importantly, neurologic symptoms are often the presenting
symptom of a malignancy, and precede the cancer diagnosis
by 3–8months, and care should be taken to look for evidence of
malignancy if a paraneoplastic syndrome is diagnosed [10, 18,
24, 102]. A chest computed tomography scan should be per-
formed, and even fluorodeoxyglucose positron emission to-
mography should be considered if the initial imaging findings
are negative and clinical suspicion remains high [103, 104]. If
underlying malignancy is not found and the patient harbors
paraneoplastic antibodies, patients should undergo repeated
screening in 3–6 months, and then every 6 months thereafter
for 4 years [105].

Magnetic resonance imaging (MRI) of the spinal cord can
also be helpful in the diagnosis of an SN as T2 hyperintensity in
the dorsal columns may be observed [106]. Multiple-echo data
image combination (MEDIC) and turbo inversion recovery
magnitude (TIRM) imaging techniques have recently been de-
scribed to reveal characteristic findings in SN.MEDIC imaging
demonstrates higher signal intensity in the DRG and posterior
columns. Conversely, TIRM imaging demonstrated a smaller
spinal cord area and decreased nerve root diameter than in
healthy controls [107]. Diffusion tensor imaging (DTI) has
been investigated as a tool to differentiate SN patients from
diabetic sensorimotor polyneuropathy patients and healthy in-
dividuals. In this study, MRI findings were compared among

28 patients with SN, 20 healthy controls, and 14 patients with
diabetic distal sensorimotor polyneuropathy. It was found that
DTI abnormalities in SN patients preceded the T2
hyperintensity in the dorsal columns on MRI, and the study
authors proposed that it may be more sensitive. The study au-
thors hypothesized that the DTI abnormalities are secondary to
axonal loss and gliosis of the cuneate and gracile fasciculi,
representing damage of the central projections in SN. They
concluded that DTI imaging could be an earlier, noninvasive,
in vivo test used in the diagnosis of SN and could also help
differentiate between SN and distal neuropathies [108].

Depending on the likely underlying cause, tissue biopsy may
also a useful diagnostic tool in SN. In patients with suspected
Sjögren’s syndrome associated SN, a lip or salivary gland biopsy
can be diagnostic should the test for autoantibodies be negative
[109]. In paraneoplastic syndromes, tumor biopsy is required to
confirm the pathologic features of the underlying malignancy. In
patients with small-fiber-predominant SN (as in those with celiac
disease), a skin biopsy may demonstrate a non-length-dependent
pattern of nerve loss. The only definitive way to confirm DRG
disease is by biopsy of the DRG, which is an invasive, traumatic
procedure, which we do not recommend.

Conclusion

Acquired SN are a rare group of disorders that present with a
non-length-dependent sensory neuropathy and early-onset

A. In a patient with clinically pure sensory neuropathy a diagnosis of sensory 
neuronopathy is possible if score >6.5

Yes Points
a- Ataxia in the lower and upper extremities at onset or full 

development
+3.1

b- Asymmetrical distribution of sensory loss at onset or full 
development

+1.7

c- Sensory loss not restricted to the lower extremities at full 
development

+2.0

d- At least 1 sensory nerve action potential absent or 3 sensory 
nerve action potentials <30% of the lower limit of normal in the 
upper extremities, not explained by entrapment neuropathy

+2.8

e- Less than 2 nerves with abnormal motor nerve conduction 
studies in the lower limbs

+3.1

B. A diagnosis of sensory neuronopathy is probable if the patient’s score is >6.5 and if: 
1. The initial work up does not show biological perturbations or nerve conduction 

findings excluding sensory neuronopathy and
2. The patient has one of the following disorders:

a. Onconeural antibodies or cancer within 5 years [1]
b. Cisplatin treatment
c. Sjögren’s syndrome [2]

3. Or MRI demonstrates high signal in the posterior columns of the spinal cord

C. A diagnosis of sensory neuronopathy is definite if dorsal root ganglia degeneration is 
pathologically demonstrated although dorsal root ganglia biopsy is not recommended. 

Fig. 2 Score form for the
diagnosis of sensory
neuronopathy. MRI magnetic
resonance imaging. (Modified
with permission from
Camdessanché et al. [94])
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ataxia. The prompt recognition and diagnostic evaluation of
SN is important as an underlying malignancy is often discov-
ered. Additionally, early identification of SN results in more
immediate initiation of treatment, which has significant prog-
nostic implications. In the future, further identification of as-
sociated autoantibodies may facilitate identification of this
uncommon subset of neuropathies and may result in more
successful, focused therapeutic interventions.
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